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Abstract

We consider second-order linear time-invariant systems. The objective of this paper is
to present a new method for constructing a reduced system by preserving the second-order
structure of the original system. This new model reduction method uses a variant of the well-
known balanced truncation technique applied to second-order gramians. We also compare it
with another existing technique.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The objective of this paper is to present a new method for model reduction of
second-order linear time-invariant systems of the type:{

Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t),

y(t) = Cq(t),
(1)
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where u(t) ∈ Rm, y(t) ∈ Rp, q(t) ∈ Rn, B ∈ Rn×m, C ∈ Rp×n, M,D,K ∈Rn×n

with M assumed to be invertible. Models of this form often come from
mechanical systems, where the matrices M , D and K are respectively called the
mass, the damping and the stiffness matrices (in these applications, the matrices are
also typically symmetric). The transfer function associated with the system (1) in the
Laplace domain is given by

T (s)
.= C

(
Ms2 + Ds + K

)−1
B, (2)

where P(s)
.= Ms2 + Ds + K is the characteristic polynomial matrix.

In civil engineering or aeronautics, the size n of the model (obtained using for
instance finite elements techniques [1,2]) is often so high that many analysis and
design problems can not be solved anymore within a reasonable computing time. It
is then advisable to construct a reduced model of size k � n that nevertheless keeps
the “second-order structure” of the system. We thus need to build a reduced model,{

M̂ ¨̂q(t) + D̂ ˙̂q(t) + K̂q̂(t) = B̂u(t),

ŷ(t) = Ĉq̂(t),
(3)

where q̂(t) ∈ Rk , M̂, D̂, K̂ ∈ Rk×k , B̂ ∈ Rk×m, Ĉ ∈ Rp×k , such that its transfer
function is “close” to the original transfer function.

Since (1) is a particular case of a linear time-invariant system, one may consider
its corresponding state-space model and apply the techniques of model reduction
known for state-space models. In doing so, the reduced system is generally not of the
same type anymore. Since from a physical point of view it makes sense to impose
the reduced system to be of the same type, we propose in this paper a new method of
model reduction that preserves the second-order form.

The outline of this paper is as follows. In Section 2, the well-known balanced
truncation technique for model reduction of linear systems is presented. In Section
3, our model reduction technique called the second-order balanced truncation is
presented after deriving two new pairs of second-order gramians. In Section 4, our
model reduction technique is compared to a previous second-order structure preserv-
ing model reduction technique developed in [3]. Finally, concluding remarks are given
in Section 6. A preliminary version of this work is available in [4].

2. Model reduction by balanced truncation

We consider here linear time-invariant systems modelled by the following system
of equations

S

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp (4)

which therefore have a transfer function T (s) = C(sI − A)−1B that links the inputs
to the outputs in the Laplace domain. Such transfer functions are strictly proper,
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i.e. lims→∞ T (s) = 0, which happens to be the case also for the transfer function
considered in (2) since M was assumed to be invertible.

If A is Hurwitz, then the system S is also a linear (convolution) operator mapping
square integrable inputs u(·) ∈ L2[−∞, +∞] to square integrable outputs y(·) ∈
L2[−∞, +∞]. We will need the concept of dual operator which we briefly recall
here.

Definition 1. Let L be a linear operator acting from a Hilbert space U to a Hilbert
space Y equipped respectively with the inner products 〈 , 〉U and 〈 , 〉Y . The dual
of L, denoted by L∗, is defined as the linear operator acting from Y to U such that
〈Lu, y〉Y = 〈u, L∗y〉U for all y ∈ Y and all u ∈ U .

It is not difficult to verify [5] that the transfer function associated to the dual
operator of (4) is BT(sI − AT)−1CT.

Two matrices are associated with the linear system (4). These are the “controlla-
bility gramian” P and the “observability gramian” Q. If A is Hurwitz, they are the
unique solutions of the following Lyapunov equations:

AP + PAT + BBT = 0, ATQ + QA + CTC = 0. (5)

If we apply an input u(·) ∈ L2[−∞, 0] to the system (4) for t < 0, the position of
the state at time t = 0 (by assuming the zero initial condition x(−∞) = 0) is equal
to

x(0) =
∫ 0

−∞
e−AtBu(t) dt

.= Cou(t).

