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ABSTRACT 

We consider matrices with off-diagonal blocks of small norm and derive tight 
bounds for the approximation of their singular values by those of their diagonal blocks. 
These results are used to show that triangular matrices with clusters of singular values 
must possess a principal submatrix of “nearly” diagonal form. From the latter we then 
derive results pertaining to the quadratic convergence of Kogbetliantz’s algorithm for 
computing the SVD, in the presence of clusters. 

1. INTRODUCTION 

Kogbetliantz’s algorithm for the singular-value decomposition (SVD) of an 
arbitrary matrix [S, 61 can be viewed as a natural extension of Jacobi’s 
method for the eigenvalue decomposition of a symmetric, Hermitian, or 
normal matrix [3, 111. While the latter has extensively been studied for its 
convergence properties [3, 12, 14, 15, 161, convergence results are much 
scarcer for Kogbetliantz’s algorithm [3, 91. 

As shown in this paper, this is partly due to the fact that not all properties 
can be extended from the eigenvalue decomposition of a Hermitian matrix 
(or a normal matrix) to the singular-value decomposition of a general matrix. 
In Section 2 we show that there are more natural similarities between these 
two decompositions if one restricts oneself to the SVD of triangulur matrices. 
Indeed, the norm of the off-diagonal part (or the “off-norm”) of a Hermitian 
matrix H and of an arbitrary triangular matrix A are bounded-up to an 
appropriate constant-by the “span” of the eigenvalues [h,,(H) - X,,(H)] 
and of the singular values [u,,(A) - u,~( A)], respectively. This plays a 
crucial role in convergence properties of Kogbetliantz’s algorithm in the 
presence of clusters. 
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In Section 3 we derive bounds for the approximation of singular values of 
“nearly” block diagonal matrices by those of the diagonal blocks. These 
results naturally extend earlier results [2, 131 about the eigenvalues of 
Hermitian matrices (along the way we derive slightly sharper bounds for the 
latter case as well). In contrast with Section 2, here the obtained extensions 
also hold without restricting oneself to the SVD of triangular matrices. The 
results show that if the norm of the off-diagonal blocks A,, and A,, of a 
square matrix A is s-small and the singular values of A,, and A,, are 
separate at least by 6 (6 > 2~), then the singular values of the diagonal 
submatrices are s2/S-close to those of A. Here by “q-small” we mean 
“having norm bounded by n,” while “q-close” means “having a distance 
bounded by 9”. 

In Section 4 we combine the results of the two previous sections to derive 
bounds for the off-norm of any k X k principal submatrix approximating a 
cluster of k singular values of a ttiangular matrix A. These results are similar 
to the bounds obtained for Hermitian matrices in [17], but again hold for 
triangular matrices only. In Section 5, they are shown to be crucial for 
proving the quadratic convergence of Kogbetliantz’s algorithm in the pres- 
ence of repeated singular values. That the obtained theoretical bounds also 
reflect the true behavior of the method is then finally illustrated by a number 
of examples. 

2. OFF-NORMS IN TERMS OF EIGENVALUES OR 
SINGULAR VALUES 

The eigenvalue decomposition of a Hermitian matrix 

H=UAU*, 0) 

and the singular-value decomposition of an arbitrary matrix, 

A = UZV*, (59 

are closely related, since the Hermitian matrix H L AA* has a decomposition 
(1) related with (2) via A g X2. This relation leads to a number of similar 
developments for these two decompositions, such as Jacobi’s algorithm and 
Kogbetliantz’s algorithm, or perturbation results of eigenvalues of H and 
singular values of A [ 131. In this section we present a result for which this 
similarity holds for trimgulur mutrices only. It relates the “off-norm” of a 
matrix with the “span” of its eigenvalues or singular values. 
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LEMMA 1. Let H be a Hermitian matrix and have extremal eigenvalues 
A,, and A,,. Then putting H = D + HOrr, where D is diagonal and H,, 
contains the rest of the matrix H, we have 

(3) 

IIHo& G ht,, - Lid (4) 

Proof. The shifted matrix 

fj=H- A~~ + ‘min 
1 

2 

has %norm equal to (A mu - X ,h)/2, and likewise 

fj,=D- hmax + ‘min 
I 

2 

(5) 

(6) 

has 2-norm less than (A,, - &J/2, being the diagonal of 8. Since ;TIOrr is 
also the off-diagonal part of H, (3) follows. Moreover, because H,, = H - 6, 
(4) follows from 

COROLLARY 1. The above lemma also holds for a normal matrix N on 
replacing (A max + A mh l/2 by A centerT the center of the smallest circle enclos- 
ing all the eigenvalues of N, and (A,, - X,i,)/2 by Aradius, the radius of 
that circle. 

