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1 Introduction

In this chapter, the problem of constructing a reduced order system while
preserving the second order structure of the original system is discussed. Af-
ter a brief introduction on second order systems and a review of first order
model reduction techniques, two classes of second order structure preserv-
ing model reduction techniques – Krylov subspace-based and SVD-based –
are presented. For the Krylov techniques, conditions on the projectors that
guarantee the reduced second order system tangentially interpolates the orig-
inal system at given frequencies are derived and an algorithm is described.
For SVD-based techniques, a Second Order Balanced Truncation method is
derived from second order gramians.

Second order systems arise naturally in many areas of engineering (see, for
example, [13, 14, 18]) with the following form :

{

Mq̈(t) + Dq̇(t) + Sq(t) = F in u(t),
y(t) = F out q(t).

(1)

We assume that u(t) ∈ R
m, y(t) ∈ R

p, q(t) ∈ R
N , F in ∈ R

N×m, F out ∈
R

p×N , and M,D,S ∈ R
N×N with M invertible. For mechanical systems the

matrices M , D and S represent, respectively, the mass (or inertia), damping
and stiffness matrices, u(t) corresponds to the vector of external forces, F in is
the input distribution matrix, y(·) is the output measurement vector, F out is
the output measurement matrix, and q(t) to the vector of internal generalized
coordinates.

The transfer function associated with the system (1) is

R(s)
.
= F outP (s)−1F in, (2)

where
P (s)

.
= Ms2 + Ds + S (3)
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is the characteristic polynomial matrix. The zeros of det(P (s)) are also known
as the characteristic frequencies of the system and play an important role in
model reduction, e.g., the system is stable if these zeros lie in the left half
plane.

Often, the original system is too large to allow the efficient solution of var-
ious control or simulation tasks. In order to address this problem, techniques
that produce a reduced system of size n � N that possesses the essential
properties of the full order model have been developed. Such a reduced model
can then be used effectively, e.g., in real-time, for controlling or simulating
the phenomena described by the original system. We therefore need to build
a reduced model,

{

M̂ ¨̂q(t) + D̂ ˙̂q(t) + Ŝq̂(t) = F̂ inu(t)

ŷ(t) = F̂ outq̂(t)
(4)

where q̂(t) ∈ R
n, M̂ , D̂, Ŝ ∈ R

n×n, F̂ in ∈ R
n×m, F̂ out ∈ R

p×n, such that its
transfer function is “close” to the original transfer function.

In contrast with second order systems, first order systems can be repre-
sented as follows :

S

{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(5)

where

x(t) ∈ R
N is the state vector, y(t) ∈ R

p is the output vector,
u(t) ∈ R

m is the input vector, N is the order of the system,
m is the number of inputs, p is the number of outputs,

C ∈ R
p×N is the output matrix, A ∈ R

N×N is the state matrix,
B ∈ R

N×m is the input matrix.

The transfer function associated with the system (5) is

R(s)
.
= C(sIN − A)−1B, (6)

and links the inputs to the outputs in the Laplace domain.
Second order systems can be seen as a particular class of linear systems.

Indeed, by rewriting the system (1) as follows















ẋ(t) =

[

0 IN

−SM −DM

]

x(t) +

[

0
F in

M

]

u(t)

y(t) =
[

F out
M 0

]

x(t)

(7)

where the state x(t) is
[

q(t)T q̇(t)T
]T

, and where we have chosen a coordinate
system in which the mass matrix M is the identity (for simplicity, the mass
matrix M is assumed to be invertible, and one can write for example: SM =
M−1S, DM = M−1D, F in

M = M−1F in, F out
M = F out), one recovers the form

(5). We can thus rewrite the transfer function defined in (2) as
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R(s) = C(sI2N − A)−1B (8)

by defining

A
.
=

[

0 IN

−SM −DM

]

, B
.
=

[

0
F in

M

]

, C
.
=

[

F out
M 0

]

. (9)

Note that if the dimension of the state q(t) of the original second order sys-
tem (1) is equal to N , the order of its corresponding linearized state space
realization (9) (also called the Mc Millan degree of R(s) if the (C,A,B) is
minimal) is equal to 2N .

A reduced model for the second order system (1) could be produced by ap-
plying standard linear model reduction techniques to (C,A,B) in (9) to yield
a small linear system (Ĉ, Â, B̂). Unfortunately, there is no guarantee that
the matrices defining the reduced system (Ĉ, Â, B̂) have the nonzero struc-
ture necessary to preserve the second order form of the original system. Such
a guarantee requires the development of second order structure preserving
model reduction techniques.

This chapter is organized as follows. In Section 2, general results concern-
ing model reduction of first order systems are summarized. In Section 3, a
simple sufficient condition for constructing reduced order systems that pre-
serve the second order structure is developed. Generalizations of Balanced
Truncation and Krylov subspace-based methods that enforce this sufficient
condition for second order systems are presented in Sections 4 and and 5 re-
spectively. After some numerical experiments in Section 6, concluding remarks
are made in Section 7.

2 Model Reduction of Linear Systems

Most popular model reduction techniques for linear systems can be placed in
one of two categories [1] : SVD-based and Krylov subspace-based techniques.
Perhaps the most popular model reduction technique for linear systems is the
Balanced Truncation method. This SVD-based technique has many advan-
tages: the stability of the original system is preserved and there exists an a
priori global bound on the error between the original and the reduced system.
The main drawback is that the technique cannot be applied to large-scale
systems of order N , i.e., those systems where O(N 3) computations is an un-
acceptably large cost. On the other hand, Krylov subspace-based techniques
that are based on imposing moment matching conditions between the original
and the reduced transfer function, such as rational/tangential interpolation
methods, can be applied to large-scale systems but do not provide global error
bounds and depend significantly on the choice of certain parameters.