By assuming that a zero input is applied to the system for t > 0, then for all t � 0,
the output y(·) ∈ L2[0, +∞] of the system (4) is equal to

y(t) = CeAt x(0)
.= Obx(0).

The so-called controllability operator Co : L2[−∞, 0] �→ Rn (mapping past inputs
u(·) to the present state) and observability operatorOb : Rn �→ L2[0, +∞] (mapping
the present state to future outputs y(·)) also have dual operators, respectively C∗

o and
O∗

b. It is easy to show that the controllability and observability gramians are related
to those via the identities P = C∗

oCo and Q = ObO
∗
b [5].

Another physical interpretation of the gramians is the following. The controllability
matrix arises from the following optimization problem. Let

J (v(t), a, b)
.=

∫ b

a

v(t)Tv(t) dt

be the energy of the vector function v(t) in the interval [a, b]. Then (see [6])

min
C0u(t)=x0

J (u(t), −∞, 0) = xT
0 P

−1x0, (6)

and symmetrically, we have the dual property
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min
O∗

by(t)=x0

J (y(t), −∞, 0) = xT
0 Q

−1x0. (7)

Two essential algebraic properties of gramiansP andQ are as follows. First, under a
coordinate transformation x(t) = Sx̄(t), the new gramians P̄ and Q̄ corresponding to
the state-space realization (C̄, Ā, B̄) = (CS, S−1AS, S−1B) undergo the following
(so-called contragradient) transformation:

P̄ = S−1PS−T, Q̄ = STQS. (8)

This implies that the eigenvalues of the product P̄Q̄ = S−1PQS depends only on the
transfer function T (s) and not on a particular choice of state-space realization. This
implies also that there exists a state-space realization (Cbal, Abal, Bbal) of T (s) such
that the corresponding gramians are equal and diagonal P̄ = Q̄ = � [5]. Secondly,
because these gramians appear in the solutions of the optimization problems (6) and
(7), they tell something about the energy that goes through the system, and more
specifically, about the distribution of this energy among the state variables.

The more xT
0 P

−1x0 is small, the more “controllable” the state x0 is, because it can
be reached with a input of small energy. By duality, the more xT

0 Q
−1x0 is small, the

more “observable” the state x0 is. Thus when both gramians are equal and diagonal,
the order of magnitude of a diagonal value of the productPQ is a good measure for the
influence of the corresponding state variable in the mapping y(·) = ObCou(·) which
maps past inputs u(t) ∈ L2[−∞, 0] to future outputs y(t) ∈ L2[0, +∞] passing
via that particular state at time t = 0.

Given a transfer function T (s), the popular balanced truncation model reduction
method consists in finding a state-space realization (Cbal,Abal,Bbal) of T (s) such
that the gramians are equal and diagonal (this is the so-called balanced realization)
and then the reduced model is constructed by keeping the states corresponding to the
largest eigenvalues of the product PQ in it. In other words, the widely used balanced
truncation technique chooses Z and V such that ZTV = I , and{

PQV = V �+,

QPZ = Z�+,
(9)

where �+ is a square diagonal matrix containing the largest eigenvalues of PQ. Then
a state-space realization of the reduced transfer function is given by (CV, ZTAV,

ZTB). The idea of the balanced truncation technique thus consists in keeping those
states that are most controllable and observable according to the gramians defined in
(6) and (7).