Proof. Trivial. Since N - A centerZ is also normal, it has e-norm equal to 
X radius and then the above reasoning can be followed. n 

REMARK 1. Lemma 1 provides rather tight bounds, as shown by the 
following example. Consider the matrix 
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where n is even. Since its eigenvalues are + 1, we have 

x max-Xmin=2 

and 

6 
IIHoft/lF=~=~(hmar-h,i,) 

which equals the upper bound (3). For the 2norm we have 

which is only a factor 2 away from the upper bound (4). 

A similar result for the singular values of an arbitrary triangular matrix is 
now derived: 

LEMMA 2. Let A be a square upper triangular (complex) matrix with 
extremal singular values amin and a,,,,. Then, putting A = D + Aoff = D + 
A up, we have 

IIAoffl12~ lIA~**IIF~~(u~~-ub,i,). (8) 

Proof. Denote u+ = (a,, + a,,,,,)/2 and u- = (a,,,= - ~,,,~,)/2. Using 
the singular-value decomposition of A, we define 

A=U~V* and A==-u+w*=A-0.Q. (9) 

It then easily follows [4] that A has e-norm equal to LX. The upper part Qup 
of Q satisfies 

n-1 

IIQ~~II~= C ll(Q~p)ill~~ (10) 
i=l 

where ( QurJi is that part of the ith row of Q”, to the right of the diagonal. 
me row (Qup>i is also the bottom row of a submatrix Qia of Q in the 
partition 

(11) 
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where Qll is i X i. From IIQ1~Q$ll~ = IV - Q11Qi+il12 = III - Qi’iQd12 = 
llQ~Qzlllz, it fdows that 

and, since u + Qar = - A,, (A being upper triangular), 

(13) 

Using this in (lo), we have 

By a similar argument to (lo), we have for &, 

Finally, from Aoff = A,, = &, + u+Qup and (W), the result (8) follows by 
the triangle inequality. n 

REMARK 2. The above lemma of course does not hold for full matrices, 
since one can always construct a matrix A with jJA,,JJ = ])A/) as well for the 
2norm as for the Frobenius norm. Bounds that always hold for full matrices 
are IlA& G l141F and IIA,rrllz < 2(IAll, (the latter follows from Aoff = A - 
D and lPl12 G 114). 

These bounds for the off-norms of arbitrary and triangular matrices are 
now checked for their tightness on a small example whose singular values are 
very close to 1, i.e. a matrix A close to a unitary one. 

EXAMPLE 1. We generated randomly a 15 X 15 matrix A very close to a 
unitary one, such that umax - a,, = 1.25 X lo- 14. Then a QR decomposition 
of A was made and the triangular factor R, which of course has the same 
singular values as A, was considered. Below, we give the off-norms of these 
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two matrices and their bounds: 

Actual off-norms Bounds 

IlAodl~ = 1.215 

llAo~Al~ = 3.765 
IIRoffl12 = 1.09x lo-l4 
(IR,JF = 1.99x lo-l4 a,= - u,~) = 4.68~ lo-r4 

This example illustrates also what improvements can be obtained by 
considering triangular factors of matrices when computing its singular values 
using an iterative algorithm as e.g. that of Kogbetliantz (see Example 3 later 
on). 

3. PERTURBATION THEOREMS FOR EIGENVALUES AND 
SINGULAR VALUES 

Here we obtain perturbation bounds for the eigenvalues and singular 
values of “nearly” block diagonal (and hence square) matrices. These bounds 
look very much like those obtained by Stewart in [13] but are slightly sharper. 
They are derived using a slightly different approach, for which we need the 
following lemma. 

LEMMA 3. Let A, B, and C be square matrices of the same order, and 

AX-XB=C. (16) 

Assume that A and B are Hermitian, and u,,,~( X) > 0. If the eigenvalues of 
A and B are ordered in a similar manner, then 

Ih,(A)-hi(B) 
Ill,” 

Zf, moreouer, X is Hermitian, then one has the stronger result 

07) 

08) 
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Proof. This is inspired by a result given by Parlett [lo, pp. 230-2311, 
and we follow here a related argument. Use the singular value decomposition a 
of X: X = UZV*, and define A= U*AU, B = V*BV, e = U*CV. Equation 
(16) is then rewritten as 

~r,-28=C=(A-~)Z+(~Z-Z~), 09) 

where the last term is skew-Hermitian. Therefore, for any eigenvector u of 
d - 8, we have 

,*(A-- 8)Zu = Re(u*&). (20) 

Choosing u Jnormalized) to correspond to the dominant eigenvalue of A - B 
(i.e. IX] = ]]A- Bl12), we obtain 

and, since u*Zu > u,~(X), 

Then (17) follows from (see [4, p. 2691): 

(22) 

(23) 

WhenXisHermitian,onehasU=V,andhenceIIA-BII,=II~-~II,,from 
which (18) follows. n 

We now turn to the perturbation result on eigenvalues of nearly block 
diagonal matrices, where we make use of the parameter K as defined by 
Stewart [13] and satisfying 0 < K < 1. 

