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Summary. This paper presents new recursive projection techniques to compute
reduced order models of time-varying linear systems. The methods produce a low-
rank approximation of the Gramians or of the Hankel map of the system and are
mainly based on matrix operations that can exploit sparsity of the model. We show
the practical relevance of our results with a few benchmark examples.
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1 Introduction

The basic idea of model reduction is to represent a complex linear dynamical sys-
tem by a much simpler one. This may refer to many different techniques, but in
this paper we focus on projection-based model reduction of linear systems. It can
be shown in the time-invariant case [8] that projection methods allow to generate
almost all reduced order models and that they are in that sense quite general. Here
we construct the projection based on the dominant invariant subspaces of products
of the Gramians, which are energy functions for ingoing and outgoing signals of the
system. When the system matrices are large and sparse, the Gramians are neverthe-
less dense and efficient methods will therefore have to approximate these dominant
spaces without explicitly forming the Gramians themselves.

Balanced Truncation [13] is probably the most popular projection-based method.
This is mainly due to its simplicity : the construction is based on simple linear algebra
decompositions and there is no need to first choose a set of essential parameters.
Moreover an a priori upper bound is given for the H∞-norm of the error between
the original plant and the reduced-order model [7].

An important issue in model reduction is the choice of the order of the ap-
proximation, since it affects the quality of the approximation. One would like to be
able to choose this during the construction of the reduced order model, i.e. with-
out having to evaluate in advance quality measures like the Hankel singular values
(computing them all would become prohibitive for large-scale systems). The use of
iterative methods seem appealing in this context since they may offer the possibility
to perform order selection during the computation of the projection spaces and not
in advance.
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The approach that we propose in this paper is iterative and applies as well to
time-varying systems. Earlier work on model reduction of time-varying systems was
typically based on the explicit computation of the time-varying solution of a matrix
difference (or differential) equation [15, 11, 14] and such results were mainly used to
prove certain properties or bounds of the reduced order model. They were in other
words not presented as an efficient computational tool. We propose to update at each
step two sets of basis vectors that allow to identify the dominant states. The updating
equations are cheap since they only require sparse matrix vector multiplications. The
ideas are explained in [2, 3, 4, 5], to which we refer for proofs and additional details.
Another recent approach is to use fast matrix decomposition methods on matrices
with particular structure such as a Hankel structure. Such an approach is presented
in [6] and could be competitive with the methods presented here.

2 Linear time-varying systems

Linear discrete time-varying systems are described by systems of difference equa-
tions:

S :

{
xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk
(1)

with input uk ∈ R
m, state xk ∈ R

N and output yk ∈ R
p. In this paper we will

assume m, p � N , the input sequence to be square-summable (i.e.
∑∞

−∞
uT

k uk ≤ ∞),
Dk = 0, and the matrices {Ak}

∞
−∞, {Bk}

∞
−∞, and {Ck}

∞
−∞ to be bounded for all k.

Using the recurrence (1) over several time steps, one obtains the state at step k in
function of past inputs over the interval [ki, k − 1] :

xk = Φ(k, ki)xki
+

k−1∑

i=ki

Φ(k, i + 1)Biui

where Φ(k, ki) := Ak−1 . . . Aki
is the discrete transition matrix over time period

[ki, k − 1]. The transition matrix has the following properties :

{
Φ(k2, k0) = Φ(k2, k1)Φ(k1, k0), k0 ≤ k1 ≤ k2

Φ(k, k) = IN ∀k.

We will assume the time-varying system S to be asymptotically stable, meaning

∀k ≥ ki ‖Φ(k, ki)‖ ≤ m · a(k−ki), with m > 0, 0 < a < 1.