In this section, we present an overview of these examples of each cate-
gory applied to a linear system described by (5). We assume that its transfer
functions is strictly proper, i.e. lims→∞ R(s) = 0. Since M is invertible, the
transfer function considered in (2) is also strictly proper.



4 Y. Chahlaoui et al.

2.1 Balanced Truncation

If A is stable, then the system S (5) is also a linear (convolution) operator
mapping square integrable inputs u(.) ∈ L2[−∞,+∞] to square integrable
outputs y(.) ∈ L2[−∞,+∞]. Following the development in [4], we recall the
concept of a dual operator to discuss the Balanced Truncation method.

Definition 1. Let L be a linear operator acting from a Hilbert space U to
a Hilbert space Y equipped respectively with the inner products < , >U and
< , >Y . The dual of L, denoted by L∗, is defined as the linear operator acting
from Y to U such that < Lu, y >Y = < u,L∗y >U for all y ∈ Y and all
u ∈ U . ut

It is easily verified that the transfer function associated with the dual operator
of (6) is BT (sIN − AT )−1CT , (see [19]).

Now consider the input/output behavior of the system (5). If we apply an
input u(.) ∈ L2[−∞, 0] to the system for t < 0, the position of the state at
time t = 0, assuming the zero initial condition x(−∞) = 0, is equal to

x(0) =

∫ 0

−∞

e−AtBu(t)dt
.
= Cou(t).

If a zero input is applied to the system for t > 0, then for all t ≥ 0, the output
y(.) ∈ L2[0,+∞] of the system (5) is equal to

y(t) = CeAtx(0)
.
= Obx(0).

So the mapping of past inputs to future outputs is characterized by two
operators – the so-called controllability operator Co : L2[−∞, 0] 7→ R

n

(mapping past inputs u(.) to the present state) and observability operator
Ob : R

n 7→ L2[0,+∞] (mapping the present state to future outputs y(.)).
Both Co and Ob have dual operators, C∗

o and O∗
b , respectively. The op-

erators and their duals are related by two fundamental matrices associated
with the linear system (5). These are the “controllability gramian” P and the
“observability gramian” Q. If A is stable, they are the unique solutions of the
Lyapunov equations :

AP + PAT + BBT = 0 , ATQ + QA + CT C = 0. (10)

It follows that Co and Ob are related to their dual operators by the identities
P = C∗

oCo and Q = ObO
∗
b [19].

Another physical interpretation of the gramians arises from two optimiza-
tion problems. Let

J(v(t), a, b)
.
=

∫ b

a

v(t)T v(t)dt

be the energy of the vector function v(t) in the interval [a, b]. It can be shown
that (see [10])
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min
Cou(t)=x0

J(u(t),−∞, 0) = xT
0 P

−1x0, (11)

and, symmetrically, we have the dual property

min
O∗

b
y(t)=x0

J(y(t),−∞, 0) = xT
0 Q

−1x0. (12)

Two algebraic properties of gramians P and Q are essential to the de-
velopment of Balanced Truncation. First, under a coordinate transformation
x(t) = T x̄(t), the new gramians P̄ and Q̄ corresponding to the state-space
realization (C̄, Ā, B̄) = (CT, T−1AT, T−1B) undergo the following (so-called
contragradient) transformation :

P̄ = T−1PT−T , Q̄ = TTQT. (13)

This implies that the eigenvalues of the product P̄Q̄ = T−1PQT depend
only on the transfer function R(s) and not on a particular choice of state-
space realization. It implies also that there exists a state-space realization
(Cbal, Abal, Bbal) of R(s) such that the corresponding gramians are equal and
diagonal P̄ = Q̄ = Σ [19].

Second, because the gramians appear in the solutions of the optimization
problems (11) and (12), they give information about the energy that goes
through the system, more specifically, about the distribution of this energy
among the state variables. The smaller xT

0 P
−1x0 is, the more “controllable”

the state x0 is, since it can be reached with a input of small energy. By
duality, the smaller xT

0 Q
−1x0 is, the more “observable” the state x0 is. Thus

when both gramians are equal and diagonal, the order of magnitude of a
diagonal value of the product PQ is a good measure for the influence of the
corresponding state variable on the mapping y(.) = ObCou(.) that maps past
inputs u(t) ∈ L2[−∞, 0] to future outputs y(t) ∈ L2[0,+∞] passing via that
particular state at time t = 0.

Given a transfer function R(s), the Balanced Truncation model reduction
method consists of finding a state-space realization (Cbal, Abal, Bbal) of R(s)
such that the gramians are equal and diagonal (this is the balanced realization
of the system) and then constructing the reduced model by keeping the states
corresponding to the largest eigenvalues of the product PQ and discarding
the others. In other words, the balanced truncation technique chooses Z and
V such that ZT V = I, and

{

PQV = V Λ+

QPZ = ZΛ+
(14)

where Λ+ is a square diagonal matrix containing the largest eigenvalues of
PQ. A state-space realization of the reduced transfer function is given by
(CV,ZT AV,ZT B). The idea of the balanced truncation technique thus con-
sists in keeping those states that are most controllable and observable accord-
ing to the gramians defined in (11) and (12).
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Finally, we note that Balanced Truncation can be related to the Hankel
operator that maps the past inputs to the future outputs and is defined :
H

.
= ObCo. Since PQ = CoC

∗
oO

∗
bOb and QP = O∗

bObCoC
∗
o , the dominant

eigenspaces V of PQ and Z of QP are linked with the dominant eigenspaces
X of HH∗ and Y of H∗H via the equalities X = ObV and Y = C∗

oZ. Therefore,
projecting onto the spaces V and Z also approximates the Hankel map H well.
We refer the reader to [10] and [19], for a more detailed study and discussion
of the Balanced Truncation method.

