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1 Introduction

There are two main categories of model reduction, namely SVD-based techniques and
Krylov based techniques. The first category is used for systems of moderate order, but
provides global error bounds. The second category can be applied to systems of very large
order (say several thousands) but without global error bound available.

Here we consider second-order linear time-invariant systems, meaning systems of the
type {

Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t)
y(t) = Cq(t)

, (1)

where u(t) ∈ Rm, y(t) ∈ Rp, q(t) ∈ Rn, B ∈ Rn×m, C ∈ Rp×n, M, D, K ∈ Rn×n and
where M is assumed to be invertible. The transfer function associated with the system
(1) in the Laplace domain is given by

T (s) .= C
(
Ms2 + Ds + K

)−1
B, (2)

where P (s) .= Ms2 + Ds + K is called the characteristic polynomial matrix.
It is often advisable to construct a reduced model of size k ¿ n that nevertheless keeps

the “second-order structure” of the system. We thus need to build a reduced model,
{

M̂ ¨̂q(t) + D̂ ˙̂q(t) + K̂q̂(t) = B̂u(t)
ŷ(t) = Ĉq̂(t)

(3)

where q̂(t) ∈ Rk, M̂ , D̂, K̂ ∈ Rk×k, B̂ ∈ Rk×m, Ĉ ∈ Rp×k, such that its transfer function
is “close” to the original transfer function.

The purpose of this paper is to present SVD and Krylov based model reduction tech-
niques that preserve the second order form of the system one wants to reduce. For SVD
techniques, we define in section 3 two pairs of gramians, (Ppos,Qpos) associated to the
position q(t), and (Pvel,Qvel) associated to the velocity q̇(t). Each of these gramians are
associated to an optimization problem. One then projects the state space by keeping the
position and the velocity subspaces corresponding to the dominant eigenspaces of PposQpos

and PvelQvel respectively. Second-order structure preserving Krylov techniques are con-
sidered in section 4 where it is shown how to construct a second order transfer function
that satisfies tangential interpolation conditions with respect to the original second order
transfer function.
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2 Model Reduction by Balanced Truncation

This section is developed in more details in [1]. So, only important points are recalled here
(see [2] or [3] for a deeper study of the Balanced Truncation technique). We consider in
this section linear time-invariant systems modelled by the following system of equations

S
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

, u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp (4)

which therefore have a transfer function T (s) = C(sIn − A)−1B that links the inputs
to the outputs in the Laplace domain. Such transfer functions are strictly proper, i.e.
lims→∞ T (s) = 0, which happens to be the case also for the transfer function considered
in (2) since M was assumed to be invertible.

Two matrices are associated with the linear system (4). These are the “controllability
gramian” P and the “observability gramian” Q. If A is Hurwitz, they are the unique
solutions of the following Lyapunov equations :

AP + PAT + BBT = 0 , ATQ+QA+ CTC = 0. (5)

A physical interpretation of the gramians is the following. The controllability matrix
arises from the following optimization problem. Let

J(v(t), a, b) .=
∫ b

a
v(t)T v(t)dt

be the energy of the vector function v(t) in the interval [a, b]. Then (see [3])

min
u(t)

J(u(t),−∞, 0)|x(0)=x0
= xT

0 P−1x0, (6)

and, symmetrically, we have the dual property (for the dual system (CT ,AT ,BT ) evolving
backward in time) :

min
y(t)

J(y(t),−∞, 0)|x0=x0
= xT

0Q−1x0. (7)

The more xT
0 P−1x0 is small, the more “controllable” the state x0 is, because it can be

reached with a input of small energy. By duality, the more xT
0Q−1x0 is small, the more

“observable” the state x0 is. Thus when both gramians are equal and diagonal, the order
of magnitude of a diagonal value of the product PQ is a good measure for the influence
of the corresponding state variable in the mapping from past inputs u(t) ∈ L2[−∞, 0] to
future outputs y(t) ∈ L2[0, +∞] passing via that particular state at time t = 0.

Given a transfer function T (s), the popular balanced truncation model reduction
method consists in finding a state-space realization (Cbal,Abal,Bbal) of T (s) such that
the gramians are equal and diagonal and then the reduced model is constructed by keep-
ing the states corresponding to the largest eigenvalues of the product PQ in it. The idea
of the balanced truncation technique thus consists in keeping those states that are most
controllable and observable according to the gramians defined in (6) and (7).