Remark 2. The Hankel operator that maps the past input to the future output is
defined as follows: H

.= ObCo. Since PQ = CoC
∗
oO

∗
bOb and QP = O∗

bObCoC
∗
o, the

dominant eigenspacesV ofPQ andZ ofQP are linked with the dominant eigenspac-
es X of HH∗ and Y of H∗H: indeed it holds X = ObV and Y = C∗

oZ. Therefore
projecting on the spaces V and Z also approximates the Hankel map H well. We
refer to [5,6] for a deeper study of the balanced truncation technique.
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Second-order systems can be seen as a particular class of linear systems. Indeed,
by rewriting the system (1) as follows


ẋ(t) =

[
0 I

−KM −DM

]
x(t) +

[
0

BM

]
u(t),

y(t) = [
CM 0

]
x(t),

(10)

where the state x(t) is
[
q(t)T q̇(t)T

]T
, and where we have chosen a coordinate

system in which the mass matrix M is the identity, one recovers the form (4). We can
thus rewrite the transfer function defined in (2) as

H(s) = C(sI − A)−1B (11)

by defining

A
.=

[
0 I

−KM −DM

]
, B

.=
[

0
BM

]
, C

.= [
CM 0

]
. (12)

Unfortunately the classic balanced truncation technique cannot be applied directly
to the state-space realization (C,A,B) (10) of the second-order system since, in
general, the resulting reduced system is not a second-order system anymore. The
objective of this paper is to find a method that performs balanced truncation in some
sense and preserves the second-order structure of the system.

3. Balanced truncation for second-order systems

The idea of our balance and truncate technique for second-order systems (called
SOBT for second-order balanced truncation) is the following. First, we need to define
two pairs of n × n gramians (“second-order gramians”) that satisfy the two features
we mentioned in the previous sections, i.e. they have to change according to contragra-
dient transformations, and they must have some energetic interpretation (only then a
balance and truncate process makes sense). The first pair (Ppos,Qpos) will correspond
to an energy optimization problem depending only on the positions q(t) and not on
the velocities q̇(t). Reciprocally, the second pair (Pvel,Qvel) will be associated to an
optimization problem depending only on the velocities q̇(t) and not on the positions
q(t). By analogy to the first-order case, the gramians Qpos and Qvel will be defined
from the dual systems. After these definitions we then come to the balancing part
of the method. For this we transform to a balanced coordinate system in which the
second-order gramians are equal and diagonal: P̄pos = Q̄pos = �pos, P̄vel = Q̄vel =
�vel. Their diagonal values will enable us to point out what the important positions
and the important velocities are, i.e. those with (hopefully) large effect on the I/O
map. Hence to get a reduced second-order model we keep only the part of the system
that depends on these variables. This is the truncation part of the method.

Let us first define a pair of second-order gramians measuring the contribution of
the position coordinates (independently of the velocities) with respect to the I/O map.
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A natural optimization problem (see [3]) associated with the second-order form is the
following

min
q̇0∈Rn

min
u(t)

J (u(t), −∞, 0) (13)

subject to

Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t), q(0) = q0.

One easily sees that the optimum is qT
0 P11

−1q0, where P11 is the n × n left upper
block of P (see Eq. (5)). Indeed starting with 6 we have to solve

min
q̇0∈Rn

Jq0(q̇0) = [
qT

0 q̇T
0

]
P−1

[
q0
q̇0

]
.

Partitioning P−1 as follows

P−1 =
[
R1 R2

RT
2 R3

]

and annihilating the gradient of Jq0(q̇0) gives the following relation q̇0 = −R−1
3 RT

2 q0.

The value of Jq0 at this point is then qT
0

(
R1 − R2R

−1
3 RT

2

)
q0. This is nothing but the

Schur complement of R3 which is P11
−1.

The solution of the dual problem will correspond to qT
0 Q11

−1q0, where Q11 is the
n × n left upper block of Q (5). It should be pointed that the transfer function is seen
as a linear operator acting between two Hilbert spaces. The dual of such an operator
is defined in Definition 1. It follows that the dual of a second-order transfer function
might not be a second-order transfer function. This has no consequences because what
only matters is the energy transfer interpretation between the inputs, the outputs, the
initial positions and velocities. Under the change of coordinates q(t) = �q̄(t), it is
immediate to verify that this pair of gramians undergo a contragradient transformation:

(P̄11, Q̄11) = (�−1P11�
−T, �TQ11�).

