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Recursive Gramian and

Hankel map

approximation of large

dynamical systems ∗

Younes Chahlaoui and Paul Van Dooren
†

1 Introduction

In the last twenty years, model reduction of large scale dynamical systems has be-
come very popular. The idea is to construct a “simple” lower order model that
approximates well the behavior of the “complex” larger dynamical model. A com-
plex system is essentially a mathematical model which describes a real world phys-
ical process. This mathematical model is often characterized by partial differential
equations (PDEs). Since improved accuracy (using e.g. a very fine discretization)
leads to large and sparse models of high complexity (see e.g. [11]), this may become
prohibitive for certain computations (control, optimization, . . . ). Therefore it is
essential to design models of reduced complexity.
Most ideas developed for linear systems are based on the dominant spaces of Grami-
ans [10] (energy functions for in- and outgoing signals), which are the solutions of
Lyapunov or Stein equations. A lot of work is still needed to efficiently compute
these solutions (or their dominant spaces) when the system matrices are large and
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sparse (see e.g.[4]).
In this paper we describe two novel approaches for iterative projection based on
low-rank approximations of Gramians and Hankel matrices. We derive bounds for
the approximation errors of these methods and illustrate their efficiency on a few
numerical examples. These results are presented for linear discrete-time systems,
but they extend to linear continuous-time systems as well (see e.g.[4]).

2 Time-varying systems

Linear discrete time-varying systems are described by systems of difference equa-
tions: {

xk+1 = Akxk + Bkuk

yk = Ckxk
(1)

with input uk ∈ R
m, state xk ∈ R

N and output yk ∈ R
p, and m, p << N . The

input sequence is assumed to be square-summable, i.e uk ∈ lm2
1, and we assume that

{Ak}
∞
0 , {Bk}

∞
0 , and {Ck}

∞
0 are bounded2 sequences of matrices with appropriate

dimensions.
Using the recurrence (1) over several time steps, one obtains the state at step k in
function of past inputs over the interval [ki, k) :

xk = Φ(k, ki)xki
+

k−1∑

i=ki

Φ(k, i + 1)Biui

where Φ(k, ki)
.
= Ak−1 . . . Aki

is the discrete transition matrix over time period
[ki, k) [7]. We will assume the time-varying system to be asymptotically stable,
which means that

∀k ≥ ki ‖Φ(k, ki)‖ ≤ m · a(k−ki), with m > 0, 0 < a < 1.

Under such conditions one can define the Gramians over intervals [ki, k) and [k, kf ]
as follows :

Gc(k) =

k−1∑

i=ki

Φ(k, i + 1)BiB
T
i ΦT (k, i + 1), Go(k) =

kf∑

i=k

ΦT (i, k)CT
i CiΦ(i, k).

(Notice that the asymptotic stability is needed when ki = −∞ or kf = +∞.)
These Gramians can also be obtained from the Stein recurrence formulas:

Gc(k + 1) = AkGc(k)AT
k + BkBT

k and Go(k) = AT
k Go(k + 1)Ak + CT

k Ck, (2)

with respective initial conditions Gc(ki) = 0, Go(kf +1) = 0. These formulas were
obtained using

Φ(k1, k2) = Φ(k1, k2+1)Ak2
and Φ(k1+1, k2) = Ak1

Φ(k1, k2) where k1 ≥ k2.

1This is a Hilbert space with inner product 〈x, y〉lm
2

.
=

∞∑

−∞

xT
k yk

2A sequence of matrices {Mk} is said to be bounded if there exists a constant M ∈ R such that
‖Mk‖ ≤ M, ∀k ∈ Z.
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We point out that both recurrences (2) evolve differently with time. The first
equation goes “forward” in time, while the second goes “backward” in time.

