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Extracting spatial information from networks with low-order eigenvectors
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We consider the problem of inferring meaningful spatial information in networks from incomplete information
on the connection intensity between the nodes of the network. We consider two spatially distributed networks: a
population migration flow network within the US, and a network of mobile phone calls between cities in Belgium.
For both networks we use the eigenvectors of the Laplacian matrix constructed from the link intensities to
obtain informative visualizations and capture natural geographical subdivisions. We observe that some low-order
eigenvectors localize very well and seem to reveal small geographically cohesive regions that match remarkably
well with political and administrative boundaries. We discuss possible explanations for this observation by
describing diffusion maps and localized eigenfunctions. In addition, we discuss a possible connection with the
weighted graph cut problem, and provide numerical evidence supporting the idea that lower-order eigenvectors
point out local cuts in the network. However, we do not provide a formal and rigorous justification for our

observations.
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I. INTRODUCTION

Extensive research over the past decades has greatly
increased our understanding of the topology and the spatial
distribution of many social, biological, and technological
networks. This paper considers the problem of inferring
meaningful spatial and structural information from incomplete
data sets of pairwise interactions between nodes in a network.

The way people interact in many aspects of everyday life
often reflect surprisingly well geopolitical boundaries. This
inhomogeneity of connections in networks leads to natural
divisions, and identifying such divisions can provide valuable
insight into how interactions in a network are influenced by
its topology. The problem of finding the so-called network
communities, i.e., groups of tightly connected nodes, has
been extensively studied in recent years and many community
detection algorithms exist with different levels of success
[1]. In this paper, we consider two particular networks: a
county-to-county migration network constructed from 1995
to 2000 US Census data, and a city-to-city communication
network built from mobile phone data over a six month
period in Belgium. Communities in these networks emerge
naturally and are revealed, often at different scales [2], by
the eigenvectors of a normalized matrix constructed from the
weighted adjacency matrix of the network. We discuss possible
explanations for this observation by describing diffusion maps
and localized eigenfunctions.

In the remaining part of this Sec. I we report on some related
contributions that deal with communities in networks and
spectrum of matrices. However, in none of these contributions
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were we able to find an explanation of why low-order
eigenvectors localize so well and seem to identify meaningful
geographical boundaries.

One example of a study that is related to our work both
in terms of the technique and end goal is a paper by Ratti
et al. [3]. Starting from measures of the communication
intensities between counties in the UK, the authors propose
a spectral modularity' optimization algorithm that partitions
the country into small nonoverlapping geographically cohesive
regions that correspond remarkably well with administrative
regions.

In [4], Shi and Malik develop a spectral-based algorithm
that solves the perceptual grouping problem in computer
vision by treating the task of image segmentation as a graph
partitioning problem. Their approach is to segment the graph
by introducing a global criterion called normalized cut, that
measures not just the dissimilarity between different groups
but also the total similarity within the groups themselves. They
successfully extract global impressions of a scene and provide
a hierarchical description of it.

Reades et al. [5] connect mobile data from Telecom Italia
Mobile to a series of human activities derived from data on
commercial premises advertised through the Italian version
of “Yellow Pages.” The eigendecomposition of a specific
correlation matrix provides a top eigenvector which clearly
indicates a common underlying pattern to mobile phone usage
in Rome, while the second and third eigenvectors indicate
spatial variation that is very suggestive of temporally related
and activity-related patterns.

Another line of work where lower-order eigenvectors
provide useful information comes from the community

"Many popular methods for community detection in networks are
based on the optimization of the modularity function, a measure of
the quality of a network partition into communities.
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detection literature. Newman [6] shows that the modularity of
anetwork can be expressed in terms of the top eigenvalues and
eigenvectors of a matrix called the modularity matrix, which
plays arole in the maximization of the modularity equivalent to
that played by the Laplacian in standard spectral partitioning.
In related work, Richardson et al. [7] extend previously
available methods for spectral optimization of modularity by
introducing a computationally efficient algorithm for spectral
tripartitioning of a network using the top two eigenvectors
of the modularity matrix. We also mention here the recent
work of Van Mieghem et al. [8], who present bounds for
modularity, and discuss the influence of the spectrum of the
modularity matrix on the maximum modularity. Furthermore,
the authors present an analysis of the relationships among the
modularity, the assortativity (correlation of the similarities of
nodes sharing a link), the largest eigenvalues of the adjacency
and modularity matrices, the number of clusters, and the
effective graph resistance.