Unfortunately, the Balanced Truncation method cannot be applied directly
to the state-space realization (C,A,B) (7) of the second order system without
destroying its second order structure in the reduced realization. An approach
that solves this problem is discussed in Section 4. Also note that, due to its
dependence on transformations with O(N 3) complexity, the Balanced Trun-
cation method cannot be applied, as described, to large-scale systems. Recent
work by Antoulas and Sorensen considers this problem and describes an Ap-
proximate Balanced Truncation approach for large-scale linear systems [15].

2.2 Krylov subspace-based model reduction

The Krylov subspace-based model reduction methods have been developed in
order to produce reduced order models of large-scale linear systems efficiently
and stably via projection onto subspaces that satisfy specific conditions. These
conditions are based on requiring the reduced order transfer function to match
selected moments of the transfer function R(s) of the original system.

Rational Interpolation

Krylov subspaces play an important role in the development of these methods
and are defined as follows:

Definition 2. Let M ∈ C
n×n and X ∈ C

n×m. A Krylov subspace of or-
der k of the pair (M,X), denoted Kk(M,X), is the image of the matrix
[

M MX . . . Mk−1X
]

.

If A is stable, R(s) expanded around infinity gives

R(s) = C(sIN − A)−1B =
∞
∑

i=0

CAiBs−i−1 .
=

∞
∑

i=0

R∞
i s−i−1,

where the coefficients R∞
i are called the Markov parameters of the system.

One intuitive way to approximate R(s) is to construct a transfer function R̂(s)
of Mc Millan degree n � N ,

R̂(s)
.
= Ĉ(sIn − Â)−1B̂

.
=

∞
∑

i=1

R̂∞
i s−i (15)
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such that R̂∞
i = R∞

i for 1 ≤ i ≤ r, where r is as large as possible and is

generically equal to 2n. The resulting reduced transfer function R̂(s) generally
approximates quite well the original transfer function for large values of s.

If a good approximation for low frequencies is desired, one can construct
a transfer function

R̂(s) = Ĉ(sIn − Â)−1B̂ =

∞
∑

k=0

R̂
(λ)
k (λ − s)k,

such that
R̂

(λ)
k = R

(λ)
k for 1 ≤ k ≤ K, (16)

with
R

(λ)
k

.
= C(λIN − A)−kB, R̂

(λ)
k

.
= Ĉ(λIn − Â)−kB̂.

More generally, one can choose a transfer function R̂(s) that interpolates
R(s) at several points in the complex plane, up to several orders. The main
results concerning this problem for MIMO standard state space systems are
summarized in the Theorem 1.

Theorem 1. Let the original system be

R(s)
.
= C(sIN − A)−1B, (17)

and the reduced system be

R̂(s)
.
= CV

(

ZT (sIN − A)V
)−1

ZT B, (18)

with ZT V = In. If

K
⋃

k=1

KJbk
((λkI − A)−1, (λkI − A)−1B) ⊆ Im(V ) (19)

and
K
⋃

k=1

KJck
((λkI − A)−T , (λkI − A)−T CT ) ⊆ Im(Z) (20)

where the interpolation points λk are chosen such that the matrices λkIN − A

are invertible ∀k ∈ {1, . . . ,K} then the moments of the systems (17) and (18)
at the points λk satisfy

R
(λk)
jk

= R̂
(λk)
jk

(21)

for jk = 1, 2, . . . , Jbk
+Jck

and k = 1, 2, . . . ,K, provided these moments exist,

i.e. provided the matrices λkIn − Â are invertible.
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For a proof, see [5] and [11]. A proof for MIMO generalized state space sys-
tems is given in [9]. ut

Matching Markov parameters, i.e., λ = ∞, is known as partial realization.
When λ = 0, the corresponding problem is known as Padé approximation. If
λ takes a finite number of points λi, it is called a multi-point Padé approxi-
mation. In the general case, the problem is known as rational interpolation.
Rational interpolation generally results in a good approximation of the orig-
inal transfer function in a region near the expansion points (and increasing
the order at a point tends to expand the region), but may not be accurate at
other frequencies (see for instance [1]).

The advantage of these moment matching methods is that they can be
implemented in a numerically stable and efficient way for large-scale systems
with sparse coefficient matrices (see for example [9] and [11]). Also, the local
approximation property means that good approximations can be achieved
in specific regions over a wide dynamic range typically at the cost of larger
global error. This requires however, that the interpolation points and their
corresponding order of matching must be specified. For some applications, the
user may have such information but for blackbox library software a heuristic
automatic selection strategy is needed (see [11]) and the design of such a
strategy is still an open question. The other main drawback is the lack of an
error bound on the global quality of the approximation, e.g., the H∞-norm of
the difference between original and reduced transfer functions. Recent research
has begun to address the evaluation of the H∞-norm given a reduced order
model that may help in selecting points [3].