3 Recursive low-rank Gramians approximations

When model reduction is to be used, the Gramians have often rapidly decaying
eigenvalues [2], which suggests to approximate the Gramians at each step by a low-
rank factorization. We show below how to obtain such approximations and at the
same time exploit the sparsity of the model {Ak, Bk, Ck} if there is. Although all
material below should be applied to both Gramians Gc(k) and Go(k), we focus on
the controllability Gramian only.
It is easy to see that the solution of

Gc(k + 1) = AkGc(k)AT
k + BkBT

k . (3)

is always symmetric positive semi-definite, so we can substitute it by a symmetric
factorization: Gc(k) = C(k)C(k)T . The key idea of the low-rank method is to
approximate the factor of Gc(k), C(k) by a rank nk approximation Sc(k) at each
iteration (typically nk is constant). So the proposed algorithm is the following:

Algorithm 3.1 Let Sc(0)∈R
N×n be an initialization satisfying :

C(0)C(0)T = Sc(0)Sc(0)
T + Ec(0)Ec(0)

T , 3

then the kth low-rank approximation Sc(k) is obtained as follows :

Ŝc(k) =
[

Ak−1Sc(k − 1) Bk−1

]
= UcΣV T

c

Sc(k)
.
= Ŝc(k)Vc(:, 1 : n)

Ec(k)
.
= Ŝc(k)Vc(:, n + 1 : n + m)

(4)

where Uc ∈ R
N×(n+m), Σ ∈ R

(n+m)×(n+m) and Vc ∈ R
(n+m)×(n+m) are the Short

Singular Values Decomposition (SSVD) matrices of Ŝc(k).

It is immediate that Pk = Sc(k)Sc(k)T is the best rank n approximation to
Ŝc(k)Ŝc(k)T . But we have to compare Pk with Gc(k) = C(k)C(k)T .
For this, we define C(k) =

[
Bk−1 Ak−1Bk−2 . . . Φ(k, 0)C(0)

]
,

and we have the following result 4 :

Theorem 1. [4] At each iteration, there exists an orthogonal matrix
Vk ∈ R

(n+km)×(n+km) satisfying :

C(k)Vk =
[

Sc(k) Ec(k) Ak−1Ec(k − 1) . . . Φ(k, 0)Ec(0)
]

where Ec(k) is the neglected part at iteration k (4).

3we can always choose, e.g. Sc(0)=0, which would imply Ec(0)=C(0)
4See [4] for more details and proofs of all theorems of this section
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Let ηc = max
0≤i≤∞

‖Ec(i)‖2. As we suppose that our system is asymptotically sta-

ble, we can bound the difference between Pk and Gc(k) for all k, Ec(k)
.
= Gc(k) − Pk,

in terms of the “noise” level ηc as follows :

Theorem 2. [4]

‖Ec(k)‖2 ≤ η2
cm2

k∑

i=0

a2i ≤
η2

cm2

1 − a2
, with m > 0, 0 < a < 1.

The time-invariant case

For linear time-invariant systems {A,B,C}, this difference Ec(k) remains bounded
for large k.

Theorem 3. [4] Let P be the solution of P = APAT + I then

‖Ec(k)‖2 ≤ η2
c‖P‖2 ≤ η2

c

κ(A)2

1 − ρ(A)2
(5)

Remark 3.1.

� Our bounds are very similar to those obtained in [1] for the time-invariant case;
In (5), κ(A)2/(1−ρ(A)2) is constant and it is very small when ρ(A) � 1 and κ(A)
is reasonable;
� ηc can be taken equal to the maximum of ‖Ec(i)‖2 for ki ≤ i ≤ ∞, since we
can interpret theorems 2 and 3 as starting with step ki rather than 0. This is
particulary useful if after step ki the errors have converged to their minimal value,
i.e. the convergence threshold εm. If Ec(i) becomes very small, one can expect that
the algorithm has a fixed point. This appears very clearly in the numerical tests [4].
Theoretical work on this point is in progress.

The periodic case

Using the connection between the periodic time-varying system and the time-
invariant system [8], and the fact that for a periodic system there exists a peri-
odic controllability Gramian [9], we can extend the previous result to a K-periodic
system, as follows :

Theorem 4. [4]Let P be the solution of P = ÂPÂT + IKN where

Â =






0 . . . 0 A0

A1 0 . . . 0

0
.

.

.

.

.

.

