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1 Introduction

The objective of this paper is to present a new method for model reduction of a second order linear
time-invariant system of the type :

Mẍ(t) + Cẋ(t) + Kx(t) = f(t), (1.1)

where the matrix M ∈ R
N×N is assumed to be invertible. Models of mechanical systems are often

of this type since (1.1) then represents the equation of motion of the system. For such a system
M = MT , C = CT and K = KT are respectively the mass, damping and stiffness matrices,
f(t) ∈ R

N×1 is the vector of external forces, and x(t) ∈ R
N×1 is the vector of internal generalized

coordinates (see [4] and [7] for more information on such models).
In civil engineering or aeronautics, the size N of the model (obtained using for instance finite

elements techniques [4], [7]) is often so high that many analysis and design problems can not be
solved anymore within a reasonable computing time. It is then advisable to construct a reduced
order model [5] that nevertheless keeps the “mechanical” structure of the system. Since (1.1) is a
particular case of a linear time-invariant system, one may consider its corresponding (linearized)
state-space model (see section 2) and apply the techniques of model reduction known for state-
space models. In doing so, the reduced-order system is generally not of the same type anymore
and the symmetry of the data is lost. Since from a physical point of view it makes sense to impose
the reduced-order system to be of the same type, we propose in this paper new methods of model
reduction that preserve the second order form and (if needed) its symmetry.

When writing the motion equation in the Laplace domain, the characteristic polynomial matrix
P (s) appears :

P (s)X(s) = F (s), P (s) .= Ms2 + Cs + K. (1.2)

The zeros of det(P (s)) are also known as the characteristic frequencies of the system and play an
important role in model reduction. Stability of the system e.g. implies that these zeros must lie in
the open left half plane. In the next section, we present two possible state-space linearizations of
a second order system. In section 3, we present new model reduction methods based on balanced
truncation and modal approximation. We end with a few numerical examples comparing the
different methods.

2 Modeling of a second-order system

We consider the following second order system of differential equations :{
Mẍ + Cẋ + Kx = Bu

y = Dx,
(2.3)
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where M ∈ R
N×N is assumed invertible. If this represents a mechanical system, we also assume

M is symmetric and positive definite, C is symmetric and K symmetric and positive semi-definite.
Because most of the model reduction techniques are developed for state-space models, we first
consider the linearization of the above system (2.3) into state-space form. We consider two such
linearizations, that will prove useful in later sections.

Using ξ =
[

xT ẋT
]T

, the system (2.3) can be written as




[
I 0
0 M

]
ξ̇ =

[
0 I

−K −C

]
ξ +

[
0
B

]
u,

y =
[

D 0
]
ξ

Since M is invertible, we can transform it to standard state-space form


ξ̇ =

[
0 I

−M−1K −M−1C

]
ξ +

[
0

M−1B

]
u,

y =
[

D 0
]
ξ.

(2.4)

The controllability Gramian P and observability Gramian Q of the state-space model (2.4) are
given respectively by:

P .=
1
2π

∫ +∞

−∞

[
I

jωI

]
P−1(jω)BBT P−T (−jω)

[
I −jωI

]
dω, (2.5)

Q .=
1
2π

∫ +∞

−∞

[
−jωMT + CT

MT

]
P−T (−jω)DT DP−1(jω)

[
jωM + C M

]
dω, (2.6)

and can be computed via the solution of two Lyapunov equations. One also easily checks that the
transfer function of the system is given by

H(s) = DP−1(s)B. (2.7)

If M , C and K are symmetric and D = BT , then the transfer function is clearly symmetric. To
keep symmetry in the state space model equations, we can use the following formulation :



[
C M

M 0

]
︸ ︷︷ ︸

E

ξ̇ =

[
−K 0
0 M

]
︸ ︷︷ ︸

A

ξ +

[
B

0

]
︸ ︷︷ ︸

B

u,

y =
[

BT 0
]

︸ ︷︷ ︸
C

ξ

The transfer function is now H(s) = BT P−1(s)B and the Gramians of the state-space model
{E−1A, E−1B, C} are defined in terms of the solution G of a single generalized Lyapunov equation :

AGE + EGA + BBT = 0, P = G, Q = EGE . (2.8)
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3 Model reduction via balanced truncation

Most model reduction methods use a projection to build the reduced-order model : given a general-
ized state-space model {E ,A,B, C}, the reduced-order model is given by {W TEX, W TAX, W TB, CX}
where W and Y are matrices of dimension 2N × k, with k the order of the reduced system. The
widely used balanced truncation technique chooses X and W

.= E−1Y such that{
PQX = XΛ+,

Y TPQ = Λ+Y T ,
(3.9)

where Λ+ is a k × k matrix containing the largest eigenvalues of PQ. This technique cannot be
applied directly to a second order system since, in general, the resulting reduced order system is not
a second order system anymore. The objective of this paper is to find a method that approximates
the balanced truncation and preserves the second order structure of the system.