THEOREM 1. Let H be a Hermitian matrix partitioned as 

H= (24) 

Define E = ]I HlzllF and S = minbig( H,,) - eig( H,)(, and a.ssume 2.5 <. 6. 
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Then there is a unitary matrix X of the form 

x= I -p* (z+P*P)p2 

t !( 

0 

P z 0 (I + PP*) -1’2 i 
(25) 

with ljPljF < (1+ K)E/S < 2&/a, and such that 

(26) 

Moreover, if the eigenvalues of H,, and H[, are ordered in a similar manner, 
they satisfy 

Ihi(H,,) -‘((Hi,) I& llHll-H;lllz < 
(l+ K)E2 2E2 

6 < 6’ (27) 

Proof. The definition of 6 and E allows us to apply Theorem 4.1 of 
Stewart’s paper ([13]; see also Theorem 4.7 therein), from which 

follows. On the other hand, HX = XH’ contains the equation 

H,,N - NH;, = - H,,PN, 

where NA (I + P*P)-l12 is Hermitian. Lemma 3 then gives 

(29) 

IXi(H,1) -‘i(H;,)IgIIHu-H;,II2f 11~~~~2 bilH12ll2/l~~~. (30) 
mm mm 

Using the SVD of P, P = UZV*, one easily derives N = V(I + 22)-1/2V* 
and PN= UZ(Z + Z2)-1/2V*. This also yields 

u,,,(N)= [1+0,2,(P)] -1’2 and ~lPNl~2=um,(P)~1+a,2,(p)] p1’2. 

(31) 
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This and (]H,,((, < ]]H,,J(F = E in (30) lead to 

~hi~H~~~~Xi~H~~~I~l\H~~~H~~\l~fE~~~~P~~ 

and the bound (27) follows from this and (28). 

(32) 

n 

REMAN 3. The bound (27) is often only a slight improvement on the 
one obtained by Stewart: 

IAi(H,,)-Xi(H;,)Jg(l+K) ;+3I1H,,II2$9 (33) 

but the independence of the matrix H,, turns out to be crucial for our results 
in the later sections (especially when )[H,,(],E~/~~ B- 1). 

This theorem is now extended to one about the perturbation of the 
singular values of a nearly block diagonal matrix. Here K is again a parameter 
defined in [13] and satisfies 0 < K: < 1. 

THEOREM 2. Let A be a fill square (complex) matrix partitioned as 

(34) 

Define E= lW2, AMIF and S = min(sing( A,,) - sing( A,)], and assume 
2.5 -C S. Then there are unitary matrices X and Y of the fnm 

x= (35) 

0 
Y= 

(I + QQ*) -1’2 
w 

with \((P, Q)IIF < (1+ K)E/~ < 2&/a, and such that 

. (37) 
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Moreover, if the singular values of A,, and A;, are ordered in a similar 
manner, they satisfy 

Proof. The proof is an extension of that of Theorem 1. Let II be the 
permutation such that 

= H. (39) 

\ A& 0 A*, 

Define a unitary matrix 2 by 

with 

as well as 

R& 
i 

-Q 0 
0 P 

, (41) 

Ol 

H’&Z*HZ= (42) 

Since the eigenvalues of H,, and H, are plus and minus the singular values 
of A,, and A, respectively, S is also given by 

6 = min(eig( H,,) - eig( H,) I. (43) 
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As ]]H,a](r = (](A,,, A&)]]r = E, the application of Theorem 6.3 of [13] gives 
here 

(44) 

From HZ = ZH', the equation 

H,,N-NH;,= -H,,RN, (45) 

follows, where N h (I + R*R)- “’ The matrices Hi, and Hi, are Hermi- . 
tian, and (45) is analogous in form to (29). Reasoning here on H and R as on 
H and P in the proof of theorem 1, we have 

where llHlzllz G lWlzllF = h b E as een taken into account. Finally, the bound 
(38) follows from (44) (46) and (see [4, p. 2861) 

lai(AII) -ai(A\I) I4 llAII- A\Il12=IIH11- HiII12. n (47) 

EXAMPLE 2. In order to illustrate the bounds of theorems 1 and 2, we 
consider the following two matrices: 