.

.

.

0 . . . AK−1 0




 and P

.
= diag(P1, . . . ,PK−1,P0)

then

‖Ec(k)‖2 ≤ η2
c‖P‖2 ≤ η2

c

κ(Â)2

1 − ρ(Φ(K, 0))2
(6)
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Remark 3.2. Using the connection between periodic system and time-invariant
system, and from the convergence we can conclude that we have also a periodicity
for the dominant subspaces defined by the Sc(i), which implies that the reduced order
model will be also periodic.

4 Recursive low-rank Hankel approximation

In this section we present the second low-rank approach. The key idea of this
approach is to use the underlying recurrences defining the so-called time-varying
“Hankel maps”. These matrices have a similar structure to the Hankel matrix of
the time-invariant case. Let us consider a time window [ki, kf ] = [k − τ, k + τ ] of
width 2τ and centered around k. If we restrict the inputs to be non-zero only in
the interval [ki, k) (i.e. the “past”), then the outputs in the interval [k, kf ] (i.e.
the “future”) are given by the convolution with a finite dimensional “Hankel map”
H(k, ki, kf ):

H(k, ki, kf ) =







CkBk−1 CkAk−1Bk−2 . . . CkΦ(k, ki + 1)Bki

Ck+1AkBk−1 Ck+1AkAk−1Bk−2 Ck+1Φ(k + 1, ki + 1)Bki

.

.

.
. . .

.

.

.
Ckf

Φ(kf , k)Bk−1 Ckf
Φ(kf , k − 1)Bk−2 . . . Ckf

Φ(kf , ki + 1)Bki







.

This matrix has a factorization :

H(k, ki, kf ) =








Ck

Ck+1Ak

...
Ckf

Φ(kf , k)








︸ ︷︷ ︸

O(k,kf )

[
Bk−1 Ak−1Bk−2 . . . Φ(k, ki + 1)Bki

]

︸ ︷︷ ︸

C(k,ki)

where Ok
.
= O(k, kf ) and Ck

.
= C(k, ki) are respectively the observability and the

reachability matrices at instant k related to the finite windows [k, kf ] and [ki, k).
It also follows from the factorization that the submatrices of the factors satisfy the
following recurrences :

Oj =

[
Cj

Oj+1Aj

]

, k ≤ j < kf Cj+1 =
[

Bj AjCj

]
, ki ≤ j < k.

These recurrences construct the controllability matrix forward from ki to k and the
observability matrix backward from kf to k. The idea of our Recursive Low-Rank
Hankel approximation method (RLRH) is now to compute these recurrences using
low-rank approximations at each time step, according to the following recursive
scheme :
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Algorithm 4.1 Let the initializing matrices Sc(ki), So(kf )∈R
N×n satisfy

C(ki, ki)C
T (ki, ki) = Sc(ki)S

T
c (ki) + Ec(ki)E

T
c (ki),

OT (kf , kf )O(kf , kf ) = So(kf )ST
o (kf ) + Eo(kf )ET

o (kf ), 5

then the ith (i = 1, . . . , τ) low-rank approximations Sc(ki + i) and So(kf − i) are
obtained as follows :

[
Sc(ki+i) Ec(ki+i)

]
=

[
Bki+i−1 Aki+i−1Sc(ki+i−1)

] [

V
(1)
h (i) V

(2)
h (i)

]

(7)

[
ST

o (kf −i)
ET

o (kf −i)

]

=

[

U
(1)T
h (i)

U
(2)T
h (i)

] [
Ckf−i

ST
o (kf −i+1)Akf−i

]

(8)

where U
(1)
h (i) ∈ R

(p+n)×n and V
(1)
h (i) ∈ R

(m+n)×n come from

[
Ckf−i

ST
o (kf −i+1)Akf−i

]
[
Bki+i−1 Aki+i−1Sc(ki+i−1)

]
= Uh(i)Σ(i)Vh(i)T

︸ ︷︷ ︸

SVD

(9)

Remark 4.1. It follows from (7) and (8) that at each iteration i = 1, . . . , τ we
have [