The Gramians over intervals [ki, k − 1] and [k, kf ] are then defined as follows :

Gc(k) =

k−1∑

i=ki

Φ(k, i + 1)BiB
T
i ΦT (k, i + 1),

Go(k) =

kf∑

i=k

ΦT (i, k)CT
i CiΦ(i, k),

where ki may be −∞ and kf may be +∞. It follows from the identities
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Φ(k1, k2) = Φ(k1, k2+1)Ak2
and Φ(k1+1, k2) = Ak1

Φ(k1, k2) where k1 ≥ k2

that these Gramians can also be obtained from the Stein recurrence formulas :

Gc(k + 1) = AkGc(k)AT
k + BkBT

k and Go(k) = AT
k Go(k + 1)Ak + CT

k Ck, (2)

with respective initial conditions

Gc(ki) = 0, Go(kf + 1) = 0.

Notice that the first equation evolves “forward” in time, while the second one evolves
“backward” in time.

These Gramians can also be related to the input/ouput map in a particular
window [ki, kf ]. Let us at each instant k (ki < k < kf ) restrict inputs to be nonzero
in the interval [ki, k) (i.e. “the past”) and let us consider the outputs in the interval
[k, kf ] (i.e. the “future”). The state-to-outputs and inputs-to-state maps on this
window are then given by :








yk

yk+1

...
ykf








︸ ︷︷ ︸

Y

=








Ck

Ck+1Ak

...
Ckf

Φ(kf , k)








[
Bk−1 Ak−1Bk−2 . . . Φ(k, ki + 1)Bki

]








uk−1

uk−2

...
uki








︸ ︷︷ ︸

U
︸ ︷︷ ︸

x(k)

.

The finite dimensional “Hankel” matrix H(kf , k, ki) mapping U to Y is defined as

H(kf , k, ki) =








CkBk−1 CkAk−1Bk−2 . . . CkΦ(k, ki + 1)Bki

Ck+1AkBk−1 Ck+1AkAk−1Bk−2 Ck+1Φ(k + 1, ki + 1)Bki

...
. . .

...
Ckf

Φ(kf , k)Bk−1 Ckf
Φ(kf , k − 1)Bk−2 . . . Ckf

Φ(kf , ki + 1)Bki








.

Notice that this matrix has at most rank N since x(k) ∈ R
N and that it factorizes

as

H(kf , k, ki) =








Ck

Ck+1Ak

...
Ckf

Φ(kf , k)








︸ ︷︷ ︸

O(kf ,k)

[
Bk−1 Ak−1Bk−2 . . . Φ(k, ki + 1)Bki

]

︸ ︷︷ ︸

C(k,ki)

(3)

where O(kf , k) and C(k, ki) are respectively the observability and the controllability
matrices at instant k over the finite window [ki, kf ]. They satisfy the recurrences

O(kf , k) =

[
Ck

O(kf , k + 1)Ak

]

, C(k + 1, ki) =
[
Bk AkC(k, ki)

]
(4)

evolving forward and backward in time, respectively. From these matrices one then
constructs the Gramians and Hankel map via the identities
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H(kf , k, ki) = O(kf , k)C(k, ki), Gc(k) = C(k, ki)C(k, ki)
T , Go(k) = O(kf , k)TO(kf , k).

Notice that in the time-invariant case the above matrices become function only of the
differences k−ki and kf −k. In this case one typically chooses both quantities equal
to τ := (kf − ki)/2, i.e. half the considered window length. In the time-invariant
case it is also typical to consider the infinite window case, i.e. where kf = −ki = ∞.

3 Balanced Truncation

The method of Balanced Truncation is a very popular technique of model reduction
for stable linear time-invariant systems because it has several appealing properties
related to sensitivity, stability and approximation error [13, 18]. The extension to
time-varying systems is again based on the construction of a new state-space coor-
dinate system in which both Gramians are diagonal and equal [15, 17, 14]. This is
always possible when the system is uniformly controllable and observable over the
considered interval [15, 17], meaning that the Gramians are uniformly bounded and
have uniformly bounded inverses. It is then known that there exists a time-varying
state space transformation Tk such that the Gramians Ĝc(k) := T−1

k Gc(k)T−T
k and

Ĝo(k) := T T
k Go(k)Tk of the transformed system {T−1

k+1AkTk, T−1
k+1Bk, CkTk}, satisfy

T−1
k Gc(k)Go(k)Tk = Ĝc(k)Ĝo(k) = Σ2(k), 0 < Σ(k) < ∞I.