Since second order systems always have an even order, we choose k = 2n. We then partition the
matrices X, Y ∈ R

2N×2n as follows, where each block is N × n :

Y =

[
Y11 Y12

Y21 Y22

]
, X =

[
X11 X12

X21 X22

]
. (3.10)

Starting from the general linearization of a second-order system (see section 2), one proves that
one will obtain a reduced second order system via the truncation technique explained above by
choosing the projecting matrices X and Y such that

Y T

[
I 0
0 M

]
X =

[
T1 0
0 M̂

]
, Y T

[
0 I

−K −C

]
X =

[
0 T2

−K̂ −Ĉ

]
,

Y T

[
0
B

]
=

[
0
B̂

]
,

[
D 0

]
X =

[
D̂ 0

]
, (3.11)

where Ti, i = 1, 2 are invertible matrices. Sufficient conditions to obtain this for all M , K, C, B,
D, are to choose X and Y block-diagonal, i.e. :

X12 = 0, X21 = 0, Y12 = 0, Y21 = 0, (3.12)

provided T1
.= Y T

11X11 and T2
.= Y T

11X22 are invertible. In such a case,

M̂ = Y T
22MX22, Ĉ = Y T

22CX22, K̂ = Y T
22KX11, B̂ = Y T

22B, D̂ = DX11.

In order to obtain a reduced order model in standardized form, it suffices to choose X̃
.= X.T−1

where T = diag{T1, T2}. The reduced order model equations (3.11) then have T1 = T2 = In and

M̂ = Y T
22MX̃22, Ĉ = Y T

22CX̃22, K̂ = Y T
22KX̃11, B̂ = Y T

22B, D̂ = DX̃11.

For the symmetric case, the projecting equations with block diagonal X and W become

W T

[
C M

M 0

]
X =

[
Ĉ M̂3

M̂1 0

]
, W T

[
−K 0
0 M

]
X =

[
−K̂ 0
0 M̂2

]
, W T

[
B

0

]
=

[
B̂

0

]
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for which we use the simplifying assumption W = X. This automatically preserves symmetry since
then

M̂1 = XT
22MX11, M̂3 = XT

11MX22 = M̂T
1 , M̂2 = XT

22MX22,

Ĉ = XT
11CX11, K̂ = XT

11KX11, B̂ = XT
11B, D̂ = DX11 = B̂T .

Again, in order to obtain a reduced order model in standardized form, it suffices to choose W̃ =
X̃

.= X.T−1 where T = diag{T1, T2} and T1 and T2 satisfy M̂1T
−1
1 = M̂2T

−1
2 . The reduced order

model equations (3.11) then have M̂1 = M̂2 = M̂3 and

M̂ = X̃T
22MX̃22, Ĉ = X̃T

11CX̃11, K̂ = X̃T
11KX̃11, B̂ = X̃T

11B, D̂ = DX̃11 = B̂T .

Clearly, the block diagonal form of X, Y and W is not necessary. Furthermore, they are not
compatible with the condition that X and Y span invariant subspaces of PQ. The latter condition
has thus to be relaxed.

3.1 Block-diagonal approximation of a basis (method CS)

A simple modification is to compute the spaces X and Y via the usual approach, and then to
approximate the computed basis of the invariant subspace by a block diagonal one. To obtain
such a block diagonal structure in X, we can use the CS decomposition [2]. We assume that an
orthogonal basis for X was calculated, and we want to find another orthogonal basis for the same
subspace, i.e.

X̂ = XV, V T V = I2n

and partition X̂ into four N × n blocks as follows :

X̂ =

[
X̂11 X̂12

X̂21 X̂22

]
.

We are looking for a transformation V that minimizes the squared norms of the off-diagonal blocks :

‖X̂12‖2
F + ‖X̂21‖2

F

since these blocks will be discarded in the block diagonal approximation. The solution to this
problem is given by the CS decomposition of an orthogonal submatrix. Assuming for simplicity
N ≥ 2n, we have:

X =

[
U1 0
0 U2

] 


C

0
0
S


V T , with C = diag(ci = cos θi) and S = diag(si = sin θi).