ST
o (kf − i)

ET
o (kf − i)

]
[

Sc(ki + i) Ec(ki + i)
]

=

[
Σ1(i) 0

0 Σ2(i)

]

(10)

Now in order to make the link between the whole controllability and observability
matrices C(·, ·), O(·, ·) and their low-rank approximations Sc(·) and So(·), we have
the following theorem6:

5we can e.g. choose Sc(ki) = 0 and So(kf ) = 0, which would imply Ec(ki) = C(ki, ki) and

Eo(kf ) = OT (kf , kf )
6See [5] for more details and proofs of all theorems of this section
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Theorem 5. [5] At each iteration, there exist orthogonal matrices
Vi∈ R

(n+im)×(n+im) and Ui ∈ R
(n+ip)×(n+ip) satisfying :

C(ki + i, ki)Vi =
[

Sc(ki + i) Ec(ki + i) Aki+i−1Ce(ki + i, ki)
]

OT (kf − i, kf )Ui =
[

So(kf − i) Eo(kf − i) AT
kf−iOe(kf − i + 1, kf )

]

where Ec(ki + i) and Eo(kf − i) are the neglected parts at iteration i (7) and

Ce(j, ki)
.
=

[
Ec(j−1) . . . Φ(j − 1, ki)Ec(ki)

]

Oe(j, kf )T .
=

[
Eo(j) . . . Φ(kf , j)T Eo(kf )

]
.

As a consequence of this theorem and from remark (4.1), we have the following
result which give us an approximation of the original Hankel map H(k, ki, kf ):

Theorem 6. [5] There exist orthogonal matrices Vk ∈ R
(n+km)×(n+km) and

Uk ∈ R
(n+kp)×(n+kp) such that :

UT
k H(k, ki, kf )Vk =




ST
o (k)Sc(k) 0 ST

o (k)Ak−1Ce(k, ki)
0 ET

o (k)Ec(k) ET
o (k)Ak−1Ce(k, ki)

Oe(k+1, kf )AkSc(k) Oe(k+1, kf )AkEc(k) Oe(k+1, kf )AkAk−1Ce(k, ki)



 . (11)

This result will enable us to evaluate the quality of our approximations by
using the Hankel operator without having to pass by Gramians, which can be very
suitable in some cases.

The time-invariant case

Let us analyze the quality of our approximation for the time-invariant case. Suppose
that we have run the above procedure and that we have obtained two matrices Sc

and So of full rank n. Using those matrices we can approximate the Gramians of
the original model by ScS

T
c and SoS

T
o . The difference between the approximate

low-rank Gramians and the exact Gramians

Ec(k)
.
= Gc(k) − Pk, Eo(k)

.
= Go(k) −Qk

remains bounded for large k, as indicated in the following theorem.

Theorem 7. [5] Let P and Q be respectively the solutions of P = APAT + I and
Q = ATQA + I, then

‖Ec(k)‖2 ≤ η2
c‖P‖2 ≤ η2

c

κ(A)2

1 − ρ(A)2
, and ‖Eo(k)‖2 ≤ η2

o‖Q‖2 ≤ η2
o

κ(A)2

1 − ρ(A)2

where ηc
.
= max

k
‖Ec(k)‖2 and ηo

.
= max

k
‖Eo(k)‖2.
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Theorem 8. [5] Using the first n columns U
(1)
k of Uk and V

(1)
k of Vk, we obtain a

rank n approximation of the Hankel map :

H(k) − U
(1)
k ST

o (k) · Sc(k)V
(1)T
k = Eh(k),

for which we have the error bound :

‖Eh(k)‖2 ≤
κ(A)

√

1 − ρ(A)2
max{ηc‖S

T
o A‖2, ηo‖ASc‖2} +

κ(A)2

1 − ρ(A)2
ηoηc.