One then partitions the matrix Σ(k) into diag{Σ+(k), Σ−(k)} where Σ+(k) contains
the n largest singular values of Σ(k) and Σ−(k) the smallest ones. In that coordinate
system the truncated system {Âk, B̂k, Ĉk} is just the system corresponding to the
leading n columns and rows of the transformed system {T−1

k+1AkTk, T−1
k+1Bk, CkTk}.

If we denote the first n columns of Tk by Xk and the first n rows of T−1
k by Y T

k then
Y T

k Xk = In and

{Âk, B̂k, Ĉk} := {Y T
k+1AkXk, Y T

k+1Bk, CkXk}. (5)

If for all k there is also a gap between the singular values of Σ+(k) and those of
Σ−(k), then similar properties to the time-invariant case can be obtained, namely
asymptotic stability and uniform controllability and observability of the truncated
model [15] and an error bound for the truncation error between both input/output
maps in terms of the neglected singular values Σ−(k) (see [14] for a more detailed
formulation).

Rather than computing the complete transformations Tk, one only needs to
compute the matrices Xk, Yk ∈ R

N×n whose columns span the “dominant” left and
right eigenvector spaces of the product Gc(k)Go(k) and normalize them such that
Y T

k Xk = In to obtain the reduced model as given above. One can show that both
Gramians do not require anymore to be non-singular, and this can therefore be
applied as well to the finite window case. In general, one can not even guarantee the
gap property of the eigenvalues of the product of the Gramians.

In order to reduce the complexity of the model reduction procedure one can try
to approximate the dominant left invariant subspaces Xk and Yk by an iterative
procedure which possibly exploits the sparsity of the original model {Ak, Bk, Ck}.
The projection matrices will hopefully be close to invariant subspaces and one can
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hope to derive bounds for the approximation error between both systems. Such a
procedure is explained in the next two sections and is inspired by efficient approxi-
mation techniques found in the time-invariant case [10]. Bounds will be derived for
the time-invariant version of this algorithm.

4 Recursive Low-Rank Gramian algorithm (RLRG)

Large scale system models {Ak, Bk, Ck} are often sparse and since the construc-
tion of a good approximate time-varying system model {Âk, B̂k, Ĉk} requires an
approximation at every time step k it seems crucial to find a method that is of
low complexity at every time step and therefore exploits the sparsity of the original
model.

If the Gramians Gc(k) and Go(k) of the system {Ak, Bk, Ck} were of rank n <<
N, ∀k ∈ [ki, kf ] then the system would be actually of degree n. The idea is thus to
replace

Gc(k) = C(k, ki)C(k, ki)
T and Go(k) = O(kf , k)TO(kf , k)

by semi-definite rank nk approximations

Pk := SkST
k and Qk := RkRT

k ,

respectively (for simplicity, we will assume nk constant and equal to n). If such a
factorized approximation is available, then

Gc(k)Go(k) ≈ SkST
k RkRT

k

and the right hand side has clearly Xk := Sk as right invariant subspace, and
Yk := Rk as left invariant subspace. Normalizing Xk and Yk such that Y T

k Xk = In

will then yield an appropriate projected system (5) at each step k.

Note that the Gramian recurrences (2) evolve forward and backward in time and
so will the recurrences for the approximations. We introduce the indices

l := ki + i, r := kf + 1 − i

to simplify the indexing of the low-rank updating equations. At step i we compute
the singular value decompositions of the matrices

[
Bl−1 Al−1Sl−1

]
and

[
Cr

RT
r+1Ar

]

,

which yield transformation matrices U :=
[
U+ U−

]
and V :=

[
V+ V−

]
defining

[
Sl Ec(l)

]
:=

[
Bl−1 Al−1Sl−1

] [
V+ V−

]
, (6)

[
Rr Eo(r)

]
:=

[
CT

r AT
r Rr+1

] [
U+ U−

]
, (7)

where V+ ∈ R
(m+n)×n and U+ ∈ R

(p+n)×n. These iterations are initialized at step
i = 0 with

Ski
= 0 and Rkf +1 = 0.