Arenas et al. [9] give a geometrical interpretation to
modular organization in complex networks. They introduce
a mathematical object denoted as the “contribution matrix,”
which contains information about the partitions of interest,
and later use a truncated singular value decomposition to
extract the best representation of this matrix in the plane and
reveal the skeleton of the associated network. The proposed
approach is applied to real networks including the worldwide
air transportation network and the AS-P2P Internet network.

Recent work [10], coauthored by one of the authors of this
paper, investigates the constraints imposed by space on the
network topology, and focuses on community detection by
proposing a modularity function adapted to spatial networks.
The proposed methods were tested on a large mobile phone
network and computer-generated benchmarks, and showed
that it is possible to factor out the effect of space in order to
reveal more clearly any hidden structural similarities between
the nodes. Onnela et al. [11] investigate social networks of
individuals whose most frequent geographic locations are
known. The authors classify the members into groups using
community detection algorithms, and explore the relationship
between their topological and geographic positions.

On a more general note, we point out that extracting
information from the top spectrum of adjacency matrices
expands well beyond the detection of spatial proximity, and
has also been used to reveal information in other contexts such
as semantic analysis [12,13] and navigability of networks.
Almost two decades ago, the authors of [12] introduced latent
semantic indexing, an algorithm for retrieving textual materials
from scientific databases, which relied on the singular value
decomposition of large sparse matrices to extract information
from the high-order structure in the association of terms with
documents.

Motivated by the scalability problems with the Internet
routing architecture, Boguid et al. [14] propose an efficient
mechanism that explains the connection between network
structure and its functions, by relying on the presence of an un-
derlying metric space hidden behind the observable network.
In related work [15], a subset of the same authors introduced a
method that maps the Internet to a hyperbolic space, allowing
them to increase the scalability of network routing algorithms
and at the same time to provide a different perspective on
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community structure in complex networks. Their findings have
practical applications that include Internet routing, searching
social networks, and the study of information flow in gene
regulatory networks.

Finally, we point out the work of Liu et al. on the
spectral reconstructability of complex networks [16]. They
introduce and investigate the reconstructability coefficient 6
of a network as the maximum number of eigenvalues that can
be set to zero, while still being able to exactly reconstruct the
adjacency matrix. Their main finding is that for sufficiently
large networks, an apparently universal linear scaling law
holds, which allows for a portion of the smallest eigenvalues
(in absolute values) to be removed from the spectrum, as long
as one still uses the exact eigenvectors. The main difference
with respect to the work we present in this paper is that Liu
et al. use the top eigenvectors and eigenvalues of the spectrum
for an (exact) reconstruction of the entire network, while we
use the top eigenvectors to discover and highlight the local
structure within the network.

This paper is organized as follows. Section II is an
introduction to the diffusion map technique and some of
its underlying theory. Section III contains the results of
numerical simulations in which we applied diffusion maps and
eigenvector colorings to the US migration data set. In Sec. IV
we present the outcome of similar experiments on the Belgium
mobile phone data set. In Sec. V, we explore the connection
with localized eigenfunctions, a phenomenon observed before
in the mathematics and physics community. Finally, the last
section is a summary and a discussion of possible extensions
of our approach and its usefulness in other applications.

II. DIFFUSION MAPS AND EIGENVECTOR COLORINGS

This section is a brief introduction to the diffusion maps
literature and references therein. We also clarify the notion of
eigenvector localizations and eigenvector coloring that we use
in subsequent sections. Diffusion maps were introduced in [17]
as a dimensionality reduction tool, and connected data analysis
and clustering techniques based on eigenvectors of similarity
matrices with the geometric structure of nonlinear manifolds.
In recent years, diffusion maps have gained a lot of popularity.
A nonexhaustive list of references to its underlying theory
and applications includes [17-21]. Often called Laplacian
eigenmaps, these manifold learning techniques identify sig-
nificant variables that live in a lower-dimensional space, while
preserving the local proximity between data points. Consider
a set of N points V = {x1,x2,...,xy} in an n-dimensional
space R", where each point (typically) characterizes an image
(or an audio stream, text string, etc.). If two images x; and
x; are similar, then ||x; — x| is small. A popular measure
of similarity between points in R" is defined using the
Gaussian kernel w;; = e Wi=xi1P/e for some constant €, o
that the closer x; is from x;, the larger w;;. The matrix
W = (w;j)i<i, j<n is symmetric and has positive coefficients.
To normalize W, we define the diagonal matrix D, with
D;; = 27=1 w;; and define A by