H=(a lt,) and A=( -e’ L\), 

which have off-norms and separations in their spectrum equal to 

lIH,,lI, = E, IIAlg, A*,,ll, A &‘=\I?;& 

IA --X(H,)I=6, b(A,,) -hh)I=~, 

where we assume 0 < 2~ < 6 -=c 1. One then easily checks that 

Ih(H,,) -b(H)I=b,(A,,) -44)/=2E2 6 [1+&i&* 
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Notice that for ~/i? + 0 (i.e. for K -+ 0 in [13]) one has 

which tends to the upper bound (27), while for the matrix A one has 

which is still a factor 2 away from the upper bound (38). 
Notice also that in the above theorem we have assumed that the blocks 

A iI and A, are square. Extensions to nonsquare diagonal blocks could be 
considered, but are not relevant to our later results. 

4. TRIANGULAR MATRICES WITH CLUSTERS OF 
SINGULAR VALUES 

In this section we combine the results of the two previous sections to 
investigate the off-norm of a triungulur principal submatrix, approximating a 
cluster of singular values. The following theorem is analogous to WiIkinson’s 
result on Hermitian matrices in [ 171. 

THEOREM 3. Let A be a square upper triangular (complex) matrix with 
off-norm llAoffllF = E. Consider any subset S of k singular values of A. Let 9 
be the width of S: 

max ]ui - ai] = 7, (48) 
0, , aj E s 

and 26 its distance jiom the other singular values: 

*~lhs~ui-ujl=2s. (49) 
1 ‘, 

Then, if 6 > 2~, the off-norm of the principal s&matrix whose diagonal 
elements in modulus are m9ose to the elements of S, say A,, is bounded as 

2 

II(4LII2,, -q&T ;+q. 

i i 
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Proof. Notice that the singular values of A are s-close to the moduli of 
the diagonal elements of A, i.e. 

(51) 

[4, p. 2861 for an adequate ordering of the indices j and i. Since 6 > 2e, the 
determination of As is thus unambiguous. It is easily seen that there exists a 
symmetric permutation of rows and columns of A such that the permuted 
matrix can be partitioned as indicated in (34) with A,, = As: 

As A,2 
i i A,, A22 ’ (52) 

and such that the diagonal elements are preserved. Since I]( A,,, A*,,)]], Q E, 
the singular values of As and A, are s-close to those of A [4, p. 2861, and 
thus 

min]sing( A,) - sing( A,) ) >, 26 - 2~ > 8. (53) 

Then, applying Theorem 2, we have that the distance between each singular 
value of A, and the corresponding singular value of A is bounded by 2.s2/S. 
By this and (48), it thus follows that 

urnax - urnin < $ + V* 64 

Then (50) is deduced from Lemma 2 and the triangularity of As. m 

REMARK 4. Although no constraints are imposed on n, this theorem is 
especially useful in practice if n < s2/S, the bound (56) being then dominated 
by the term in .s2/8. In particular, when S represents a repeated singular 
value of A, we have n = 0. 

5. KOGBETLIANTZ’S SVD ALGORITHM 

Kogbetliantz’s method [5,6] for computing the SVD of an arbitrary m x n 
matrix A (m z n), consists of generating a sequence of matrices A(‘) as 
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follows 

u(O) := 1,) v(O) := z 7x3 A(O) := A, 
W) 

u(l) := qu(I-1) 7 VU’ := vpu A(‘) := U,A(‘- “V * 1 

such that ]]Atif]]F d ecreases and eventually becomes negligible (of the order 
of the relative precision of the machine one is working with) [3]. The unitary 
updating transformations U, and V, are chosen to be complex elementary 
rotations through angles +[ and #I which annihilate the elements of A(‘-“’ 
in symmetric positions (ir, j,) and (j,, il). For a general matrix, it can be 
shown [ 11 (see also references therein) that the computational burden is 
reduced, on a sequential machine as well as on a parallel one, if a preliminary 
QR decomposition is performed: 

In [l], implementation aspects were investigated, e.g. the possibility of using 
approximate rotations in the case of triangular matrices, in order to speed up 
the computation of their singular values. Here, an additional and theoretical 
advantage of triangular matrices is stressed: the following theorem shows that 
Kogbetliantz’s algorithm converges quadratically in the presence of repeated 
or very close singular values provided they correspond to adjacent positions 
on the diagonal. That this is not true for full matrices or when the cluster of 
singular values is separate is illustrated by Examples 3 and 4. So far, 
quadratic convergence has been proved only for a full arbitrary matrix with 
singular values that are sufficiently distant from each other [9]. 