At each iteration, we need to multiply Al−1Sl−1 and RT
r+1Ar (which requires 4Nnα

flops, where α is the average number of nonzero elements in each row or column of
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the sparse matrices Ai) and perform the transformations U and V (which require
O(N(n+m)2) flops and O(N(n+p)2) flops, respectively [9]). When N � n > m, p, α
this is altogether linear in the largest dimension N .

At each iteration step, Ec(l) and Eo(r) are neglected, which corresponds to the
best rank n approximations at that step. But we would like to bound the global
errors

Ec(l) := Gc(l) − Pl = Gc(l) − SlS
T
l , and Eo(r) := Go(r) −Qr = Go(r) − RrR

T
r .

The following lemma [2] is proven in [5] and leads to such bounds.

Lemma 1. At each iteration, there exists orthogonal matrices

V (i) ∈ R
(n+im)×(n+im) and U (i) ∈ R

(n+ip)×(n+ip),

satisfying :

C(l, ki)V
(i) =

[
Sl Ec(l) Al−1Ec(l − 1) . . . Φ(l, ki + 1)Ec(ki + 1)

]
,

and
O(kf , r)T U (i) =

[
Rr Eo(r) AT

r Eo(r + 1) . . . Φ(kf , r)T Eo(kf )
]
,

where Ec(i) and Eo(i) are the neglected parts at each iteration.

The above identities then lead to expressions for the errors :

Ec(l) =
i∑

j=1

Φ(l, ki + j)Ec(ki + j)Ec(ki + j)T Φ(l, ki + j)T , (8)

Eo(r) =

i−1∑

j=0

Φ(kf − j, r)T Eo(kf − j)Eo(kf − j)T Φ(kf − j, r). (9)

It is shown in [2, 5] that the norms of Ec(l) and Eo(r) can then be bounded in terms
of

ηc(l) = max
ki+1≤j≤l

‖Ec(j)‖2, and ηo(r) = max
r≤j≤kf

‖Eo(j)‖2,

which we refer to as the “noise” levels ηc and ηo of the recursive singular value
decompositions (6,7).

Theorem 1. If the system (1) is stable, i.e.,

‖Φ(k, k0)‖ ≤ m · a(k−k0), with m > 0, 0 < a < 1,

then

‖Ec(l)‖2 ≤
η2

c (l)m2

1 − a2
, and ‖Eo(r)‖2 ≤

η2
o(r)m2

1 − a2
.
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4.1 Time-invariant case

It is interesting to note that for linear time-invariant systems {A, B, C}, the differ-
ences Ec(l) and Eo(r) remain bounded for large i, and this shows the strength of
Theorem 1. We then have the following result, shown in [2, 5].

Theorem 2. Let P and Q be the solutions of

P = APAT + I, and Q = AT QA + I,

then

‖Ec(l)‖2 ≤ η2
c (l)‖P‖2 ≤ η2

c (l)
κ(A)2

1 − ρ(A)2
, ‖Eo(r)‖2 ≤ η2

o(r)‖Q‖2 ≤ η2
o(r)

κ(A)2

1 − ρ(A)2
,

(10)

‖Gc(l)Go(r) − PlQr‖2 ≤
κ(A)2

1 − ρ(A)2
(
η2

c (l)‖Go(r)‖2 + η2
o(r)‖Gc(l)‖2

)
, (11)

where κ(A) is the condition number and ρ(A) is the spectral radius of A.