A=D"'w,

such that every row of A sums to 1.
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Next, one may also define the symmetric matrix S =
D~'2W D~'/2 which can also be written as S = D'/2AD~!/?
and hence is similar to A. As a symmetric matrix, S has an
orthogonal basis of eigenvectors vy, vy, . . . ,uy—; associated to
the N real ordered eigenvalues 1 =X > A > -+ = Ay_1.
If we decompose S as S = VAVT with VVI = VTV =1
and A = diag(Xg,Aq, ..., An_1),then Abecomes A = WA DT
where ¥ = D12V and ® = DY2V. Therefore, AV = WA
and the columns of W (denoted by ¥,¥, ..., ¥y—1) form a
D- orthogonal basis (i.e., (¥;, Dj) = 0,Vi # j) associated to
the N real eigenvalues Ag,Aq, . ..,Ax—1 suchthat Ay; = A; ¢,
fori =0,1,...,N — 1. Also, T A = A®T implies that the
columns of @ are left eigenvectors of A, which we denote by
0,01, ....¢n_1. Since ®TW = [, it follows that the vectors
¢; and v; are biorthonormal (¢;,v¥;) = §; ;.

Since A is a row-stochastic matrix, Ao = 1 and vy =
(1,1,...,DT, and we disregard this trivial eigenvalue-
eigenvector pair as irrelevant. Using the stochasticity of A,
we can interpret it as a random-walk matrix on a weighted
graph G = (V,E, W), where the set of nodes consists of the
points x;, and there is an edge between nodes i and j if and only
if w;; > 0. Taking this perspective, A;; denotes the transition
probability from point x; to x; in one step time Af = €,

Prix(t +€) = x;|x(t) = x;} = A;;.

The parameter € can now be interpreted in two ways. On the
one hand, it is the squared radius of the neighborhood used
to infer local geometric and density information, in particular
w;; is O(1) when x; and x; are in a ball of radius /€, but it
is exponentially small for points that are more than /€ apart.
On the other hand, € represents the discrete time step at which
the random walk jumps from one point to another. We refer
the reader to [22] for a detailed survey of random walks on
graphs, and their applications.

Interpreting the eigenvectors as functions over our data
set, the diffusion map (also called Laplacian eigenmap) maps
points from the original space to the first k eigenvectors,
L :V — R¥ and is defined as

Li(xj) = [My1 (A2, - - (], (D

where the meaning of the integer exponent ¢ will be made clear
in what follows.

Using the left and right eigenvectors denoted earlier, we
now write the entries of A as A;; = Zivz_ol A& (DY, (j), and

note that A’ = Zivzfol AL ()Y, (j). However, recall that the
probability distribution of arandom walk landing at location x;
after exactly 7 steps, given that it starts at point x;, is precisely
given by the expression Afj = Pr{x(¢) = x;|x(0) = x;}. Given
the random-walk interpretation, it is natural to quantify the
similarity between two points according to the evolution of

their probability distributions,

N

1

D}(.j) = Z (Al — A;k)za’

k=1

where the weight d—lk takes into account the empirical local
density of the points by giving larger weight to the vertices of
lower degree. Since D, (i, j) naturally depends on the random
walk on the graph, it is denoted as the diffusion distance at
time ¢. In the diffusion map introduced above, it is a matter of
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choice to tune the parameter ¢ corresponding to the number of
time steps of the random walk. We used r = 1 in the diffusion
map embeddings throughout our simulations, and that using
different values of ¢ corresponds to rescaling the axis. The
Euclidean distance between two points in the diffusion map
space introduced in (1) is given by

N-1

1£G) — LI = Y7 (M) = M (D). @)

r=1

The first eigenvalue Ay does not enter this expression, since
it cancels out. Moreover, as shown in [23], the expression
(2) equals the diffusion distance D,Z(i, j), when k =N — 1,
i.e., when all N — 1 eigenvectors are considered. For ease
of visualization, we used the top k = 2 eigenvectors for the
projections shown in Figs. 1 and 6.

Finally, we denote by C; the coloring of the N data points
given by the eigenvector v, where the color of point x; € V
is given by the ith entry in vy, i.e.,

Ce(x;) = y(i),forallk =0,...,N—1landi=1,...,N.