Second-order systems can be seen as a particular class of linear systems. Indeed, by
rewriting the system (1) as follows





ẋ(t) =
[

0 I
−KM −DM

]
x(t) +

[
0

BM

]
u(t)

y(t) =
[

CM 0
]
x(t)

(8)
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where the state x(t) is
[

q(t)T q̇(t)T
]T , and where we have chosen a coordinate system

in which the mass matrix M is the identity, one recovers the form (4). We can thus rewrite
the transfer function defined in (2) as

H(s) = C(sI2n −A)−1B (9)

by defining

A .=
[

0 I
−KM −DM

]
, B .=

[
0

BM

]
, C .=

[
CM 0

]
. (10)

Unfortunately the classic balanced truncation technique cannot be applied directly to
the state-space realization (C,A,B) (8) of the second-order system since, in general, the
resulting reduced system is not a second-order system anymore. The objective of the next
section is to find a method that performs balanced truncation in some sense and preserves
the second-order structure of the system.

3 Balanced Truncation for Second-Order Systems

The idea of our balance and truncate technique for second-order systems (called SOBT for
Second-Order Balanced Truncation) is the following. First, we need to define two pairs of
n×n gramians (“second-order gramians”) that have to change according to contragradient
transformations, and that must have some energetic interpretation. (Only then a balance
and truncate process makes sense). The first pair (Ppos,Qpos) will correspond to an energy
optimization problem depending only on the positions q(t) and not on the velocities q̇(t).
Reciprocally, the second pair (Pvel,Qvel) will be associated to an optimization problem
depending only on the velocities q̇(t) and not the on the positions q(t). By analogy to
the first order case, the gramians Qpos and Qvel will be defined from the dual systems.
After these definitions we then come to the balancing part of the method. For this we
transform to a balanced coordinate system in which the second-order gramians are equal
and diagonal : P̄pos = Q̄pos = Σpos, P̄vel = Q̄vel = Σvel. Their diagonal values will
enable us to point out what the important positions and the important velocities are, i.e.
those with (hopefully) large effect on the I/O map. Hence to get a reduced second-order
model we keep only the part of the system that depends on these variables. This is the
truncation part of the method.

Let us first define a pair of second-order gramians measuring the contribution of the
position coordinates (independently of the velocities) with respect to the I/O map. A nat-
ural optimization problem (see [4]) associated with the second-order form is the following

min
q̇0∈Rn

min
u(t)

J(u(t),−∞, 0), (11)

subject to
Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t), q(0) = q0.

It can be shown that the optimum is qT
0 P11

−1q0, where P11 is the n× n left upper block
of P (see equation (5)).

The solution of the dual problem will correspond to qT
0 Q11

−1q0 , where Q11 is the n×n
left upper block of Q (5). Under the change of coordinates q(t) = Φq̄(t), it is immediate
to verify that this pair of gramians undergoes a contragradient transformation :

(P̄11, Q̄11) = (Φ−1P11Φ−T , ΦTQ11Φ).
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This implies that there exists a new coordinate system such that both P11 and Q11 are
equal end diagonal. Their energetic interpretation is given by looking at the underlying
optimization problem. In (11), one minimizes the necessary energy to reach the given
position q0 over all past inputs and initial velocities. Hence these gramians really describe
how the I/O energy is distributed among the positions.
Analogously, let us define a pair of second-order gramians that would give the contribution
of the velocities with respect to the I/O map. The optimization problem associated is the
following

min
q0∈Rn

min
u(t)

J(u(t),−∞, 0) (12)

subject to
Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t), q̇(0) = q̇0.

By exactly following the same reasoning as in [4] for the optimization problem (11), one
can show that the solution of (12) is q̇T

0 P22
−1q̇0, where P22 is the n× n right lower block

of P. The solution of the dual problem will correspond to q̇T
0 Q22

−1q̇0 , where Q22 is the
n × n right lower block of Q. Again under the change of coordinates q̇(t) = Φ ˙̄q(t) one
can check that this pair of gramians perform a contragradient transformation. In (12),
one minimizes the necessary energy to reach the given velocity q̇0 over all past inputs and
initial positions. Hence these gramians really describe how the I/O energy is distributed
among the velocities.

The conclusion is that these second-order gramians are good candidates for our prob-
lem. We make thus the choice :

(Ppos, Qpos) = (P11, Q11) and (Pvel, Qvel) = (P22, Q22) . (13)

In the new model reduction technique that we propose here, we want to be able to balance
both pairs of second-order gramians at the same time, and this is not possible with a
change of coordinates of the type q(t) = Φq̄(t). For these reasons we work in a state-
space context, starting with the system (8). The method SOBT proceeds then as follows :
One first computes both pairs of second-order gramians (Ppos, Qpos) and (Pvel, Qvel).
One then computes the contragradient transformations that put Ppos = Qpos = Λpos and
Pvel = Qvel = Λvel where Λpos and Λvel are positive definite block diagonal matrices. On
then truncates the positions corresponding to the smallest eigenvalues of Λpos and the
velocities corresponding to the smallest eigenvalues of Λvel.