In [10], bounds very similar to (10) were obtained but the results in that paper only
apply to the time-invariant case. The bound (11) says that if one Gramian is not
well approximated, the product of the Gramians, which is related to the Hankel
singular values, will not be well approximated. Notice that this only makes sense
when l = r. In the time-invariant case one can also estimate the convergence to
the infinite horizon Gramians, which we denote by Gc and Go and are defined by he
identities

Gc = AGcA
T + BBT , and Go = ATGoA + CT C.

Theorem 3. At each step i of (6,7) we have the following error bounds

‖Pi−1−Gc‖2 ≤ ‖Pi−Pi−1+Ec(i)E
T
c (i)‖2‖P‖2 ≤ ‖Pi−Pi−1+Ec(i)E

T
c (i)‖2

κ(A)2

1 − ρ(A)2
,

‖Qi+1−Go‖2 ≤ ‖Qi−Qi+1+Eo(i)E
T
o (i)‖2‖Q‖2 ≤ ‖Qi−Qi+1+Eo(i)E

T
o (i)‖2

κ(A)2

1 − ρ(A)2
,

where κ(A) is the condition number and ρ(A) is the spectral radius of A.

Proof. We prove the result only for Pi−1 since both results are dual. Start from

Pi + Ec(i)E
T
c (i) = APi−1A

T + BBT ,

to obtain

(Gc − Pi−1) = A(Gc − Pi−1)A
T + (Pi − Pi−1 + Ec(i)Ec(i)

T ).

Use the solution P of the linear system P = APAT +I and its growth factor κ(A)2

1−ρ(A)2

to obtain from there the desired bound. �

This theorem says that when convergence is observed, we can bound the accuracy
of the current estimates of the Gramians in terms of quantities computed in the last
step only. Using very different arguments, is was mentioned in [5] that this in fact
holds approximately for the time-varying case as well.
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4.2 Periodic case

The simplest class of time-varying models is the class of periodic systems. This is
because every K-periodic system,

{AK+k, BK+k, CK+k} = {Ak, Bk, Ck}

is in fact equivalent [12] to K lifted time-invariant systems :

{

x̂
(h)
k+1 = Â(h)x̂

(h)
k + B̂(h)û

(h)
k

ŷ
(h)
k = Ĉ(h)x̂

(h)
k + D̂(h)û

(h)
k

(12)

where the state x̂
(h)
k := xh+kK evolves over K time steps with state transition matrix

Â(h) := Φ(h + K, h), where û
(h)
k and ŷ

(h)
k are the stacked input-output vectors :

û
(h)
k := [uT

h+kK , uT
h+kK+1, . . . , uT

h+kK+K−1]
T

ŷ
(h)
k := [yT

h+kK , yT
h+kK+1, . . . , yT

h+kK+K−1]
T

and where B̂(h), Ĉ(h) and D̂(h) are defined in terms of the matrices {Ak, Bk, Ck}
(see [12]). Obviously, there are K such time invariant liftings for h = 1, . . . , K, and
each one has a transfer function. For such systems a theorem similar to Theorem 2
was obtained in [2, 5].

Theorem 4. Let P and Q be the solutions of, respectively, P = ÃP ÃT + IKN and
Q = ÃT QÃ + IKN , where

Ã :=








0 . . . 0 AK

A1 0 . . . 0

0
. . .

. . .
...

0 . . . AK−1 0








and
P := diag(P1, . . . , PK−1, PK)
Q := diag(Q1, . . . , QK−1, QK)

then

‖Ec(l)‖2 ≤ η2
c (l)‖P‖2 ≤ η2

c (l)
κ(Ã)2

1 − ρ(Ã)2
,

‖Eo(r)‖2 ≤ η2
c (r)‖Q‖2 ≤ η2

c (r)
κ(Ã)2

1 − ρ(Ã)2
.

