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Summary. We present a benchmark collection containing some useful real world
examples, which can be used to test and compare numerical methods for model
reduction. All systems can be downloaded from the web and we describe here the
relevant characteristics of the benchmark examples.

1 Introduction

In this paper we describe a number of benchmark examples for model reduction of
linear time-invariant systems of the type

{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1)

with an associated transfer function matrix

G(s) = C(sIN −A)−1B +D. (2)

The matrices of these models are all real and have the following dimensions : A ∈
R

N×N , B ∈ R
N×m, C ∈ R

p×N , and D ∈ R
p×m. The systems are all stable and

minimal and the number of state variables N is thus the order of the system. In
model reduction one tries to find a reduced order model,

{

˙̂x(t) = Âx̂(t) + B̂û(t)

ŷ(t) = Ĉx̂(t) + D̂û(t)
(3)

of order n � N , such that the transfer function matrix Ĝ(s) = Ĉ(sIn − Â)−1B̂ +
D̂ approximates G(s) in a particular sense, and model reduction methods differ
typically in the error measure that is being minimized. In assessing the quality
of the reduced order model, one often looks at the following characteristics of the
system to be approximated

• the eigenvalues of A (or at least the closest ones to the jω axis), which are also
the poles of G(s)
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• the controllability Gramian Gc and observability Gramian Go of the system,
which are the solutions of the Lyapunov equations

AGc + GcA
T +BBT = 0, ATGo + GoA+ CTC = 0

• the singular values of the Hankel map – called the Hankel Singular Values (HSV)
– which are also the square-roots of the eigenvalues of GcGo

• the largest singular value of the transfer function as function of frequency –
called the Frequency Response –

σ(ω) = ‖G(jω)‖2.

These characteristics can be compared with those of the reduced order model Ĝ(s).
Whenever they are available, we give all of the above properties for the benchmark
examples we discuss in this paper. The data files for the examples can be recovered
from http://www.win.tue.nl/niconet/niconet.html. For each example we provide the
matrix model {A,B,C,D}, and (when available) the poles, the Gramians, the Han-
kel singular values, a frequency vector and the corresponding frequency response.
For more examples and additional details of the examples of this paper, we refer
to [2]. Some basic parameters of the benchmarks discussed in the paper are given
below.

Section Example Sparsity N m p

2 Earth Atmosphere no 598 1 1

3 Orr-Sommerfeld no 100 1 1

4 Compact Disc player yes 120 2 2

5 Random yes 200 1 1

6 Building yes 48 1 1

6 yes 52788 1 1

6 Clamped Beam yes 348 1 1

7 International Space Station yes 270 3 3

7 yes 1412 3 3

2 Earth Atmospheric example

This is a model of an atmospheric storm track [6]. In order to simulate the lack of
coherence of the cyclone waves around the Earth’s atmosphere, linear damping at the
storm track’s entry and exit region is introduced. The perturbation variable is the
perturbation geopotential height. The perturbation equations for single harmonic
perturbations in the meridional (y) direction of the form φ(x, z, t)eily are :

∂φ

∂t
= ∇−2

[

− z∇2Dφ− r(x)∇2φ
]

,

where ∇2 is the Laplacian ∂2

∂x2 + ∂2

∂z2 − l2 and D = ∂
∂x

. The linear damping rate
r(x) is taken to be r(x) = h(2− tanh[(x− π

4
)/δ] + tanh[(x− 7π

2
)/δ]). The boundary

conditions are expressing the conservation of potential temperature (entropy) along
the solid surfaces at the ground and tropopause:
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∂2φ

∂t∂z
= −zD

∂φ

∂z
+Dφ− r(x)

∂φ

∂z
at z = 0,

∂2φ

∂t∂z
= −zD

∂φ

∂z
+Dφ− r(x)

∂φ

∂z
at z = 1.

The dynamical system is written in generalized velocity variables ψ = (−∇2)
1

2 φ so
that the dynamical system is governed by the dynamical operator:

A = (−∇2)
1

2∇−2

(

− zD∇2 + r(x)∇2

)

(−∇2)
−1

2 .

where the boundary equations have rendered the operators invertible. We refer to
[6] for more details.
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Fig. 2. Eigenvalues of A
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3 Orr-Sommerfeld equation

The Orr-Sommerfeld operator for the Couette flow in perturbation velocity variables
is given by :

A = (−D2)
1

2D−2

(

− ijkD2 +
1

Re
D4

)