This implies that there exists a new coordinate system such that both P11 and Q11 are
equal end diagonal. Their energetic interpretation is given by looking at the underlying
optimization problem. In (13), one minimizes the necessary energy to reach the given
position q0 over all past inputs and initial velocities. Hence these gramians really
describe how the I/O energy is distributed among the positions.

Analogously, let us define a pair of second-order gramians that would give the
contribution of the velocities with respect to the I/O map. The optimization problem
associated is the following

min
q0∈Rn

min
u(t)

J (u(t), −∞, 0) (14)

subject to

Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t), q̇(0) = q̇0.
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By exactly following the same reasoning as in [3] for the optimization problem (13),
one can show that the solution of (14) is q̇T

0 P22
−1q̇0, where P22 is the n × n right

lower block of P. The solution of the dual problem will correspond to q̇T
0 Q22

−1q̇0,
where Q22 is the n × n right lower block of Q. Again under the change of coordinates
q(t) = �q̄(t) one can check that this pair of gramians performs a contragradient
transformation. Here too the energetic interpretation is given by looking at the under-
lying optimization problem. In (14), one minimizes the necessary energy to reach
the given velocity q̇0 over all past inputs and initial positions. Hence these gramians
really describe how the I/O energy is distributed among the velocities.

The conclusion is that these second-order gramians are good candidates for our
problem. We make thus the choice:

(Ppos, Qpos) = (P11, Q11) and (Pvel, Qvel) = (P22, Q22). (15)

In the new model reduction technique that we propose here, we want to be able to
balance both pairs of second-order gramians at the same time, and this is not possible
with a change of coordinates of the type q(t) = �q̄(t). For these reasons we work
in a state-space context, starting with the system (10). The method SOBT proceeds
then as follows:

(1) Gramians computation: Compute both pairs of second-order gramians
(Ppos, Qpos) and (Pvel, Qvel) and put them into block diagonal matrices:

X =
[
Ppos 0

0 Pvel

]
, Y =

[
Qpos 0

0 Qvel

]
.

(Notice that these are the block diagonal parts of P and Q, respectively.)
(2) Balancing: Compute the contragradient transformation

S =
[
�1 0
0 �2

]

making X and Y equal and diagonal. The transformed system is then




˙̄x(t) =
[
�−1

1 0
0 �−1

2

] [
0 I

−KM −DM

] [
�1 0
0 �2

]
x̄(t) +

[
0

�−1
2 BM

]
u(t),

y(t) = [
CM�1 0

]
x̄(t).

(16)

(3) Truncation: Partition x̄ as
[
q̄T+ q̄T− ˙̄qT

+ ˙̄qT
−
]T

where q̄+ (resp. ˙̄q+) of

dimension k corresponds to the k largest eigenvaluesPposQpos (resp.PvelQvel),
i.e. to the most controllable and observable positions (resp. velocities) with
respect to (15), and keep the part of the system (16) that only depends on
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the variables q̄+(t), ˙̄q+(t). This yields the following k-dimensional reduced
second-order system3 {M̂, D̂, K̂, B̂, Ĉ}:{
Ik, W−1

[
�−1

2 DM�2

]
11

W, W−1
[
�−1

2 KM�1

]
11

, W−1
[
�−1

2 BM

]
1: , [CM�1]:1

}
,

where W−1 =
[
�−1

1 �2

]
11

is introduced in order to bring the reduced state

matrix Â back to a companion form.

Remark 3. In practice we do not compute explicitly the state-space realization
(16). Instead we compute the following dominant left and right invariant subspaces
X1, X2, Y1, Y2 ∈ Rn×k such that Y T

1 X1 = Ik , Y T
2 X2 = Ik and

QposPposY1 = Y1�
+
pos, PposQposX1 = X1�

+
pos, (17)

QvelPvelY2 = Y2�
+
vel, PvelQvelX2 = X2�

+
vel, (18)

where �+
pos is a k × k matrix containing the largest eigenvalues of PposQpos and

�+
vel is a k × k matrix containing the largest eigenvalues of PvelQvel. Defining X̃2