In fact, the singular values of
[

X11 X12

]
are the c1, . . . , c2n in decreasing order and those of[

X21 X22

]
are the s1, . . . , s2n, in increasing order. From this we obtain the following bounds :

‖X̂12‖2
F ≥

2n∑
i=n+1

c2
i , ‖X̂21‖2

F ≥
n∑

i=1

s2
i
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and it follows from the CS decomposition that its transformation V achieves this lower bound. If
N < 2n, the CS decomposition has to be slightly modified, but the results are essentially the same.
Applying this also to Y yields the requested block diagonal projection matrices. Moreover, in the
symmetric case the left projector W = X and only one approximation has to be performed.

3.2 Relaxing the Trace Max condition (method trace)

It is well-known (see [2]) that X will span the dominant invariant subspace of a positive definite
generalized eigenvalue problem (sB−A) (i.e. with B symmetric positive definite and A symmetric)
if and only if it satisfies a “trace max” condition. In other words, one has that :

B−1AX = XΛ+, (3.13)

if and only if
max trace XT AX = Λ+, s.t. XT BX = I. (3.14)

Problem (3.9) is thus equivalent to the following optimization problems :

max trace XTQX = Λ+, s.t. XTP−1X = I2n, (3.15)

max trace Y TPY = Λ+, s.t. Y TQ−1Y = I2n. (3.16)

If we want also to impose the conditions (3.12) we have to relax the equality conditions in (3.15)
and (3.16). We propose to replace them by their diagonal blocks. Using conditions (3.12), then
(3.15) and (3.16) simplify to

max trace XT
11[Q]11X11 + XT

22[Q]22X22; s.t. XT
11[P−1]11X11 = In, XT

22[P−1]22X22 = In (3.17)

max trace Y T
11[P]11Y11 + Y T

22[P]22Y22; s.t. Y T
11[Q−1]11Y11 = In, Y T

22[Q−1]22Y22 = In. (3.18)

These then decouple into four independent problems defining X11, X22, Y11 and Y22, which can be
solved separately as a positive definite generalized eigenvalue problem since they are each of the
type (3.14). We can also solve them as a singular value problem as follows. Let

Q =

[
L11 0
L21 L22

] [
LT

11 LT
21

0 LT
22

]
, P =

[
U11 U12

0 U22

] [
UT

11 0
UT

12 UT
22

]
,

(i.e. the Cholesky factorization of the Gramians) be given, then

[P−1]11 = [U11U
T
11]

−1, Q11 = L11L
T
11,

and the first subproblem in (3.17) is equivalent to finding the dominant eigenspace of [U11U
T
11.L11L

T
11].

This can be obtained from the dominant singular subspace of the matrix A
.= LT

11.U11. Indeed, let
UA, VA be a pair of dominant singular subspaces of A :

AVA = UAΣ+, AT UA = VAΣ+.

Then VA is the dominant eigenspace of AT A since AT AVA = VAΛ+ where Λ+ = Σ2
+. Applying

this to A
.= LT

11.U11 yields finally X11 = U11VA as the dominant eigenspace of U11A
T AU−1

11 =
U11U

T
11.L11L

T
11. Similar results hold for the other subproblems. The advantage of this SVD approach
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is twofold : (1) the best numerical methods to compute Gramians in fact compute directly the above
Cholesky factors rather than the Gramians themselves [3] and (2) the SVD is a more reliable tool
than the generalized eigenvalue approach since in the latter case the positivity (or even the realness)
of the eigenvalues can get lost due to numerical round-off.

In the symmetric case we apply the projection theorem to the standard state space system
{E−1A, E−1B, C} (with BT = C) described in section 2.2. This gives the reduced order model
{Ê , Â, B̂, Ĉ} via the formulas

Ê .= Y T X, Â .= Y TE−1AX, B̂ .= Y TE−1B, Ĉ .= CX, (3.19)

where X and Y are supposed to be the solutions of (3.9) :{
GEGEX = XΛ+,

EGEGY = Y Λ+

This last system of equations indicates that we have to choose Y = EX. This simplifies (3.19) to

Ê = XTEX, Â = XTAX, B̂ = XTB, Ĉ = CX = B̂T , (3.20)

which clearly preserves symmetry. If we now add condition (3.12) that X should have blocks
X12 = X21 = 0 then X11 and X22 can be computed from

max traceXT
11[EGE ]11X11 + XT

22[EGE ]22X22

s.t. XT
11[G−1]11X11 = In, XT

22[G−1]22X22 = In,

which again can be solved separately as a positive definite generalized eigenvalue problem. In order
to compute this via a singular value decomposition, we again start from the factorized Gramian G.
If

G =

[
L11 0
L21 L22

] [
LT

11 LT
21

0 LT
22

]
=

[
U11 U12

0 U22

] [
UT

11 0
UT

12 UT
22

]
, (3.21)

then [G−1
]
11

=
[
U11U

T
11

]−1
,

[G−1
]
22

=
[
L22L

T
22

]−1
.