One could apply these methods to the state space realization (9) of a
second order transfer function. Unfortunately, if the methods are used in the
forms described, the resulting reduced order transfer function will generically
not be in second order form. An approach to maintain second order form is
discussed in Section 5.

Tangential Interpolation

The Krylov subspace-based methods that produce reduced order models based
on rational interpolation can be applied to MIMO systems efficiently as long
as the number of inputs and outputs, m and p, stay suitably moderate in size.
For MIMO systems where m and p are too large, a more general tangential in-
terpolation problem has recently been considered (see [8]). Instead of imposing
interpolation condition of the form R(λi) = R̂(λi), one could be interested,
for example, in only imposing interpolation conditions of the following form :

R̂(λi)xi = R(λi)xi , yiR̂(λi+n) = yiR(λi+n), 1 ≤ i ≤ n, (22)

where the n column vectors xi are called the right interpolation directions
and the n row vectors yi are called the left interpolation directions. As with
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rational interpolation, higher order tangential interpolation conditions can be
imposed at each point to improve the approximation.

Stable and efficient methods for tangential interpolation of MIMO systems
can be developed using theorems and techniques similar to those used for
Krylov subspace-based rational interpolation. However, the problem of con-
structing a reduced transfer function that satisfies a set of tangential interpo-
lation conditions and that preserves the second order structure of the original
transfer function requires additional consideration as discussed in Section 5.

3 Second order structure preserving model reduction

In this section, a simple sufficient condition for obtaining a second order re-
duced system from a second order system is presented. The following result
can be found in a slightly different form in [4].

Lemma 1. Let (C,A,B) be the state space realization defined in (9). If one
projects such a state space realization with 2N × 2n bloc diagonal matrices

Z
.
=

[

Z1 0
0 Z2

]

, V
.
=

[

V1 0
0 V2

]

, ZTV = I2n,

where Z1, V1, Z2, V2 ∈ C
N×n, then the reduced transfer function

R̂(s)
.
= CV

(

ZT (sI2N − A)V
)−1

ZT B

is a second order transfer function, provided the matrix ZT
1 V2 is invertible.

Proof. First, notice that the transfer function does not change under any
similarity transformation of the system matrices. Let us consider the similarity
transformation M ∈ C

2n×2n such that

M
.
=

[

X

Y

]

,

with X,Y ∈ C
n×n verifying

X−1(ZT
1 V2)Y = In.

From the preceding results,

R̂(s)
.
= CVM

(

M−1ZT (sI2N − A)VM
)−1

M−1ZT B

= F out
M V1X

(

s2In + sY −1ZT
2 DMV2Y + Y −1ZT

2 SMV1X
)−1

Y −1ZT
2 F in

M .

This is clearly a second order transfer function. ut
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4 Second order Balanced Truncation

The earliest balanced truncation technique for second order systems known to
the authors is described in [12]. Based on this work, an alternative technique
was developed in [4]. In this section an overview of the latter method, called
SOBT (Second Order Balanced Truncation), is given.

The first step in the development of SOBT, based on a balance and trun-
cate process similar to that discussed in Section 2.1, involves the definition of
two pairs of N × N gramians (“second order gramians”) that change accord-
ing to contragradient transformations, and that have some energetic inter-
pretation. The first pair (Ppos,Qpos) corresponds to an energy optimization
problem depending only on the positions q(t) and not on the velocities q̇(t).
Reciprocally, the second pair (Pvel,Qvel) correspond to an optimization prob-
lem depending only on the velocities q̇(t) and not the on the positions q(t).
By analogy to the first order case, the gramians Qpos and Qvel are defined
from the dual systems. Given the gramians, a balancing step in the method
is defined by transforming to a coordinate system in which the second order
gramians are equal and diagonal : P̄pos = Q̄pos = Σpos, P̄vel = Q̄vel = Σvel.
Their diagonal values enable us to identify the important positions and the
important velocities, i.e. those with (hopefully) large effect on the I/O map.
Once identified the reduced second order model follows by truncation of all
variables not identified as important.

In order to define a pair of second order gramians measuring the contribu-
tion of the position coordinates (independently of the velocities) with respect
to the I/O map, consider an optimization problem naturally associated with
the second order system (see [12]) of the form

min
q̇0∈Rn

min
u(t)

J(u(t),−∞, 0), (23)

subject to
q̈(t) + DM q̇(t) + SMq(t) = F in

M u(t), q(0) = q0.

One easily sees that the optimum is qT
0 P11

−1q0, where P11 is the N × N left
upper block of P, where P is the controllability Gramian satisfying equation
(10) with (C,A,B) given in (9). Starting with (11) we must solve

min
q̇0∈Rn

Jq0
(q̇0) =

[

qT
0 q̇T

0

]

P−1

[

q0

q̇0

]

Partitioning P−1 as follows

P−1 =

[

R1 R2

RT
2 R3

]

and annihilating the gradient of Jq0
(q̇0) gives the relation q̇0 = −R−1

3 RT
2 q0.

The value of Jq0
at this point is qT

0 (R1 − R2R
−1
3 RT

2 )q0. This is simply the
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Schur complement of R3 which is P11
−1. Similarly, the solution of the dual

problem corresponds to qT
0 Q11

−1q0 , where Q11 is the N ×N left upper block
of Q (10).

Note that the transfer function is seen as a linear operator acting between
two Hilbert spaces. The dual of such an operator is defined in Definition 1.
It follows that the dual of a second order transfer function might not be
a second order transfer function. This has no consequences here since only
the energy transfer interpretation between the inputs, the outputs, the initial
positions and velocities is important. Under the change of coordinates q(t) =
T q̄(t), it is easy to verify that this pair of gramians undergo a contragradient
transformation :

(P̄11, Q̄11) = (T−1P11T
−T , TTQ11T ).