The theorem given here holds when the off-diagonal elements are annihi- 
lated successively by rows (or by columns), in the same manner as in the 
special cyclic Jacobi method for symmetric or Hermitian matrices [15]. It is 
to be noted that an equivalent ordering is well suited to parallel implementa- 
tions [7,8], where appropriate permutations at each step allow one to perform 
transformations on neighboring rows and columns only. Convergence of other 
orderings (as corresponding to the classical Jacobi method) or of variants of 
the method (as a “threshold” strategy suggested by Wilkinson [17]) is briefly 
commented on thereafter. 

THEOREM 4. Let A be a square triangular (complex) matrix with a 
cluster C of k singulur values, of width 17. Assume that the singular values of 
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A are at least 26 distant from each other, except for those within the clzlster: 

(r, oIj-lc(“i - q = 26. (57) 
1 , 

lf the diagonal elements which converge to the singular values of C occupy 
successive positions on the diagonal, then the convergence of Kogbetliantz ‘s 
SVD algorithm applied to A is ultimately quadratic. More precisely: if 
lIA(J~llF < 6/2 and q= cllA~&~/S, then after one supplementay sweep of 
N = n( n - 1)/2 rotations, one has 

,,A(?;~‘,,F<c’!+, c’& (k - 1)2(4+ c)~+B. (58) 

Proof. The proof is based on Theorem 3 and the analysis of Paige and 
Van Dooren [9] for the case when all the singular values are 2S distant from 
each other. The argument is directly inspired by that of van Kempen [WI, 
who proved the quadratic convergence of the special Jacobi method for a real 
symmetric matrix with a multiple eigenvalue. 

We first remark that if the diagonal elements corresponding to C are 
adjacent on the diagonal and if the condition 1) A($llF < 6/2 is verified, then 
they remain adjacent through any subsequent rotation; also, the ordering of 
the other diagonal elements is maintained [3, Lemma 61. Now we assume, for 
convenience and without loss of generality, that after I rotations (1 > r), the 
matrix AC’) can be partitioned as 

where A’$ is the k X k matrix whose diagonal elements converge to the 
singular values of the cluster. The matrix A(‘) is triangular at the completion 
of a sweep; at any other step I, it is triangular up to a symmetric permutation 
[B]. Therefore, Theorem 3 is applicable for any 1 ( > r ), which leads to 

On the other hand, if the rotation 2 annihilates a$:-‘) outside A,, it can be 
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shown [9, Lemma l] that the rotation angles @I and I/J~ satisfy 

Since ]aii-1)]2 = ]]A’,‘rT”]ji - ]]Atk]]& it thus follows that 

C’(sin2+,+sin2#~) <-$IIA$AII:T (62) 

where 2’ denotes that only the rotations which annihilate elements outside 
A, are included. Furthermore, after the annihilation of the first row (starting 
from the rotation r + 1 and assuming A ‘2:’ = 0 for convenience), one finds, in 
the same way as in [9], 

For the entire first row, one obtains then 

< II( A%+“-‘) )~~~~~~+2//A~~//2,‘+~-‘(sin20,fsin2~,), (64) 
I=r+k 

since the sum of the squares of the elements in a row is unaltered by the 
subsequent rotations of the same sweep. Similar inequalities hold for the 
other rows of A, and from 

II&‘;“+ c (a$j+N)/2+ 1 )a$‘“‘12, 
i,jgk;i#j i,j>k;i+j 

one has then 
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by summing the inequalities (64) and taking (60) and (62) into account. 
Finally, we derive (58) using 7 = c]]A~&]~/S. n 

REMAFS 5. The bound (58) is analogous to van Kempen’s result [15] for 
Jacobi’s algorithm applied to symmetric matrices, except for the coefficient 
c’. The following is to be noted about this discrepancy: 

(1) The factor k2 under the square root can be reduced to k by using an 
appropriately adapted version of Lemma 2 in order to derive a (better) bound 
for just one row of (A,),f, at a time. This allows one to write an analogue of 
(60) for a row, which is then directly used in the summation (65). 

(2) van Kempen does not consider clusters, but only multiple eigenvalues 
(?J = c = 0). 

(3) The bound of van Kempen does not contain k at all. It appears that 
this is because he simply dismisses (perhaps inaccurately) the contribution of 
bwoff in his proof. 

(4) van Kempen only retains half of the off-diagonal elements of the 
symmetric matrix in his definition of the off-norm, which then leads to a 
smaller coefficient c’. 

Moreover, when more than one cluster is present the coefficient c’ ought to 
be adapted to (see also van Kempen [15]) 

where we have assumed that there are L clusters with respective size k i and 
span vi = c~]]A,,~~]]~/S. These differences in the value of c’ do not affect the 
basic result of the theorem, namely that the convergence is quadratic from 
one sweep to another. In practice the coefficient c’ of (58) or (66) appears to 
be seriously overestimated (see Example 4). 