Using multirate sampling [16], we constructed in [2] a time-varying system model
of period K = 2 and dimension N = 122 of the arm of the CD player described in [1].
We refer to [2] for more details but we recall here some results illustrating the con-
vergence of the Gramian estimates Pk = SkST

k , which were chosen of rank 20. Every
two steps these should converge to the steady state solutions corresponding to the
even and odd infinite horizon controllability Gramians. Since only the spaces mat-
ter and not the actual matrices, we show in Fig.1a the cosine of the canonical angle
between the dominant subspace of odd iterations (k−2) and k, i.e. cos(](Sk−2, Sk)),
and the canonical angle with the exact dominant subspace, denoted as S∞, of the
controllability Gramian of the lifted LTI system (12), i.e. (cos(](Sk, S∞)). This is
repeated in Fig.1b for the even iterates. The results for the observability Gramians



Model reduction of time-varying systems 9

are similar and are not shown here. Figures 1a and 1b show the convergence and
the accuracy of our algorithm. It can be seen that convergence is quick and is well
predicted by the errors performed in the last updating steps.

Fig.1a,b: ◦ cos(](Sk, Sk−2)), ∗ cos(](Sk, S∞)) for odd and even k
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In Fig.2a,b we compare frequency responses of the time-invariant lifted systems
(12) for odd and even iterates. In each figure we give the amplitude of the frequency
response of the original model, the absolute errors in the frequency response of the
projected systems using projectors obtained after 20 steps and 60 steps, and the
absolute errors in the frequency response of the projected systems using the exact
dominant subspace of the Gramians of the lifted system. The graphs show that after
60 steps an approximation comparable to Balanced Truncation is obtained.

Fig.2a,b: full model, · · · approx. errors (20 steps),
· approx. errors (60 steps), approx.errors (exact Gramian)
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5 Recursive Low-Rank Hankel algorithm (RLRH)

The algorithm of the previous section yields an independent approximation of the
two Gramians. If the original system was poorly balanced, it often happens that the
approximation of the product of the two Gramians is far less accurate than that of
the individual Gramians. This will affect the quality of the approximation of the
reduced model since the product of the Gramians plays an important role in the
frequency domain error.

In [3, 4] an algorithm is presented which avoids this problem. The key idea is to
use the underlying recurrences defining the time-varying Hankel map H(kf , k, ki) =
O(kf , k)C(k, ki). Because the system order at each instant is given by the rank of
the Hankel matrix at that instant, it is a good idea to approximate the system
by approximating the Hankel matrix via a recursive SVD performed at each step.
The technique is very similar to that of the previous section but now we perform
at each step the singular value decomposition of a product similar to the products
O(kf , k)C(k, ki). Consider indeed the singular value decomposition of the matrix

[
Cr

RT
r+1Ar

]

.
[
Bl−1 Al−1Sl−1

]
= UΣV T (13)

and partition U :=
[
U+ U−

]
, V :=

[
V+ V−

]
where U+ ∈ R

(p+n)×n and V+ ∈

R
(m+n)×n. Define then

[
Sl Ec(l)

]
:=

[
Bl−1 Al−1Sl−1

] [
V+ V−

]
, (14)

[
Rr Eo(r)

]
:=

[
CT

r AT
r Rr+1

] [
U+ U−

]
. (15)

It then follows that [
RT

r

ET
o (r)

]
[
Sl Ec(l)

]
=

[
Σ+ 0

0 Σ−

]

, (16)

where Σ− contains the neglected singular values at this step.

Fig.3: Submatrix sequence approximated by low rank approximations
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For the initialization at step i = 0 we use again

Ski
= 0 and Rkf +1 = 0

and iterate for i = 1, . . . , τ where τ := (kf − ki)/2 is the half interval length.
The approximate factorizations that one obtains are those indicated in Fig.3. The
amount of work involved in this algorithm is comparable to the earlier algorithm. We
need to form the products Al−1Sl−1 and RT

r+1Ar, which requires 4Nnα flops. The
construction of the left hand side of (13) requires an additional 2N(n + m)(n + p)
flops and the application of the transformations U and V requires O((p + n)(m +
n)(2n+p+m)) flops, and so the complexity of this algorithm is O(N(p+n)(m+n))
for each iteration if N � n > m, p, α.