We refer to C; as an eigenvector coloring® of order k. The
top left plot in Fig. 3 shows the eigenvector coloring of order
k = 1, together with the associated color bar where red denotes
high values and blue denotes low values (consistent for the
eigenvector colorings throughout the paper). In practice, only
the first k eigenvectors are used in the diffusion map introduced
in(1),withk < N — 1chosensuchthati| > 15 --- > A}, > 6
butAj,, < &, where 8 is a chosen tolerance. Typically, only the
top few eigenvectors of A are expected to contain meaningful
information, but as illustrated by the eigenvector colorings
shown in this paper, one can extract relevant information
from eigenvectors of much lower order. The phenomenon of
eigenvector localization occurs when most of the components
of an eigenvector are zero or close to zero, and almost
all the mass is localized on a relatively small subset of
nodes. On the contrary, delocalized eigenvectors have most of
their components small and of roughly the same magnitude.
Furthermore, note there is no issue with the fact that the
eigenvectors are defined up to a scalar. Since each of them
is normalized and real, we can just consider eigenvectors of
different sign; however, this can only reverse the color map
used, and does not change the localization phenomenon.

III. US CENSUS MIGRATION DATA

We apply the diffusion map technique to the 2000 US
Census that reports the number of people that migrated
from every county to every other county in the US during
the 1995-2000 time frame [24,25]. We denote by M =
(M;})1<i, j<n the total number of people that migrated between
county i and county j (so M;; = M};) during the five-year
period, where N = 3107 denotes the number of counties in
mainland US We let P; denote the population of county i.
Figure 1 shows the results of the diffusion map technique for

2Not to be confused with the “coloring” terminology from graph
theory, where the colors are integers.
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FIG. 1. (Color) Diffusion map reconstructions from the top two
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longitude and latitude colorings when the following kernels
2
= 5p W = 2 and WD = 55005

o
are used: W;;" = 7R Fib,

The diffusion map resulting from these kernels places the
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eigenvectors, for various kernels, with nodes colored by longitude

Midwest closer to the West coast (Fig. 1), but further from
the East coast. Similarly, the colorings based on latitude reveal
the north-south separation. The kernel W does a better job
at separating the East and West coasts, Fig. 1(b), while kernel
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FIG. 2. (Color online) Histogram of the top 500 eigenvalues of matrix A for different kernels.

W® highlights best the separation between north and south
as shown in Fig. 1(g). Figure 2 shows the histogram of the
top 500 eigenvalues of the diffusion matrix A, when different
kernels are used.

Our kernel of choice for the eigenvector colorings in Fig. 3
was WO, as it produced more visually appealing results in
terms of state boundary detection. For the same reason, we
omit the numerical simulations where we used exponential
weights to compute the similarity between the nodes. Note
also that the spectrum of A = D~!'W in the left of Fig. 2 is
rather different from the other two spectra, with many more
large eigenvalues and without a visible spectral gap. For the
rest of this section, we drop the superscript from matrix W
and refer to it as W.

In Fig. 4 we plot the histograms of the entries of several
eigenvectors of A. The top eigenvector provides a meaningful
partitioning that separates the East from the Midwest, and has
its entries spread in the interval [—0.03,0.03] with few entries
of zero magnitude. On the other hand, the eigenvectors ¢,
¢og, and ¢g3 are localized in the sense that they have their
larger entries localized on a specific subregion of the US map
(highlighted in blue or red in the eigenvector colorings), while
taking small values in magnitude on the rest of the domain.
We explore in Sec. V the connection with the phenomenon of
“localized eigenfunctions” of the Laplace operator.

We use the rest of this section to provide a possible
interpretation of the color coded regions that stand out in the
eigenvector colorings in Fig. 3. By interpreting the matrix
W as a weighted graph, we explore a possible connection
of such geographically cohesive colored subgraphs with the
graph partitioning problem. In general, the graph partitioning
problem seeks to decompose a graph into K disjoint subgraphs
(clusters), while minimizing the sum of the weights of the “cut”
edges, i.e., edges with end points in different clusters. Given
the number of clusters K, the weighted-min-cut problem is an
optimization problem that computes a partition Py, ..., Pk of
the vertex set, by minimizing the weights of the cut edges,

k
Weighted Cut(Py, ..., Po) = Y E,(Pi.P),  (3)

i=l

where E,(X,Y) =}y icy Wij, and X denotes the com-
plement of X. For an extensive literature survey on spectral
clustering algorithms we refer the reader to [26], and point out
the popular spectral relaxation of (3) introduced by Shi and
Malik [4].