This implies that there exists a new coordinate system such that both P11

and Q11 are equal end diagonal. Their energetic interpretation is seen by
considering the underlying optimization problem. In (23), the energy necessary
to reach the given position q0 over all past inputs and initial velocities is
minimized. Hence, these gramians describe the distribution of the I/O energy
among the positions.

A pair of second order gramians that give the contribution of the veloci-
ties with respect to the I/O map can be defined analogously. The associated
optimization problem is

min
q0∈Rn

min
u(t)

J(u(t),−∞, 0) (24)

subject to

q̈(t) + DM q̇(t) + SMq(t) = F in
M u(t), q̇(0) = q̇0.

Following the same reasoning as before for the optimization problem (23),
one can show that the solution of (24) is q̇T

0 P22
−1q̇0, where P22 is the n × n

right lower block of P. The solution of the dual problem is q̇T
0 Q22

−1q̇0 , where
Q22 is the n × n right lower block of Q. As before, under the change of
coordinates q(t) = T q̄(t) one can check that this pair of gramians undergo
a contragradient transformation and the energetic interpretation is given by
considering the underlying optimization problem. In (24), the energy necessary
to reach the given velocity q̇0 over all past inputs and initial positions is
minimized. Hence, these gramians describe the distribution of the I/O energy
among the velocities.

Given the interpretation above these second order gramians are good can-
didates for balancing and truncation. Therefore, we choose :

(Ppos, Qpos) = (P11, Q11) and (Pvel, Qvel) = (P22, Q22) . (25)

It is not possible to balance both pairs of second order gramians at the
same time with a single change of coordinates of the type q(t) = T q̄(t). A
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change of coordinates is required for both positions and velocities (unlike the
approach in [12]). Therefore, we work in a state-space context, starting with
the system (9). The SOBT method, therefore, first computes both pairs of
second order gramians, (Ppos, Qpos) and (Pvel, Qvel). Given the gramians,
the contragradient transformations that make Ppos = Qpos = Λpos and Pvel =
Qvel = Λvel, where Λpos and Λvel are positive definite diagonal matrices,
are computed. Finally, truncate the positions corresponding to the smallest
eigenvalues of Λpos and the velocities corresponding to the smallest eigenvalues
of Λvel.

At present, there exists no a priori global error bound for SOBT and the
stability of the reduced system is not guaranteed. Nevertheless, SOBT yields
good numerical results, providing reduced transfer functions with approxima-
tion error comparable with the traditional Balanced Truncation technique.

5 Second Order Structure Preserving Krylov Techniques

The Krylov subspace-based methods discussed in Section 2.2 do not preserve
second order structure when applied to the linear system (9). It is possible
to modify them to satisfy the constraint presented in Section 3 and thereby
produce a second order reduced system. Section 5.1 summarizes the earli-
est Krylov subspace-based method for second order systems [16]. The simple
technique constructs, via projection, a second order reduced transfer function
that matches the Markov parameters (λ = ∞) of the original transfer func-
tion. The limitation of the technique when applied to a complex interpolation
point is also discussed. Section 5.2, addresses this limitation using a general-
ization that allows multipoint rational interpolation. Finally, the problem of
second order structure preserving tangential interpolation is solved in 5.3.

5.1 A particular case : Matching the Markov parameters

Su and Craig proposed a Krylov subspace-based projection method that pre-
serves second order structure while matching the Markov parameters of the
original transfer function [16]. The method is based on the observation the
right Krylov subspaces corresponding to interpolation at λ = ∞ for the system
(9) has the form

[

B AB A2B . . .
]

=

[

0 F in
M −DMF in

M . . .

F in
M −DMF in

M −SMF in
M + D2

MF in
M . . .

]

(26)

=

[

0 Qv,0 Qv,1 . . .

Qv,0 Qv,1 Qv,2 . . .

]

. (27)

and that if we write

Kk(A,B) =

[

V1

V2

]

,
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it follows that
Im(V1) ⊆ Im(V2).

So by projecting the state space realization (9) with

V
.
=

[

V2 0
0 V2

]

, Z
.
=

[

Z 0
0 Z

]

such that ZT V2 = In, we obtain an interpolating second order transfer func-
tion of the form

R̂(s) = F out
M V2

(

ZT (s2IN + sDM + SM )−1V2

)

ZT F in
M . (28)

Hence, a second order system with the same n first Markov parameters
as the original second order system can be constructed by projecting with
Z, V ∈ C

N×n such that ZT V = In and the image of V contains the image
of Qv,0, . . . , Qv,n−1. Since Kn(A,B) ⊆ V, it follows from Theorem 1 that the

first n Markov parameters of R(s) and R̂(s) are equal.
If we apply the construction for any interpolation points λ ∈ C, the cor-

responding right Krylov space is such that

Kk((λI − A)−1, (λI − A)−1B) =

[

V1

V2

]

,

with A and B defined in (9) and

Im(V1) ⊆ Im(V2).

Unfortunately, a similar statement can not be made for the left Krylov sub-
spaces Kk((λI − A)−T , (λI − A)−T CT ). This implies that when the second
order Krylov technique is extended to interpolation at arbitrary points in the
complex plane by projecting as in (28), only n interpolation conditions can
be imposed for a reduced second order system of Mc Millan degree 2n.