As before we have a lemma, shown in [3, 4, 5], linking the intermediate error
matrices and the matrices O(kf , r) and C(l, ki).

Theorem 5. At each iteration, there exist orthogonal matrices V (i) ∈ R
(n+im)×(n+im)

and U (i) ∈ R
(n+ip)×(n+ip) satisfying :

C(l, ki)V
(i) =

[
Sl Ec(l) Al−1Ce(l, ki + 1)

]

O(kf , r)T U (i) =
[
Rr Eo(r) AT

r Oe(kf , r + 1)
]

where Ec(l) and Eo(r) are the neglected parts at each iteration, and the matrices
Ce(j, ki) and Oe(kf , j) are defined as follows :

Ce(j, ki) :=
[
Ec(j − 1) . . . Φ(j − 1, ki)Ec(ki)

]
,

Oe(kf , j)T :=
[
Eo(j) . . . Φ(kf , j)T Eo(kf )

]
.

As a consequence of this theorem we show in [3, 4, 5] the following result which
yields an approximation of the original Hankel map H(kf , k, ki).

Theorem 6. There exist orthogonal matrices V (τ) ∈ R
(n+τm)×(n+τm) and

U (τ) ∈ R
(n+τp)×(n+τp) such that U (τ)TH(kf , k, ki)V

(τ) is equal to





RT
τ Sτ 0 RT

τ Aτ−1Ce(τ, ki)

0 ET
o (τ)Ec(τ) ET

o (τ)Aτ−1Ce(τ, ki)

Oe(kf , τ +1)AτSτ Oe(kf , τ +1)AτEc(τ) Oe(kf , τ +1)AτAτ−1Ce(τ, ki)



 .

This result enables us to evaluate the quality of our approximations by using the
Hankel map without passing via the Gramians, which is exploited in [3, 4, 5] to obtain
bounds for the error. Notice also that since we are defining projectors for finite time
windows, these algorithms could be applied to linear time-invariant systems that
are unstable. One can then not show any property of stability for the reduced order
model, but the finite horizon Hankel map will at least be well approximated.

5.1 Time-invariant case

As for the Gramian based approximation, we can analyze the quality of this approach
in the time-invariant case. Since all matrices A, B and C are then constant, all
Hankel maps are time-invariant as well and only the interval width plays a role in
the obtained decomposition. We can e.g. run the RLRH algorithm on an interval
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[ki, kf ] = [−τ, τ ] for τ ∈ N and approximate the Gramians Gc(0) and Go(0) of the
original model by S0S

T
0 and R0R

T
0 , respectively, at the origin of the symmetric

interval [−τ, τ ]. The differences between the approximate low-rank Gramians and
the exact Gramians

Ec(0) := Gc(0) − P0, Eo(0) := Go(0) −Q0

then remain bounded for intervals of growing length 2τ , as indicated in the following
theorem ([3, 4, 5]).

Theorem 7. Let P and Q be respectively the solutions of P = APAT + I, and
Q = AT QA + I, then

‖Ec(0)‖2 ≤ η2
c‖P‖2 ≤ η2

c

κ(A)2

1 − ρ(A)2
, ‖Eo(0)‖2 ≤ η2

o‖Q‖2 ≤ η2
o

κ(A)2

1 − ρ(A)2

where ηc := max
−τ≤k≤0

‖Ec(k)‖2 and ηo := max
0≤k≤τ

‖Eo(k)‖2.

Similarly, we obtain an approximation of the Hankel map as follows (see [3, 4, 5]).

Theorem 8. Using the first n columns U
(0)
+ of U (0) and V

(0)
+ of V (0), we obtain a

rank n approximation of the Hankel map :

H(τ, 0,−τ) − U
(0)
+ RT

0 · S0V
(0)T
+ = Eh(0),

for which we have the error bound :

‖Eh(0)‖2 ≤
κ(A)

√

1 − ρ(A)2
max{ηc‖R

T
0 A‖2, ηo‖AS0‖2} +

κ(A)2

1 − ρ(A)2
ηoηc.