We also have the identities

[EGE ]11 =
[

CL11 + ML21 ML22

] [
LT

11C + LT
21M

LT
22M

]
, [EGE ]22 = ML11L

T
11M. (3.22)

If VA denotes the right dominant singular subspace of

A
.=

[
LT

11C + LT
21M

LT
22M

]
U11,

then X11 = U11VA. Analogously, if VA denotes the right dominant singular subspace of

A
.= LT

11ML22,

then X22 = L22VA.
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3.3 Block diagonal Gramians (method diag G)

It is clear that if the Gramians P and Q are block diagonal to start with, then automatically one
obtains the optimal block diagonal projection matrices from the equations


P11Q11X11 = X11Λ+1,

P22Q22X22 = X22Λ+2,

Q11P11Y11 = Y11Λ+1,

Q22P22Y22 = Y22Λ+2.

(3.23)

where Λ+1 and Λ+2 contain the largest eigenvalues fo the respective matrices P11Q11 and P22Q22.
A simple relaxation is therefore to neglect the off diagonal blocks of the Gramians P and Q and to
solve for X11, X22, Y11 and Y22 via the above equations.

The computation of the dominant eigenspaces can again be obtained via a singular value decom-
position rather than an eigendecomposition. As before, let

Q =

[
L11 0
L21 L22

] [
LT

11 LT
21

0 LT
22

]
, P =

[
R11 0
R21 R22

] [
RT

11 RT
21

0 RT
22

]
,

then X11 is the dominant eigenspace of the matrix [L11L
T
11.R11R

T
11]. This can be obtained from the

dominant right singular subspace VA of A
.= RT

11.L11 via X11 = L11VA. Similar results hold for the
other blocks.

In the symmetric case we again consider the decompositions (3.21) which now yield

[G]11 =
[
L11L

T
11

]
, [G]22 =

[
U22U

T
22

]
.

Using (3.22) we then obtain X11 = L11VA from the dominant right singular subspace VA of

A
.=

[
LT

11C + LT
21M

LT
22M

]
L11,

and X22 = U22VA from the dominant right singular subspace VA of

A
.= LT

11MU22.

3.4 Modal approximation (method amod)

An apparently different approach is to perform modal approximation of the polynomial matrix
P (s). One then computes the eigenvectors xi and yi from the generalized eigenvalue problems :[

−λiK K

K λiM + C

] [
xi

λixi

]
= 0,

[
yT

i λiy
T
i

] [
−λiK K

K λiM + C

]
= 0

which are equivalent to P (λi)xi = 0 and yT
i P (λi) = 0. A selection of n of these left and right

eigenvectors are then put in the N × n matrices X11 and Y11. The selection of characteristic
frequencies λi can be based on several criteria : those lying in a particular frequency range or
the rightmost ones. One should point out that real bases X11 and Y11 can be obtained when
simultaneously selecting complex conjugate characteristic frequencies of P (s). Moreover, if P (s)
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is symmetric, then Y11 = X11. One easily checks that constructing a reduced order model via
P̂ (s) .= Y T

11P (s)X11 is precisely a projection method of the type described in the previous sections,
except for the choice of bases X11 and Y11. It follows also that

P (s)X11 = X11P̂ (s), Y T
11P (s) = P̂ (s)Y T

11,

provided we normalized the bases using Y T
11X11 = In. These equations also imply that the reduced

order model has the selected eigenvalues λi as eigenfrequencies since then det P̂ (λi) = 0.

4 Numerical tests

Matlab codes implementing the model reduction methods discussed above have been developed
and tested. We now describe numerical experiments performed on four models: the CD player, the
International space station, a Building model and a Clamped beam model. A detailed description
of these models can be found in [1]. We distinguish between the non-symmetric and the symmetric
cases.

In the tables given below ‖H‖2 denotes the Hankel norm of the original model and ‖H−Ĥmethod‖2

denotes the Hankel norm of the difference between the original model and the reduced one, for each
method : balanced truncation (bt), block-diagonal approximation of the projective matrices (CS),
trace method (trace), block-diagonal approximation of Gramians (diagG) and modal approximation
(amod). The ratio σ2n+1/‖H‖2 (where σ2n+1 is the (2n+1)-st Hankel singular value of the original
model) is the best relative error one can obtain for any reduced order model (see [8]). It is listed
here as an indication of the efficiency of the other methods.