The following two examples were run on a VAX 780 with relative 
precision 1.4 x lo- i’ in double precision. 

EXAMPLE 3. Here we take anew the 15 X 15 matrix of Example 1, with 
singular values clustered around 1 (17 = 1.25X 10-14). In Table 1 we give the 
off-norms obtained at successive steps of the full Kogbetliantz algorithm 
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TABLE 1 

Step A R 

0 3.7653~ + 00 1.%@2D - 14 
1 1.1735D + 00 9.%6D - 15 
2 2.2655~ - 01 4.13220 - 15 
3 1.4825~ - 02 6.8737~ - 16 
4 4.9288D - 04 
5 9.286% - 05 
6 4.1227~ - 06 
7 2.7340~ - 07 
8 8.1454~ - 08 
9 3.3878~ - 08 

10 6.0522~ - 09 
11 !%1%‘iD - 10 

12 7.4801D - 12 
13 4.14700 - 16 

applied to A on the one hand, and of the triangular Kogbetliantz algorithm 
applied to the triangular factor R on the other hand. The iterations were 
continued until the off-norm was below 6.9 X lo- l8 (50 times the relative 
precision). The numbers in the first line (step 0) are equal to l]Aorr]] F and 
Il%fllF~ respectively. 

The observed convergence can be explained via two different interpreta- 
tions: 

(1) All singular values belong to one cluster of span n. As shown in 
Example 1, the triangular matrix R has a much smaller off-norm to start with 
(because of Lemma 2). For this interpretation, Theorem 4 cannot be applied, 
since 6 is undefined. 

(2) All singular values do not belong to one cluster. In this case 6 is 
defined but very small ( < 77). For R one can rely on Theorem 4 as soon as 
]]Rorr]lF is smaller than S/2 = 10Pi5, which occurs only at the end of the 
convergence. For A the same limit has to be considered before applying the 
corresponding result [9] for arbitrary matrices with distinct singular values. 
This is the reason why quadratic convergence is not observed in any of the 
two cases. 

In the proof of Theorem 4 we have used (through [9, 15, IS]) the fact that 
the diagonal elements approximating singular values of a same cluster occupy 
adjacent positions. The following example shows that this condition is also a 
necessary one. 
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EXAMPLE 4. The following 6 X 6 symmetric matrix was generated (using 
MATLAJ3): 

A = 

COLMS 1 IHEU 
0.999999999999992 

-0.000000000469621 
-0.000000000000014 
-0.000000000013428 

0.000000000000006 
-0.000000000014107 

3 
-0.000000000469621 

0.600000000000004 
0.000000000306463 
0.000000000000019 

-0.000000000017039 
-0.000000000000002 

-0.000000000000014 
0.000000000306463 
0.999999999999991 

-0.000000000000283 
0.000000000000027 

-0.000000000000016 

cIlLuMlo3 4TEEu 6 
-0.OOWOOWOOl3428 O.OOOWWOOOWOO6 

0.000000000000010 -0.000000000017039 
-0.000000000000283 O.WOOOOOWOOOO27 

0.4QB999999999983 0.000000000000370 
0~000090000000370 0.999999999999Q91 

-0.000000000000029 -0.000000000000023 

-0.000000900014107 
-0.00000ow0000002 
-0.000000000000016 
-0.00000OOO0000029 
-0.000000000000023 

0.600000000000016 

Its eigenvalues are: 

0.5 - 3.951oD - 14, 0.5 -I- 4.6213~ - 15, 0.5 + 3.742830 - 14, 
I- 4.161% - 14, 1 - 3.6499D - 15, 1+ 1.976% - 14. 

The matrix A has thus two clusters with q, = 7.7X lo-l4 and r~a = 6.1 X 
lo-i4. Furthermore, the (Frobenius) off-norm and the distance 26 are equal 
to: 

OFF=7.9389X10-10, 26 = 0.5 

Performing one sweep of the symmetric Jacobi algorithm yields 

A = 

COLUMKS 1 THRU 3 
1.000000000000016 -0.000000000103790 -0.000000000000009 

-0.000000000103790 0.499009999099998 -0.000000000004081 
-0.000000000000009 -0.000000000004981 0.999999999990960 

0.000000000108906 -0.000000000000016 .-0.000000000042436 
-0.000000000000008 -0.000000000009706 0.000000000000000 

0.000000000076669 0.000000000000004 0.000000000011161 
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COLUhu?S 4 IHRU 6 
0.000000000108906 -0.000000000000008 0.000000000076669 

-0.000000000000016 -0.000000000009706 0.000000000000004 
-0.000000000042436 0.000000000000000 0.000000000011161 
0.499999999999967 -0.000000000001367 0.000000000000000 

-0.000000000001367 1.ooooooooooooooo 0.000000000000000 
0.000000000000000 o.ooooooooooooooo 0.600000000000037 

OFF = 2.4669D-IO 

This clesuly lies far above van 
is approximately equal to (k - 
lo- 13, since the contribution of the clusters is dominant in (66). 