An important advantage of the RLRH method is that the computed projec-
tors are independent of the coordinate system used to describe the original system
{A, B, C}. This can be seen as follows. When performing a state-space transforma-
tion T we obtain a new system {Â, B̂, Ĉ} := {T−1AT, T−1B, CT}. It is easy to see
that under such transformations the updating equations of Rr and Sl transform to
R̂k = T T Rk and Ŝl = T−1Sl, and this is preserved by the iteration. One shows that
the constructed projector therefore follows the same state-space transformation as
the system model. Therefore, the constructed reduced order model does not depend
on whether or not one starts with a balanced realization for the original system. For
the RLRG method, on the other hand, one can lose a lot of accuracy when using a
poorly balanced realization to construct a reduced order model.

6 Numerical examples

In this section we apply our algorithm to discretizations of three different dynamical
systems : a Building model, a CD Player model, and the International Space Station
model. These benchmarks are described in more details in [1]. It was shown in
[3, 5], that for the same problem, the RLRG method gives less accurate results : as
predicted by the discussion of the previous section, the RLRG method deteriorates
especially when the original system is poorly balanced. Since the RLRH method is
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to be preferred over the RLRG method, we only compare here the RLRH method
with Balanced Truncation. The approximate system SBT for balanced truncation
and SRLRH for the recursive low rank Hankel method, are both calculated for a same
degree. We show the maximal singular value of the frequency responses of the system
and the maximal singular value of the two error functions. The corresponding H∞

norms are also given in the table following each example. Each table also contains
the condition number cond(T ) of the balancing state-space transformation T , the
spectral radius ρ(A) and the condition number cond(A) since they play a role in the
error bounds obtained in this paper.

CD-player model N = 120, m = p = 2, n = 24
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10
6
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σmax-plot of the frequency responses.
full model, BT error system, RLRH error system.

cond(T ) ρ(A) cond(A) ‖S‖H∞
‖S − SBT ‖H∞

‖S − SRLRH‖H∞

40.7341 1 1.00705 2.3198.106 0.2040 6.1890

Building model N = 48, m = p = 1, n = 10
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σmax-plot of the frequency responses.
full model, BT error system, RLRH error system.

cond(T ) ρ(A) cond(A) ‖S‖H∞
‖S − SBT ‖H∞

‖S − SRLRH‖H∞

347.078 0.9988 5.8264 0.0053 6.0251.10−4 6.7317.10−4
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ISS model N = 270, m = p = 3, n = 32
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σmax-plot of the frequency responses.
full model, BT error system, RLRH error system.

cond(T ) ρ(A) cond(A) ‖S‖H∞
‖S − SBT ‖H∞

‖S − SRLRH‖H∞

740178 0.9998 5.82405 0.1159 2.3630.10−4 0.0011

It can be seen from these examples that the RLRH method performs reasonably
well in comparison to the balanced truncation method, and this independently from
whether or not the original system was poorly balanced. Even though these models
are quite large they are good benchmarks in the sense that their transfer functions
are not easy to approximate. Larger experiments are reported in [5].

7 Conclusion

In this paper we show how to construct low-dimensional projected systems of time-
varying systems. The algorithms proposed are based on low-rank approximations of
the Gramians and of the Hankel map which defines the input-output mapping. Both
methods have the advantage of exploiting sparsity in the data to yield a complexity
that is linear in the state dimension of the original model.

The key idea is to compute only a finite window of the Gramians or Hankel
map of the time-varying system and to compute recursively projection matrices
that capture the dominant behavior of the Gramians or Hankel map. The Recursive
Low-Rank Hankel approximation method is to be preferred over theRecursive Low-
Rank Gramian approximation method because it is not sensitive to the coordinate
system in which the original system is described.

The two algorithms are mainly meant for time-varying systems but their perfor-
mance is illustrated using time-invariant and periodic systems because the quality of
the methods can then be assessed by the frequency reponses of the error functions.
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