When dividing a graph into two smaller subgraphs, one
wishes to minimize the sum of the weights on the edges
across two different subgraphs and, simultaneously, maximize
the sum of the weights on the edges within the subgraphs.
Alternatively, one tries to maximize the ratio between the latter
quantity and the former, i.e., between the weights of the inside
edges and the weights of the outside edges. To that end, we
perform the following experiment, where we regard the US
states as the clusters, and investigate the possibility that the
isolated colored regions that emerge correspond to local cuts
in the weighted graph.

We denote by S the matrix of size N x N (N =49 the
number of mainland US states) that aggregates the similarities
between counties at the level of states. In particular, if state i
has k counties with indices x1, . . . ,x;, and state j has/ counties
with indices yq, ...,y;, then we consider the k x [ submatrix,

Wi,j = W{xl,...,xk},{yl..“,y,}s (4)

and denote by S§;; the sum of the k/ entries in Wi, j- In other
words, matrix S is a “state-collapsed” version of the matrix W,
and gives a measure of similarity between pairs of states. The
heat map in Fig. 5 shows the components of the matrix S on
a logarithmic scale, where the intensity of entry (i, j) denotes
the aggregated similarity between states i and j.

We refer to the diagonal entry S;; as the “inside degree”
of state i, dl.i“ = S;;, which measures the internal similarity
between the counties of state i. We denote by d’™ =

Z;V: 1.ui Siu (1.e., the sum of the nondiagonal elements in row
i) the “outside degree” of node i, which measures the similarity

or migration between the counties of state i and all other
d}'atio _ 4"
l

counties outside of state i. Finally, we denote by =
the “ratio degree” of node i which straddles the bounda'ry
between intrastate and interstate migration. A large ratio
degree is a good indication that a state is very well connected
internally, and has little connectivity with the outside world,
and thus is a good candidate for a cluster. In other words, a large
ratio degree of a cluster (i.e., state) denotes a high measure of
separation between that cluster and its environment, which
is something discovered by the localization properties of the
low-order eigenvectors. Table I ranks the top 14 states within
the US in terms of their ratio degree.

Next, we examine the top several eigenvector colorings
in Fig. 3, and point out the individual states on which the
eigenvectors localize, together with its rank in terms of ratio
degree. The entries of large magnitude are colored in red and
blue, while the rest of the spectrum denotes values of smaller
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2
ij
PP

FIG. 3. (Color) Top eigenvector colorings for the similarity matrix W;; =

magnitude or very close to zero. The top three eigenvectors correspond to counties in Virginia (VA) which is also ranked
correspond to global cuts between various coasts within the US Ist, and similarly for Wisconsin (WI) for k = 5, ranked 14. For
The only state that stands out individually is Michigan (MI) k = 6, the states colored in dark red and dark blue are Georgia
for k = 3, which has rank 2. For k = 4, the largest entries (GA) with rank 3, and Missouri (MO) of rank 8. When k = 7,
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FIG. 4. (Color online) Histogram of the entries in the eigenvectors ¢;, ¢7, ¢ag, and ¢g3 of matrix A = D'wW,

Michigan (MI), of rank 2, stands out as the only dark blue
colored state. For k = 8, we point out Georgia, rank 3, together
with Mississippi (MS) of rank 11, and Louisiana (LA) of rank
10. Eigenvector k = 9 localizes mostly on Maine (ME) of rank
6, and the New York (NY) area with rank 7. Finally, eigenvector
k = 101localizes on a combination of states we already pointed
out. We have thus enumerated nine states that stand out in the
top ten eigenvector colorings, and all nine of them appear

El L B :- .- 5

TRaE = LR

§§ ] = N
. EE = "l |

L B -1 B

FIG. 5. (Color online) Heat map of the interstate migration flows,
where the rows and columns of the matrix are sorted by the ratio
degrees of the states. The intensity of entry (i,j) denotes, on a
logarithmic scale, the similarity between states i and j, i.e., the sum
of all entries in the submatrix Wi_ ; defined in Fig. (4). Table I lists the
top 14 states in terms of ratio degree.

in Table I that ranks the top 14 states in terms of ratio
degree. Although this experiment does not provide a formal
justification for the eigenvector localization phenomenon, we
believe it is a first step in providing evidence that the low-order
eigenvectors point out local cuts in the network.