Remark 4.2. In the time-invariant case all matrices A, B and C are constant.
As a consequence all Hankel maps of width τ are equal as well and only the interval
width plays a role in the obtained decomposition. As a consequence one obtains an
approximate rank factorization of a Hankel map with i block columns and rows at
each instant i. The bounds obtained in Theorem 7 and 8 are moreover independent
of k. As i grows larger one can expect that reasonable approximations of ηc and ηo

are in fact given by the last terms, i.e. ηc ≈ ‖Ec(k)‖2 and ηo ≈ ‖Eo(k)‖2 which
will give much tighter bounds in these theorems.

5 RLRG versus RLRH

Now, let us compare between those two algorithms for model reduction of large
scale systems. First, investigating the amount of work involved by both algorithms
give:

• For both methods one needs to form products of the type AjSc(j) and ST
o (l+

1)Al. If we assume the matrices Ak to be sparse, then the amount of work
needed for this is Θ(αNn) where α is the number of non-zero elements per
row or column of Ak [6];

• For the RLRG method, we need to compute and apply at each step the trans-
formation Uc, Uo. This requires Θ(N(n + m)2) flops and Θ(N(n + p)2) flops,
respectively [6];

• For the RLRH method, the construction of the left hand side of (9) requires an
additional 2N(n + m)(n + p) flops and the application of the transformations
Uh and Vh requires Θ((p + n)(m + n)(2n + p + m)) flops.

The two methods have thus a comparable complexity Θ(N(n + m)(n + p))
when the matrices Ak are sparse. But as RLRH works on the Hankel map rather
than on the individual Gramians, it should suffer less from a bad balancing of the
original system. This is illustrated in the examples of the next section.

6 Numerical examples

In this section we apply our algorithms to three different dynamical systems: a CD
Player model, a Building model and an International Space Station model (see [3]
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for a brief description of these models). Contrary to the RLRH method, the RLRG,
as it works independently on both Gramians, has problems if the original model is
badly balanced. To avoid this, one can apply the RLRG algorithm for e.g. 2n
instead of only n and apply balanced truncation to reduce it further to degree n. It
can be seen from the following table that this operation works very well.
The table shows the order of the systems N , the number of inputs m and outputs p,
the order of reduced system n, the condition number of the balancing transformation
T , the spectral radius and condition number of the matrix A, the H∞ norms of the
original system and of the error systems. In the figure 1, the σmax-plot of the full
order and the corresponding error systems are shown. It can be seen from the figure
and the table that we obtain, with the recursive low-rank Hankel approximation,
results which are close to those obtained using Balanced Truncation.

CD-player model Building model ISS model
N m=p n 120 2 24 48 1 10 270 3 32

cond(T ) 40.7341 347.078 740178
ρ(A) 1 0.998886 0.999837

cond(A) 1.00705 5.8264 5.82405
‖S‖H∞ 2.3198e+006 0.0053 0.1159

‖S − SBT ‖H∞ 0.2040 6.0251e-004 2.3630e-004
‖S − SRLRG(n)‖H∞ 6.2938 0.0055 0.5637
‖S − SRLRG(2n)‖H∞ 6.1916 7.0792e-004 0.0010
‖S − SRLRH‖H∞ 6.1890 6.7317e-004 0.0011

It is seen here that when the original system is well balanced RLRG(n) and
RLRH(n) give essentially the same result. The decomposition (4) is then close to
the “square root” of decomposition (9) and both approaches should be very close.
If the original system is poorly balanced (as e.g. the ISS model) we can see that
RLRH(n) becomes much better. This can be understood from the fact that the
poor balancing of the system model vanishes in the Hankel map and hence also in
the matrix decomposition in (9). We see in the example that RLRG(2n) followed
by BT manages to compensate this, but at a higher cost.

7 Conclusion

We describe two novel approaches for iterative projection using recursive low-rank
methods. The two algorithms can be used in model reduction of time-varying
large-scale dynamical systems. The second algorithm (RLRH) is more attractive as
the method yields better approximation for poorly balanced system, and no more
operations are needed to provide a good reduced model.
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Legend : full model, · · · BT error system, · RLRG(n) error system,
· · · RLRG(2n) error system, RLRH error system.
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(a) CD-player model
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(c) International space station model

Figure 1. σmax-plot of the frequency responses.
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