A deeper study of the Second-Order Balanced truncation technique and a comparaison
with other techniques can be found in [5].

4 Second-Order Structure Preserving Krylov Techniques

Krylov techniques for model reduction of linear systems have first been introduced by
[6]. These have been studied for generalized state space systems in [7]. Recently, a
generalization of these techniques for Tangential Interpolation has been studied in [8] (see
[9] for a survey).

The first Second Order structure preserving Krylov technique has been studied in [10]
for interpolation at s = ∞. Recently, several people started to work on this problem.
For instance, Z. Bai (http://www.cs.ucdavis.edu/∼bai/) and coworkers studied a new
Arnoldi procedure for computing Krylov subspaces associated to second order systems, R.
Freund (http://netlib.bell-labs.com/who/freund/) studied Krylov techniques for model
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reduction of systems of arbitrary order k (and not only of second order) and finally P.
Van Dooren (http://www.auto.ucl.ac.be/∼vdooren/) and A. Vandendorpe studied the
tangential interpolation for second order systems.

In this section, we construct a second-order transfer function T̂ (s) of order k that
satisfies the following interpolation conditions with respect to the second-order transfer
function T (s) of order n:

xi

(
T (s)− T̂ (s)

)
= O(λi − s) ,

(
T (s)− T̂ (s)

)
xi+k = O(λi+k − s), (14)

where x1, . . . , xk ∈ C1×p and xk+1, . . . , x2k ∈ Cm×1. This can be done by computing
generalized Krylov subspaces as follows :

Algorithm 4.1 1. Construct Z and V such that

V =
[

(λk+1I2n −A)−1Bxk+1 . . . (λ2kI2n −A)−1Bx2k

]

ZT =




x1C(λ1I2n −A)−1

...
xkC(λkI2n −A)−1


 ,

where (C,A,B) are defined in (10).

2. Let V1 and V2 ∈ Cn×k be the first n rows and the last n rows of V respectively. Let Z1

and Z2 ∈ Cn×k be the first n rows and the last n rows of Z respectively. Construct

V .=
[

V1M1

V2M2

]
, Z .=

[
Z1N1

Z2N2

]
, (15)

where the invertible matrices M1,M2, N1, N2 ∈ Cn×n are chosen such that ZTV =
I2k.

3. Construct the matrices

Ĉ .= CV , Â .= ZTAV , B̂ .= ZTB.

4. Define the reduced order transfer function

T̂ (s) .= Ĉ(sI2k − Â)−1B̂.

It can be shown that T̂ (s) is a second-order transfer function of Mc Millan degree 2k that
satisfies the interpolation conditions (14).

In order to prove that the interpolation conditions are satisfied, one deduces from (15)
that

Im(V ) ⊆ Im(V) , Im(Z) ⊆ Im(Z).

As shown in [8], this is sufficient to ensure the interpolation conditions to be satisfied. The
second order structure of the reduced order transfer function follows from the following
lemma.

Lemma 4.1 Let (C,A,B) be the state space realization defined in (10). If one projects
such a state space realization with 2n× 2k bloc diagonal matrices

Z .=
[

Z1 0
0 Z2

]
, V .=

[
V1 0
0 V2

]
,
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where Z1, V1, Z2, V2 ∈ Cn×k are chosen such that ZT V = I2k , then the reduced transfer
function

T̂ (s) .= CV (ZT (sI2n −A)V)−1ZTB
is a second-order transfer function, provided the matrix ZT

1 V2 is invertible.

More details are given in [11].

5 Concluding Remarks

Concerning SVD-Like techniques, a Second Order Balanced Truncation technique has
been presented. If this technique preserves the structure, the drawback is that there is no
guaranteed global error bound available. Even worse, stability may be lost in the reduced
order system.

Concerning Krylov techniques, it has been shown in this paper that it is possible to use
a Krylov technique while preserving the second-order structure, but there is a price to pay.
Generically, imposing 2k interpolation conditions and the second order structure results
in a reduced transfer function of order 2k rather than k if the second order structure was
not imposed.

All the techniques presented here can be generalized for interconnected systems, as it
will be shown in a subsequent paper.
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