Let us now perform the QR decomposition of the matrix A. The singular 
values of the factor R are equal to the eigenvalues of A. The triangular 
matti R and its off-norm are 

CDL~S 1 TEBD 3 
-0 l 4hw999999999992 O.ODDDDDDD9704432 

0.0 -0.60600OD00999994 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

o.oOoDOD99ooODD27 
-0.000009999919390 
-0.999999999999991 

0.0 
0.0 
0.0 
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and performing one step of the triangular Kogbetliantz algorithm gives 

B = 

COLUMNS 1 THBU 3 
-1.000000000000016 0.0 

0.000000000311279 -0.499999999999998 
0.000000000000019 0.000000000007466 

-0.000000000336632 0.000000000000032 
0.000000000000017 0.000000000014664 
0.000000000226923 0.000000000000008 

COLUMNS 4 THRU 0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

-0.499999999999967 0.0 
0.000000000002037 -1.000000000000000 
O.OOOOOGOOOOOOOOO 0.000000000000000 

OFF = 6.222lD-10 

0.0 
0.0 

-0.999999999999960 
0.000000000127393 
0.000000000000000 
0.000000000033616 

0.0 
0.0 
0.0 
0.0 
0.0 
0.600000000000037 

which thus displays the same behavior as the symmetric Jacobi algorithm. 
The reason for not obeying the bound (66) (or van Kempen’s bound for the 
symmetric matrix A) is indeed the fact that the diagonal elements corre- 
sponding to one cluster are not adjacent. We now permute columns and rows 
of A to yield the reordered matrix A’: 

CULUEWS 1 TEBU 3 
0.999999999999992 -0.000000000000014 

-0.000000000000014 0.999999999999991 
0.000000000000006 0.000000000000027 

-0.00000000048992l 0.00GGO0000309463 
-0.000000ooo018428 -0 a OOCGOCOOGOGO283 
-0.000000000014107 -0.00ooo0000000010 

o.ogooooGooooooo6 
o.ogOoowowwo27 
0.9q~999Q99999991 

-0.080000000017039 
o.owwooooooO37o 

-0 * 000000000000023 
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COLW QlgBU 
-0.000000000469611 

o.oooowooo3o6463 
-0.000000000017039 

0.600000000000004 
0.000000000000019 

-0.000000000000002 

OFF = 7.9389D-10 
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6 
-0.00OoOOO00013428 -0.000000000014107 
-0.000000000000283 -0.000OOOOO0000016 

0.000000000000370 -0.000000000000023 
0.000000000000019 -0.000000000000002 
0.499999999999983 -0.000000000000029 

-0.000000000000029 0.600000000000016 

and after one sweep of the symmetric Jacobi algorithm we obtain 

A’ s 

COLUMNS 1 IERU 
1.000000000000016 

-0.000000000000009 
-0.000000000000008 
0.000000000000000 
0.000000000000000 
0.000000000000000 

3 
-0.000000000000009 

0.999999999999960 
0.000000000000000 
o*ooooooooooooooo 
0.000000000000000 
0.000000000000000 

COLUMNS 4 THIN 6 
0.000000000000000 0.000000000000000 
0.000000000000000 0.000000000000000 
0.000000000000000 0.000000000000000 
0.499999999999998 -0.000000000000016 

-0.000000000000016 0.499999999999967 
0.000000000000004 0.000000000000000 

OFF = 2.9603D-14 

-0.000000000000008 
0.000000000000000 
1.000000000000000 
0.000000000000000 
o.ooooooooooooooo 
0.000000000000000 

0.000000000000000 
0. ooowooooooowo 
0.000000000000000 
0.000000000000004 
0.000000000000000 
0.600000000000037 

which is now indeed smaller than the bound 2 x 10-l 3. Let us now perform 
again the Q&decomposition of this reordered matrix: 

B’ = 

CDLms I lmlu 3 
-0.999999999999992 o.OOOOWOoOOw027 -0. owwooowwoll 

0.0 -0.999999999999991 -0.000000000000056 
0.0 0.0 -0.999999999999991 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
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cImMNs 4Tmu 6 
0.000000ooo704432 0.00QDO0600Q2Q141 