5.2 Second Order Rational Interpolation

The projection technique of Su and Craig has been generalized independently
in [6] and [17] to solve the rational interpolation problem that produces a
second order transfer function of order n, i.e., of Mc Millan degree 2n, R̂(s),
that interpolates R(s) at 2n points in the complex plane. (See also the chapters
in this volume by Bai and Freund.) After some preliminary discussion of
notation, the conditions that determine the projections are given in Theorem 2
and the associated algorithm is presented.

A rational matrix function R(s) is said to be O(λ− s)k in s with k ∈ Z if
its Taylor expansion about the point λ can be written as

R(s) = O(λ − s)k ⇐⇒ R(s) =

+∞
∑

i=k

Ri(λ − s)i, (29)
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where the coefficients Ri are constant matrices. If Rk 6= 0, then we say that
R(s) = Θ(λ − s)k. As a consequence, if R(s) = Θ(λ − s)k and k is strictly
negative, then λ is a pole of R(s) and if k is strictly positive, then λ is a zero
of R(s). Analogously, we say that R(s) is O(s−1)k if the following condition
is satisfied :

R(s) = O(s−1)k ⇐⇒ R(s) =

+∞
∑

i=k

Ris
−i, (30)

where the coefficients Ri are constant matrices. It should be stressed that, in
general, R(s) being O(s)−k is not equivalent to R(s) being O(s−1)k.

By combining the results of Sections 2.2 and 3, the following Theorem can
be proven.

Theorem 2. Let R(s)
.
= F out

M (s2IN +DMs+SM )−1F in
M = C(sI2N −A)−1B,

with

A
.
=

[

0 IN

−SM −DM

]

, B
.
=

[

0
F in

M

]

, C
.
=

[

F out
M 0

]

,

be a second order transfer function of Mc Millan degree 2N , i.e. SM , DM ∈
C

N×N ). Let Z, V ∈ C
2N×n be defined as

V
.
=

[

V1

V2

]

, Z
.
=

[

Z1

Z2

]

,

with V1, V2, Z1 and Z2 ∈ C
N×n such that

ZT
1 V1 = ZT

2 V2 = In.

Let us define the 2N × 2n projecting matrices

V
.
=

[

V1 0
0 V2

]

, Z
.
=

[

Z1 0
0 Z2

]

.

Define the second order transfer function R̂(s) of order n (and of Mc Millan
degree 2n) by

R̂(s)
.
= CV

(

ZT (sI2N − A)V
)−1

ZT B
.
= Ĉ(sI2n − Â)−1B̂. (31)

If
K
⋃

k=1

KJbk
((λkI2N − A)−1, (λkI2N − A)−1B) ⊆ Im(V ) (32)

and
K
⋃

k=1

KJck
((λkI2N − A)−T , (λkI2N − A)−T CT ) ⊆ Im(Z) (33)



Model Reduction of Second Order Systems 15

where the interpolation points λk are chosen such that the matrices λkI2N − A

are invertible ∀k ∈ {1, . . . ,K} then, if the matrix ZT
1 V2 is invertible,

R(s) − R̂(s) = O(s − λk)Jbk
+Jck (34)

for the finite points λk, provided these moments exist, i.e. provided the matri-
ces λkI2n − Â are invertible and

R(s) − R̂(s) = O(s−1)Jbk
+Jck (35)

if λk = ∞.

Proof. Clearly, ZTV = I2n. The second order structure of R̂(s) follows from
Lemma 1. It is clear that

Im(V ) ⊂ Im(V) , Im(Z) ⊂ Im(Z).

The interpolation conditions are then satisfied because of Theorem 1. ut

The form of the projectors allows the development of an algorithm similar
to the Rational Krylov family of algorithms for first order systems [11]. The
algorithm, shown below, finds a second order transfer function of order n,
i.e. of Mc Millan degree 2n, R̂(s), that interpolates R(s) at 2n interpolation
points λ1 up to λ2n, i.e.,

R(s) − R̂(s) = O(λi − s) for 1 ≤ i ≤ 2n, (36)

We assume for simplicity that the interpolation points are finite, distinct and
not poles of R(s). The algorithm is easily modified to impose higher order
conditions at the interpolation points.

Algorithm 1 1. Construct Z and V such that

V =
[

(λ1I2N − A)−1B . . . (λnI2N − A)−1B
]

=

[

V1

V2

]

ZT =







C(λn+1I2N − A)−1

...
C(λ2nI2N − A)−1






=

[

ZT
1 ZT

2

]

,

where V1, V2 ∈ C
N×n are the first N rows and the last N rows of V

respectively and Z1, Z2 ∈ C
N×n are the first N rows and the last N rows

of Z respectively. Choose the matrices M1,M2, N1, N2 ∈ C
n×n such that

NT
1 ZT

1 V1M1 = NT
2 ZT

2 V2M2 = In.
2. Construct

V
.
=

[

V1M1

V2M2

]

, Z
.
=

[

Z1N1

Z2N2

]

.
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3. Construct the matrices

Ĉ
.
= CV , Â

.
= ZT AV , B̂

.
= ZT B.

and define the reduced transfer function

R̂(s)
.
= Ĉ(sI2n − Â)−1B̂.

From Theorem 2, R̂(s) is a second order transfer function of order n that
satisfies the interpolation conditions (36). The algorithm above has all of
the freedom in the method of forming the bases and selecting interpolation
points and their associated orders found in the Rational Krylov family of
algorithms [11]. As a result, the second order rational interpolation problem
can be solved while exploiting the sparsity of the matrices and parallelism of
the computing platform in a similar fashion.