.=
X2W and Ỹ T

2
.= W−1Y T

2 where W−1 = (
Y T

1 X2
)
, the reduced second-order model

{M̂, D̂, K̂, B̂, Ĉ} of dimension k � n is then given by

M̂ = Ik, D̂ = Ỹ T
2 DMX̃2, K̂ = Ỹ T

2 KMX1, B̂ = Ỹ T
2 BM, Ĉ = CMX1.

Remark 4. This method can easily be extended to �th order linear time-invariant
systems. Indeed one can define � pairs of n × n gramians exactly in the same way we
did for second-order systems, i.e. from optimization problems. The ith pair contains
information about the distribution of the I/O energy among the ith derivative variables
q(i)(t). One sees easily that this pair is given by (Pii , Qii ), where Pii and Qii are the
ith n × n diagonal block of the �n × �n gramians P and Q (5). Then considering a
state-space realization of the system, one balances these � pairs simultaneously using
a �-blocks diagonal transformation, in order to be able to determine the important part
of each “component” q(i−1)(t) of the state x(t). One obtains then a reduced model
by keeping the subsystem that only depends on these variables.

4. Comparison with an existing technique

In this section, we compare our method (SOBT) with the method presented in [3].
This method produces a second-order system and is also inspired from a balanced
truncation technique. The main ideas of [3] are the following. First one has to define
second-order gramians. To do so the following optimization problems analogous to
(6) are proposed. The first problem is

3 For a square matrix A, A11 denotes its left upper k × k block, for a rectangular matrix B, B1: (resp.
B:1) denotes its k first rows (resp. columns).
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min
q̇0∈Rn

min
u(t)

J (u(t), −∞, 0)

subject to

Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t), q(0) = q0

for which the optimum is proved to be qT
0 P11

−1q0, where P11 is the n × n left upper
block of P. The second problem is

min
u(t)

J (u(t), −∞, 0)

subject to

Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t), q(0) = q0, q̇(0) = 0

for which the optimum is proved to be qT
0 (Sc(P22))

−1q0 where Sc(P22) is the Schur
complement of the n × n right bottom block of P. Then based on this, two pairs of
second-order gramians are defined. The second-order “free velocity” gramians are
PFV

.= P11; QFV
.= Q11, and the second-order “zero velocity” gramians are PZV

.=
Sc(P22); QZV

.= Sc(Q22). The reduction process is then given below. We give here
only the free velocity reduction method since the zero velocity version follows by
analogy.

(1) By a change of coordinates (preserving the symmetry of the data if any),
put the matrix M equal to the identity. The second-order model is then
{I, DM, KM, BM, CM}.

(2) Compute the contragradient transformation q(t) = �q̄(t) such that

�−1PFV�−T = �FV = �TQFV�,

where �FV is a positive diagonal matrix with diagonal values sorted in decreas-
ing order. Define V ∈ Rn×k to be the first k columns of �.

(3) The reduced system is then given by

M̂ = V TV, D̂ = V TDMV, K̂ = V TKMV, B̂ = V TBM, Ĉ = CMV.

We point out some drawbacks of this method. From {I, DM, KM, BM, CM} a
balanced realization

{�, DM�, KM�, BM, CM�}
is first computed with respect to free velocity gramians. Truncation (i.e. selection of
k � n coordinates) is performed on the system matrices after multiplication by �T!
So the reduced model is given by{

[�T�]11, [�TDM�]11, [�TKM�]11, [�TBM ]1:, [CM�]:1
}

. (19)

It is not clear that the above truncation indeed selects the dominant state vectors
transferring input energy to output energy. One would rather have expected a left
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multiplication by �−1 to normalize the mass matrix to the identity, followed by a
truncation:

{I, [�−1DM�]11, [�−1KM�]11, [�−1BM ]1:, [CM�]:1}. (20)

This modified method would be equivalent to our method when imposing �2 = �1
(and hence “freezes” one degree of freedom). Obviously the motivation for multiply-
ing the equations by �T before truncating is to obtain a reduced model that preserves
the symmetry properties of the original system. But a clear motivation from the point
of view of the projection error is lacking. A second drawback is that, with the method
proposed in [3], one implicitly assumes that influential velocities are also influential
positions, and again there is no reason why this should give good results since one
does not use all degrees of freedom at hand. The last drawback lies in the definition of
the “zero velocity” gramians PZV, QZV. Contrarily to the “free velocity” gramians,
the definition of PZV, QZV has not been well justified from an energetic point of
view. As illustrated in the test examples of the next section, we believe that these
drawbacks have a negative effect on the approximation error of that approach.