-0.0000ooooo469680 0. ooooooOooooo426 
0.000000000026658 -0.000000000000666 

-0.600000000000004 -0.000000000000038 
0.0 -0.499999999999983 
0.0 0.0 

OFF = 8.4204D-10 
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O.OOOOOOWOO2ll6O 
o.ooowowooooo24 
0.000000000000036 
0.000000000000006 
0.000000000000069 
0.600000000000018 

Then after one sweep of the triangular Kogbetliantz algorithm, we have 

B’ = 

COLUMNS 1 IHRU 3 
-1.000000000000016 0.0 
0.000000000000019 -0.999999999999980 
0.000000000000017 0.000000000000000 
0.000000000000000 0.000000000000000 
0.000000000000000 0.000000000000000 
0.000000000000000 0.000000000000000 

COLUMNS 4 THRU 8 
0.0 0.0 
0.0 0.0 
0.0 0.0 

-0.499999999999998 0.000000000000000 
0.000000000000032 -0.499999999999987 
0.000000000000008 0.000000000000000 

OFF = 4.1716D-14 

0.0 
0.0 

-1.000000000000000 
0.000000000000000 
0.000000000000000 
0.000000000000000 

0.0 
0.0 
0.0 
0.000000000000000 
0.000000000000000 
0.600000000000037 

which is also smaller than the bound 2 X lo- 13. We draw attention here to 
the fact that, although the off-norms of A’ and R’ become of the order of q 
after one sweep, much smaller values (namely of the order of OFFS/& = lo- ‘s) 
are observed outside the diagonal blocks corresponding to the clusters. This is 
in fact explained by the bound (65), where the last term is precisely that 
contribution to the off-norm. 
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REMARK 6. From what precedes, one concludes that, if the cyclic by 
rows (or columns) ordering of annihilations is used in the presence of multiple 
or clustered singular values, Kogbetliantz’s algorithm converges quadratically 
only for triangular matrices and if the cluster(s) are grouped. However, 
quadratic convergence is also ensured in the two following situations: 

(1) If a different ordering is considered, where the off-diagonal element 
of largest magnitude is annihilated at each step. This corresponds to the 
classical Jacobi method, for which van Kempen has proven the ultimate 
quadratic convergence in the case of multiple eigenvalues, either grouped or 
separate [14]. Notice that this ordering is not suited for a parallel implemen- 
tation of the method. Also the structure of the matrix (e.g. triangular) is not 
maintained. 

(2) If a “threshold” strategy is applied. This was proposed by Wilkinson 
[17] for Hermitian matrices and can be directly extended to triangular 
matrices. At any stage, the rotation is taken as the identity matrix if the 
element to be annihilated is smaller than a given threshold relative to the 
current off-norm. Therefore, large angles due to very close diagonal elements 
are not propagated, which avoids losing quadratic convergence. Here the 
structure of the matrix is retained during the transformations. On a parallel 
machine, though, such a strategy might be difficult to apply, unless a local 
threshold could be defined. 

6. CONCLUSION 

In this paper we have analyzed the convergence of Kogbetliantz’s al- 
gorithm for computing the SVD of a matrix. A result was obtained for 
triangtslar matrices which strongly resembles the convergence properties of 
Jacobi’s algorithm for Hermitian or normal matrices: ultimate quadratic 
convergence is guaranteed even in the presence of multiple or clustered 
singular values provided the diagonal elements corresponding to the singular 
values of the same cluster occupy adjacent positions. 

Counterexamples were also given to illustrate the lack of quadratic 
convergence when: 

(1) the fuIl Kogbethantz algorithm is used instead of the triangular one 
(Example 3); 

(2) clusters are not grouped in the triangular Kogbetliantz algorithm, as 
in Jacobi’s algorithm for Hermitian matrices (Example 4). 

It is also indicated how this constraint can be removed, e.g. by threshold 
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strategies. Along the way, a number of additional results were obtained: 

(1) Sharp bounds for the off-norm of matrices were derived in terms of 
the span of the spectrum of their eigenvalues or singular values (Section 2). 

(2) Perturbation bounds for eigenvalues and singular values of (block) 
diagonally dominant matrices were sharpened or derived (Section 3). 

Although these results are introduced here for proving the quadratic conver- 
gence of Kogbetliantz’s triangular SVD algorithm, we think that they have 
their own potential use in other problems. 

We want to thank M. Vanbegin of PRLB for a j%uitfil collaboration 
reluted to this work, especially through [l]. During the preparation of this 
paper, our attention was drawn to (far less complete) mults of B. Zhaojun of 
Fudan University (Shungai, China) along the lines of our Section 5. These 
results are not published yet. 
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