IV. BELGIUM MOBILE NETWORK

In a recent work [27], we studied the anonymized mobile
phone communication from a Belgian operator and derived
a statistical model of interaction between cities, showing
that intercity communication intensity is characterized be a
gravity model: the communication intensity between two cities
is proportional to the product of their sizes divided by the
square of their distance. In this section, we briefly describe the
Belgium mobile data set, summarize the results in [27], and
apply the diffusion map technique. We refer the reader to [28]
for more information on the mobile phone data set.

The data set contains anonymous communication patterns
of 2.5 million mobile phone customers, grouped in 571 cities

TABLE 1. Top 14 states within the US, ordered by ratio degree.

Rank State Ratio degree Rank State Ratio degree
1. VA 26.7 8. MO 18.5
2. MI 20.4 9. CO 17.1
3. GA 19.9 10. LA 16.6
4. IN 19.7 11. MS 16.1
5. TX 19.0 12. CA 15.7
6. ME 18.9 13. OH 15.6
7. NY 18.7 14. WI 14.5
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FIG. 6. (Color) Diffusion map reconstructions from the top two eigenvectors, for various kernels. 7;; denotes the aggregated communication

T

time in seconds, N;; the number of phone calls between cities i and j, R;; = - the average duration of a call, and P; the population of city i.
]

Nij
P;P;

We normalize by the population size by defining N;; = and T;;

in Belgium over a period of six months in 2006 (see also [29]
for a description of the data set). Every customer is associated
with the ZIP Code of her or his billing address. Calls involving
other operators were filtered out, meaning that both the calling
and receiving individuals in the data set are customers of the
mobile phone company. Also, there is a link between two
customers if at least three calls were made in both directions
during the six month interval. After this preprocessing, the
network has 2.5 million nodes and 38 million links. For every
pair of customers we associate a communication intensity by
computing the total communication time in seconds. After
grouping the customers into their corresponding cities, we
compute T;;, the aggregated communication time in seconds
between the customers of city i and j, and denote the resulting
matrix by T = (Tij)1<i<j<n. We denote by N;; the number of
phone calls between cities i and j, by R;; = 1{/_11, the average
duration of a call, and by P; the number of customers that have
the ZIP Code billing address of city i (from now on, we refer
to P; as the population of city i). Furthermore, the normalized
number of phone calls with respect to the population of the

cities is denoted by N;; = %, and similarly the normalized
i
communication time by T;; = %. Finally, D = (d;j)1<i<j<n
iy

represents the distances between the centroids of the areas

Ni
Tij

PiP;°

of cities i and j. Using these quantities, we now consider

= \2 2
the following three kernels: Wl.(j1> = e~ (RyTi)"/ 0.2°, Wi(j2) =
0.16
~(oi% )

e i Ty _ Ny

,and Wi(f) =%, = PBP"

Figure 6 shows the diffusion map reconstructions for vari-
ous matrices W that relate cities based on their communication
intensities and population sizes. For W® and W®, there
is an obvious separation between the north and south parts
of Belgium, which stems from the fact that the two regions
belong to different linguistic groups. The same separation is
emphasized by the colorings associated to the top eigenvector
of matrix A, shown in Fig. 7. The remaining eigenvector
colorings in Fig. 7 clearly isolate various subregions in
Belgium. For example, eigenvectors y; and ; highlight
language communities (French, Dutch, and German), while
Y3 and s isolate the regions of Liege and Limburg.

V. LOCALIZED EIGENFUNCTIONS

Let us first make more precise what is meant by a localized
eigenfunction. This phenomenon of localization occurs when
there exist eigenfunctions supported by small regions of
the domain, i.e., they are localized in these regions. An
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FIG. 7. (Color) Colorings by the top 18 eigenvectors of A = D™'W®, where Wi(j}) =L =

eigenfunction localized on a domain €2; has support on 2
significantly larger than on the complement 2\, and yet
it cannot vanish on Q\£2; since eigenfunctions of isolated
eigenvalues are real analytic functions and cannot vanish
on any open set. This is also observed in the histogram
of the entries of the eigenvectors ¢7, ¢o3, and ¢g3 shown
in Fig. 4 and the corresponding colorings in Fig. 3. In
contrast, eigenfunctions that do not localize have their support
“uniformly” distributed across the domain, similar to the case