We also point out that none of the four approximate methods guarantee the stability of the
reduced order model. Since for unstable systems the Hankel norm does not bound the system
response of the error, we marked the corresponding entries in the above table as ”UNST”. The
table shows also that for all above experiments, method diagG produced stable reduced order
models.

Among the second order approximation schemes (CS, trace, diagG and amod) it was typically
diagG which performed best and its results are very similar to those given by balanced truncation.
We therefore compare only these two methods in the pictures given below : the poles and the
frequency response of the original model and those taken by the reduced models (bt and diagG).

4.1 Non-symmetric case

N n σ2n+1

‖H‖2

‖H−Ĥbt‖2

‖H‖2

‖H−ĤCS‖2

‖H‖2

‖H−Ĥtrace‖2

‖H‖2

‖H−ĤdiagG‖2

‖H‖2

‖H−Ĥamod‖2

‖H‖2

CD 60 6 3.13e-06 3.16e-06 7.52e-06 8.41e-06 3.57e-06 1.48e-03
ISS 135 13 5.588e-03 5.594e-03 5.594e-03 5.594e-03 5.594e-03 1e-00

Build 24 4 6.1e-02 9.4e-02 2.0e-01 2.2e-01 7.9e-02 3.1e-01
Beam 174 17 1.35e-05 2.88e-05 UNST UNST 1.83e-04 UNST
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4.1.1 CD-player model
N m p n σ1 = ‖H‖2 σ2n+1

60 2 2 6 1.17e+06 3.67
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Figure 1: Poles of original model (�),
bt reduced model (�)

and diagG reduced model (◦)
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Figure 3: Frequency response
original model, bt reduced model and · · · diagG reduced model
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4.1.2 ISS model
N m p n σ1 = ‖H‖2 σ2n+1

135 3 3 13 5.79e-02 3.24e-04
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Figure 4: Poles of original model (�),
bt reduced model (�)

and diagG reduced model (◦)
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original model, bt reduced model and · · · diagG reduced model



4.1.3 Building model
N m p n σ1 = ‖H‖2 σ2n+1

24 1 1 4 5.04e-04 3.06e-05
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Figure 6: Poles of original model (�),
bt reduced model (�)

and diagG reduced model (◦)
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Figure 7: Frequency response
original model, bt reduced model and · · · diagG reduced model
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4.1.4 Beam model
N m p n σ1 = ‖H‖2 σ2n+1

174 1 1 17 2.39e+03 3.23e-02
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Figure 8: Poles of original model (�),
bt reduced model (�)

and diagG reduced model (◦)
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Figure 9: Frequency response
original model, bt reduced model and · · · diagG reduced model
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4.2 Symmetric case

Sym N n σ2n+1

‖H‖2

‖H−Ĥbt‖2

‖H‖2

‖H−ĤCS‖2

‖H‖2

‖H−Ĥtrace‖2

‖H‖2

‖H−ĤdiagG‖2

‖H‖2

‖H−Ĥamod‖2

‖H‖2

CD 60 6 5.61e-05 8.83e-05 1.82e-03 1.56e-04 1.06e-04 2.02e-02
ISS 135 13 7.749e-04 7.757e-04 7.758e-04 7.758e-04 7.758e-04 2.42e-02

4.2.1 CD player model

N m = p n σ1 = ‖H‖2 σ2n+1

60 2 6 2.64e+07 1.48e+03
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Figure 10: Poles of original model (�),
bt reduced model (�)

and diagG reduced model (◦)
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Figure 11: Frequency response
original model, bt reduced model and · · · diagG reduced model



4.2.2 ISS model
N m = p n σ1 = ‖H‖2 σ2n+1

135 3 13 21.58 1.67e-02
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Figure 12: Poles of original model (�),
bt reduced model (�)

and diagG reduced model (◦)

1er input / 1er output

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

1er input / 2me output

10
−1

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

1er input / 3me output

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

2me input / 1er output

10
−1

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

2me input / 2me output

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

2me input / 3me output

10
−1

10
0

10
1

10
2

10
3

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

3me input / 1er output

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

3me input / 2me output

10
−1

10
0

10
1

10
2

10
3

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

3me input / 3me output

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Figure 13: Frequency response
original model, bt reduced model and · · · diagG reduced model



4.3 Conclusion

In this paper we propose new model reduction methods which preserve the polynomial form of a
given second order system. We also give numerical results to illustrate that even when imposing
such restrictions, one still obtains approximation errors which are comparable to those obtained
via balanced truncation. The advantage of our approach is that preserving the system structure
may better reflect the physical properties of the system we want to approximate.
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