5. Numerical examples

In Table 1, we compare four model reduction methods: the classic balanced trun-
cation (‘BT’), the method of [3] (free velocity: ‘FV’, zero velocity: ‘ZV’), and our
method: the second-order balanced truncation (‘SOBT’). The comparison is made on
the basis of the relative reduction error measured according to the Hankel norm, i.e. the
two norm of the “error” between the Hankel maps of the true (H) and approximated
system (Ĥ):

‖E‖2/‖H‖2
.= ‖H − Ĥ‖2/‖H‖2.

This is done for six different benchmark models obtained from [7]: the building model
(‘B’), the cd-player model and its symmetric version (‘CD’), the international space
station model and its symmetric version (‘ISS’), and the clamped beam model (‘CB’).
Each method corresponds to one column in the table. When a method gives a unstable
reduced model, we write ‘UNST’. In the symmetric case, the method [3] seems to

Table 1
Comparison of the projection error

Mod n k m p ‖H‖2
‖EBT‖2‖H‖2

‖EFV‖2‖H‖2

‖EZV‖2‖H‖2

‖ESOBT‖2‖H‖2

B 24 4 1 1 5.1e−04 9.4e−02 9.9e−01 9.9e−01 7.9e−02
CD 60 6 2 2 1.2e+06 3.2e−06 4.1e−06 8.4e−05 3.6e−06
ISS 135 13 3 3 7.5e−02 3.4e−04 3.4e−04 3.4e−04 3.4e−04
CB 174 17 1 1 2.4e+03 2.9e−05 6.6e−01 UNST 1.8e−04
CDsym 60 6 2 2 2.6e+07 8.8e−05 1.1e−04 5.5e−04 1.1e−04
ISSsym 135 13 3 3 2.2e+01 7.8e−04 7.8e−04 7.8e−04 7.8e−04
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Fig. 1 Amplitude of the frequency response (- - -: Original model, · · ·: BT, – – –: SOBT, -· -· -·: FV).

work quite well, but in general our new projection method behaves better. Further
experiments can also be found in [4] where this method is also compared with three
other less efficient techniques, including “modal approximation”.

For the clamped beam model, we give Fig. 1 that shows the amplitude of the
frequency response of both the original and the reduced systems.

6. Concluding remarks

In this paper we have introduced a structure preserving model reduction method
for second-order systems. It is a balance and truncate method that is defined based
on two pairs of n × n gramians (Ppos,Qpos), and (Pvel,Qvel). Following the idea
of [3], these gramians are derived from optimization problems, and are shown to
contain information about the capacity of positions q0 and velocities q̇0 to transfer
energy between inputs and outputs. Working in a state-space model enables us to
balance both pairs of gramians simultaneously, which allows to determine the k most
controllable and observable position components and the k most controllable and
observable velocity components, where k � n. The reduced model is then obtained
by keeping that part of the balanced system that only depends on these variables,
which then automatically gives a reduced model of second-order type.

We have shown that the method in [3] is not a real balance and truncate method,
and that it has a few drawbacks. Numerically speaking our method performs better
than the method of [3], but for symmetric models, both methods work well.
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In a theoretical point of view, many questions remain open. For instance, does the
SOBT technique preserve stability? If this turns out to be true, then does there exist
a global error bound between the original and the reduced order model depending on
the eigenvalues of the product of the gramians that we neglect, as in the case of the
standard balanced truncation? If this turns out to be false, does there exist other pairs
of gramians that provide a global error bound?
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