5.3 Second order Structure Preserving Tangential Interpolation

It is possible to generalize the earlier results for MIMO systems to perform
tangential interpolation and preserve second order structure. This is accom-
plished by replacing Krylov subspaces at each interpolation point, λi, with
generalized Krylov subspaces as done in [8]. The spaces are defined as follows:

Definition 3. Let M ∈ C
n×n, X ∈ C

n×m, y[i] ∈ <m, i = 0, . . . , k − 1 and
define Y ∈ <km×k as

Y =







y[0] . . . y[k−1]

. . .
...

y[0]






.

A generalized Krylov subspace of order k, denoted Kk(M,X, Y ), is the image
of the matrix

[

X MX . . . Mk−1X
]

Y .

For example, by using Algorithm 2 below to compute bases for generalized
Krylov subspaces and forming the appropriate projections, one can construct
a second order transfer function R̂(s) of order n that satisfies the following
interpolation conditions with respect to the second order transfer function
R(s) of order N :

xi

(

R(s) − R̂(s)
)

= O(λi − s) ,
(

R(s) − R̂(s)
)

xi+n = O(λi+n − s), (37)

where x1, . . . , xn ∈ C
1×p and xn+1, . . . , x2n ∈ C

m×1.

Algorithm 2 1. Construct Z and V such that

V =
[

(λn+1I2N − A)−1Bxn+1 . . . (λ2nI2n − A)−1Bx2n

]

=

[

V1

V2

]

ZT =







x1C(λ1I2N − A)−1

...
xnC(λnI2N − A)−1






=

[

ZT
1 ZT

2

]

,
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where Z1, Z2, V1, V2 ∈ C
N×n. Choose the matrices M1,M2, N1, N2 ∈

C
n×n such that NT

1 ZT
1 V1M1 = NT

2 ZT
2 V2M2 = In.

2. Construct

V
.
=

[

V1M1

V2M2

]

, Z
.
=

[

Z1N1

Z2N2

]

.

3. Construct the matrices

Ĉ
.
= CV , Â

.
= ZT AV , B̂

.
= ZT B.

and define the reduced transfer function

R̂(s)
.
= Ĉ(sI2n − Â)−1B̂.

It can be shown that R̂(s) is a second order transfer function of order n that
satisfies the interpolation conditions (37) (see [8]).

It is also possible to impose higher order conditions while preserving
the structure of the algorithm and the reduced order system. Consider,
for instance, right tangential interpolation conditions of higher order (sim-
ilar results hold for left tangential interpolation). Let the polynomial vector

x(s)
.
=

∑k−1
i=0 x[i](s − λ)i. To impose the tangential interpolation condition

(

R(s) − R̂(s)
)

x(s) = O(s − λ)k,

we construct R̂(s) as in Algorithm 2 using the generalized Krylov subspace
K((λI−A)−1, (λI−A)−1B,X) where X is formed from the x[i], i = 0, . . . , k−
1, i.e.,

Im











[

(λI − A)−1B . . . (λI − A)−kB
]







x[0] . . . x[k−1]

. . .
...

x[0]

















⊆ Im

{[

V1

V2

]}

.

We refer to [8] for more details on this topic.

6 Numerical Experiments

In this section, model reduction techniques are applied to a large scale second
order system representing the vibrating structure of a building. The data are
two sparse square matrices S and M of dimension N = 26394. The mass
matrix M is diagonal and the stiffness matrix S is symmetric and sparse (S
contains approximately 2× 105 non zero elements). The input is equal to the
output:

B = CT =







1
...
1






.
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The damping matrix is proportional :

D
.
= αM + βS.

The second order transfer function of Mc Millan degree 2N = 52788 to be
reduced is

R(s)
.
= BT (s2M + sD + S)−1B = BT (s2M + s(αM + βS) + S)−1B.

Given the structure of M we normalize by transform the equation so that the
mass matrix is the identity as follows :

R(s) = BT M−0.5
(

s2I + s(αI + βM−0.5SM−0.5) + M−0.5SM−0.5
)−1

M−0.5B.

So, we redefine S̄ = M−0.5SM−0.5 and B̄ = M−0.5B = C̄T .
Reduced systems are directly computed from R(s) using first order and

second order Krylov techniques and the required interpolation points are cho-
sen by the following procedure. First, an intermediate second order transfer
function of order 200 (i.e. of Mc Millan degree 400) is constructed by projecting
S̄ onto its eigenspace corresponding to its 200 eigenvalues of smallest magni-
tude. This corresponds to keeping the 400 eigenvalues of s2I +s(αI +βS̄)+ S̄
the closest to the imaginary axis. Let Vf200 ∈ R

26364×200 be the projection
matrix corresponding to the 200 eigenvalues of S̄ the closest to the imaginary
axis (with V T

p Vp = I200) (Vf200 is computed with the Matlab function eigs).
The intermediate transfer function is

R200(s)

.
= B̃

T
(

s
2
I200 + sD̃ + S̃

)−1

B̃ = B
T
M

−0.5
Vp

(

s
2
I + s(αI + βV

T
p M

−0.5
SM

−0.5
Vp) + V

T
p M

−0.5
SM

−0.5
Vp

)−1

V
T

p M
−0.5

B.

By checking the difference between R(s) and R200(s) at different points in the
complex plane, it has been verified that both transfer functions are very close
to each other. The Hankel singular values of R200(s) are shown in Figure 1.