_ I Nij

Rij PiPj*

of eigenvector ¢; from Fig. 4. For example, in the case of the
unit interval, the eigenfunctions of the Laplacian are the sine or
cosine functions (depending on the boundary conditions) with
the larger eigenvalues corresponding to higher oscillations,
and they are not localized in the sense that there is no
specific subinterval that carries the most (potential) energy
of the eigenfunction, and any subinterval supports an amount
of energy that is proportional to its length. In other words,
the energy of the top eigenfunctions is distributed uniformly
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across the domain, and similar results are known to hold for
the disk and the sphere, where the Laplacian eigenvalues and
eigenfunctions are explicitly known.

The behavior observed in the eigenvector colorings from
Figs. 3 and 7 is related to the notion of localized eigenfunctions,
a phenomenon observed before in the mathematics and
physics community. The spectrum of the (continuous) Laplace
operator has been extensively studied, and there exists a
rich literature on the relationship between the spectrum and
the geometry of the domain. As more complicated objects,
eigenfunctions are more difficult to analyze than the spectrum,
and less is known about them. Most of the literature is
focused on high-frequency eigenfunctions (associated to larger
eigenvalues), such as [30-32], although recent studies such
as [33] advocated localized eigenfunctions associated to small
eigenvalues. In our experiments, we found the bottom eigen-
vectors uninteresting as they did not contain any meaningful
geometric information. In his work, Sapoval [34] studied
localized eigenfunctions in different domains and pointed out
their importance for physical applications, such as designing
efficient noise-protective walls.

Finally, considering that A is a stochastic matrix, one may
further explore ideas from the theory of nearly completely
decomposable matrices developed by Simon and Ando to
describe and identify the short-, medium-, and long-term
behaviors of a dynamical system [35]. Building on earlier work
[36], the very recent article of [37] explores this idea in the
context of stochastic data clustering and proposes a technique
that uses the evolution of the system to infer information on
the initial structure.

VI. SUMMARY AND DISCUSSION

We have shown how the diffusion map technique can be
used to obtain informative visualizations and capture natural
subdivisions within two different real networks. We find
surprisingly that some low-order eigenvectors localize very
well and seem to reveal small geographically cohesive regions;
it is natural to ask for an explanation for our observation.

In looking at Fig. 3 many more questions come to mind.
Are the state boundaries a consequence of people migrating
within the same state or not? In other words, do states emerge
as communities because of people migrating from one county
to the other within the state, or because of similar migration
patterns directed outside the state? Preliminary analysis on
the migration data set in the context of local clustering
on graphs supports the idea that the localized low-order

PHYSICAL REVIEW E 87, 032803 (2013)

eigenvectors highlightlocal cuts in the network. This is perhaps
counterintuitive since such low-order eigenvectors must satisfy
the global requirement of exact orthogonality with respect to
all of the earlier delocalized eigenvectors, and they must do
so while keeping most of their components zero or close to
zero. Another question to consider is whether, besides the state
boundary detection, the eigenvector colorings reveal any extra
information on the intensity of the migration from one region to
the other. Furthermore, intercounty migration is most common
among young adults and declines as people age, and one may
ask how the age composition (or income level) of individual
US counties impacts the migration pattern.

In answering these questions, one needs to complement the
mathematical description of diffusion maps and clustering by
eigenvectors with a sociodemographic behavioral interpreta-
tion of migration trends, as considered for example in [38,39].
A more recent paper by Slater [40] is of particular interest
since it analyzes migration patterns in the US Census data
from 1965 to 1970 and 1995 to 2000. Amongst others, it
highlights cosmopolitan or hublike regions, as well as isolated
regions that emerge when there is a high measure of separation
between a cluster and its environment.

Another interesting direction worth exploring is seeing how
the diffusion map reconstructions and colorings change when
the matrices used are no longer symmetric. In the case of the
US migration data, it may be the case that there are many
states for which the most common migration destination is
the major city or capital of that state (although there might
be other destinations spread across the US that attract people
migrating out from that state). It is therefore natural to expect
that major cities will stand out in the colorings; however, this
is not the case in our simulations since we symmetrize the
migration matrix and take into account both the in and out
migration from a given state.
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