(−D2)−
1

2

where D := d
dy

and appropriate boundary conditions have been introduced so that
the inverse operator is defined. Here, Re is the Reynolds number and k is the wave-
number of the perturbation. This operator governs the evolution of 2-dimensional
perturbations. The considered matrix is a 100 × 100 discretization for a Reynolds
number Re = 800 and for k = 1. We refer to [5] for more details.
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4 Compact Disc player example

The CD player control task is to achieve track following, which amounts to pointing
the laser spot to the track of pits on a CD that is rotating. The mechanism that
is modelled consists of a swing arm on which a lens is mounted by means of two
horizontal leaf springs. The rotation of the arm in the horizontal plane enables
reading of the spiral-shaped disc-tracks, and the suspended lens is used to focus the
spot on the disc. Since the disc is not perfectly flat and since there are irregularities
in the spiral of pits on the disc, the challenge is to find a low-cost controller that
can make the servo-system faster and less sensitive to external shocks. We refer to
[4, 8] for more details.
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Fig. 7. Sparsity of A

−900 −800 −700 −600 −500 −400 −300 −200 −100 0
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

4

Real part

Im
ag

in
ar

y 
pa

rt

Fig. 8. Eigenvalues of A
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Fig. 10. Frequency response
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Fig. 11. Frequency responses of the 2-input 2-output system
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5 Random example

This is a randomly generated example with an A matrix that is sparse and stable,
and has a prescribed percentage of nonzero elements. This is a simple example to
approximate but it is useful to compare convergence rates of iterative algorithms. It
is extracted from the Engineering thesis of V. Declippel [3].
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Fig. 13. Eigenvalues of A
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6 Building model

Mechanical systems are typically modelled as second order differential equations
{

Mq̈(t) +Dq̇(t) + Sq(t) = Bqu(t),
y(t) = Cqq(t)

where u(t) is the input or forcing function, q(t) is the position vector, and where
the output vector y(t) is typically a function of the position vector. Here M is the
(positive definite) mass matrix,D is the damping matrix and S is the stiffness matrix
of the mechanical system. Since M is invertible, one can use the extended state

x(t)T =
[

q(t)T q̇(t)T
]

to derive a linearized state space realization

A :=

[

0 I
−M−1S −M−1D

]

, B :=

[

0
M−1Bq

]

, C :=
[

Cq 0
]

or a weighted extended state

x(t)T =
[

q(t)TM−
1

2 q̇(t)TM−
1

2

]

yielding a more “symmetric” model

A :=

[

0 I

−Ŝ −D̂

]

, B :=

[

0

B̂q

]

, C :=
[

Ĉq 0
]

and where D̂ = M−
1

2DM−
1

2 , Ŝ = M−
1

2 SM−
1

2 , B̂ = M−
1

2B and Ĉ = CM−
1

2 .

6.1 Simple building model

This is a small model of state dimension N = 48. It is borrowed from [1].
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Fig. 18. Eigenvalues of A

6.2 Earth quake model

This is a model of a building for which the effect of earthquakes is to be analyzed
(it is provided by Professor Mete Sozen of Purdue University). The mass matrix M
is diagonal and of dimension N = 26394. The stiffness matrix S is symmetric and
has the sparsity pattern given below.
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The damping matrix is chosen to be D = αM+βS, with α = 0.675 and β = 0.00315.
The matrix Bq is a column vector of all ones and Cq = BT

q . No exact information is
available on the frequency response and on the Gramians of this large scale system.

6.3 Clamped beam model

The clamped beam model has 348 states, it is obtained by spatial discretization of
an appropriate partial differential equation. The input represents the force applied
to the structure at the free end, and the output is the resulting displacement. The
data were obtained from [1].
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Fig. 21. Eigenvalues of A
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7 International Space Station

This is a structural model of the International Space Station being assembled in
various stages. The aim is to model vibrations caused by a docking of an incoming
spaceship. The required control action is to dampen the effect of these vibrations
as much as possible. The system is lightly damped and control actions will be con-
strained. Two models are given, which relate to different stages of completion of the
Space Station [7]. The sparsity pattern of A shows that it is in fact derived from a
mechanical system model.

7.1 Russian service module

This consists of a first assembly stage (the so-called Russian service module 1R [7])
of the International Space Station. The state dimension is N = 270.
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Fig. 24. Eigenvalues of A
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Fig. 27. Frequency response of the ISS1R model (ith input/jth output).

7.2 Extended service module

This consists of a second assembly stage (the so-called 12A model [7]) of the Inter-
national Space Station. The state dimension is N = 1412.
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Fig. 32. Frequency response of the ISS12A model (ith input/jth output).
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