From this intermediate transfer function, we compute the reduced transfer
function of Mc Millan degree 20 obtained by using balanced truncation (with
the sysred Matlab function of the Niconet library), called Rbt(s). Note that
Rbt(s) is no longer in second order form. An interesting fact is that there are
42 interpolation points between R200(s) and Rbt(s) that have a positive real
part (among the 420 zeros of R200(s)−Rbt(s)). In general, it has been observed
that the number of interpolation points in the right-half plane is roughly equal
to twice the Mc Millan degree of the reduced transfer function obtained by
balanced truncation. The interpolation points in the right-half plane have
the advantage that they are neither close to the poles of the system to be
reduced nor to the poles of the Balanced Truncation reduced system because
both transfer functions are stable. This implies that both transfer functions
do not vary too much there and this is preferable in order to avoid numerical
instability.
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Fig. 1. Hankel singular values of R200(s)

It is well known that 40 points are sufficient in order to describe Rbt(s).
In other words, the only transfer function of Mc Millan degree smaller than
20 that interpolates Rbt(s) at 40 points in the complex plane is Rbt(s) itself
[7]. So, we take the 40 interpolation points between R200(s) and Rbt(s) with
largest real part as our choice for computing the transfer function of Mc Millan
degree 20, denoted RKrylov(s), that interpolates the original transfer function
R(s) at these points. The poles and interpolation points are shown in Figure 2.
Because R200(s) is very close to R(s), RKrylov(s) should be close to Rbt(s).

Using the second order Krylov technique, a reduced second order transfer
function Rsokryl of Mc Millan degree 28 is also constructed. It interpolates
R(s) at the 28 rightmost interpolation points between R200(s) and Rbt(s). For
comparison purposes a set of interpolation points randomly generated (with
symmetry with respect to the real axis in order to obtain a real interpolating
transfer function) in a rectangle delimited by the extreme zeros in the left
half plane of R200(s)−Rbt(s) is also used in the second order Krylov method
to generate Rrandkryl(s). These two sets of interpolation points are shown in
Figure 3. Finally a second order transfer function of order 20 (and Mc Millan
degree 40) is constructed from R200(s) using the SOBT algorithm [4].

The transfer functions R200(s),Rbt(s),Rsobt(s),Rrandkryl(s), Rkryl(s) and
Rsokryl(s) are plotted in Figure 4. Recall, that R200(s) is used here as com-
putationally tractable approximation of R(s). As we can see, all the reduced
transfer functions are very close to each other. More can be learned by con-
sidering the the H∞-norm errors relative to ‖R200(s)‖∞ shown in Table 1.

By choosing random interpolation points, the error is 100 times larger
than by taking the balanced truncation interpolation points. This indicates
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Fig. 3. Interpolation points for Rbt(s), Rsokryl(s) and Rrandkryl(s)

clearly that the choice of interpolation points is very important in the model
reduction procedure. The SOBT reduced transfer function gives the best error
bound, but one should not forget that its Mc Millan degree is twice as large as
the Mc Millan degree of Rbt(s) and it is not applicable to large sparse systems
such as R(s) directly.

Finally, for this example, the second order Krylov approximating transfer
function performs quite poorly compared to the first order techniques, perhaps
indicating that a more sophisticated algorithm for choosing the interpolation



Model Reduction of Second Order Systems 21

Bode Magnitude Diagram

Frequency (rad/sec)

M
ag

ni
tu

de
 (

ab
s)

10
0

10
1

10
2

10
2

10
3

10
4

10
5

10
6

10
7

R
200

(s)
R

bt
(s)

R
sobt

(s)
R

randkryl
(s)

R
kryl

(s)
R

sokryl
(s)

Fig. 4. The six transfer functions

Table 1. Relative errors for reduced order models

Model Reduction Mc Millan ‖R200(s)−R̂(s)‖∞
‖R200(s)‖∞

technique degree

Balanced Truncation 20 4.3 10−4

Second Order Balanced Truncation 40 2.6 10−4

Krylov 20 8.3 10−4

Second Order Krylov 28 5.8 10−2

Random Krylov 20 7 10−2

points for these methods is needed. However, one should not forgot that only
the Krylov reduced transfer functions have been computed directly from the
state space realization of the original transfer function R(s), and not from the
intermediate transfer function R200(s).

7 Concluding Remarks

Concerning the second order Krylov technique, the following observation is
worth mentioning. For SISO systems, it has been shown in [2] and [12] that
for every first order system (c, A, b) such that cb = 0, there exists a state space
transformation that puts it into a second order form. In other words, every
SISO system (with first Markov parameter equal to zero) can be rewritten as
a second order system. This implies that in the SISO case, it is possible to
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impose 4n − 1 interpolation conditions for a reduced second order system of
Mc Millan degree 2n by first using the classic Multipoint Padé technique of
Theorem 1 and then reconstructing a second order form with an appropriate
state space coordinate transformation. Currently, no proof is available for the
MIMO case.

As for generalized state space realizations of first order systems, it is also
possible to apply Krylov technique to second order systems without requir-
ing the mass matrix M to be equal to the identity. Concerning the SOBT
technique, special care must taken in deriving the second order Gramians.

For second order balanced truncation, numerical results are very encour-
aging, but many important questions remain open. For instance, does there
exist an a priori global error bound with SOBT, as for Balanced Truncation?
Even simpler, is stability of the reduced system always guaranteed? If the
answer to the preceding questions is negative, does there exist a better choice
of second order gramians? Also, the development of an approximate version
applicable to large scale systems is needed.
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