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Abstract

We provide an algorithm for constructing strong `-ifications of a given matrix polynomial P (λ) of degree
d and size m × n using only the coefficients of the polynomial and the solution of linear systems of
equations. A strong `-ification of P (λ) is a matrix polynomial of degree ` having the same finite and
infinite elementary divisors, and the same numbers of left and right minimal indices as the original matrix
polynomial P (λ). All explicit constructions of strong `-ifications introduced so far in the literature have
been limited to the case where ` divides d, though recent results on the inverse eigenstructure problem for
matrix polynomials show that more general constructions are possible. Based on recent developments on
dual polynomial minimal bases, we present a general construction of strong `-ifications for wider choices
of the degree `, namely, when ` divides one of nd or md (and d ≥ `). In the case where ` divides nd
(respectively, md), the strong `-ifications we construct allow us to easily recover the minimal indices of
P (λ). In particular, we show that they preserve the left (resp., right) minimal indices of P (λ), and the
right (resp., left) minimal indices of the `-ification are the ones of P (λ) increased by d−` (each). Moreover,
in the particular case ` divides d, the new method provides a companion `-ification that resembles very
much the companion `-ifications already known in the literature.
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1. Introduction

In the literature of linear time-invariant dynamical systems, matrix polynomials were already used in
the 1960’s but the monograph of Rosenbrock [24] gave in 1970 for the first time a systematic treatment of
the fundamental role played by matrix polynomial models in the study and solution of dynamical systems.
Rosenbrock showed that any p×m rational transfer matrix R(λ) (where λ is the Laplace variable) of a
dynamical system relating an input vector u(λ) of dimension m to an output vector y(λ) of dimension p
can be represented by a set of matrix polynomial equations when introducing a so-called internal state
vector ξ(λ) of dimension n :

y(λ) = R(λ)u(λ) ⇐⇒
[

0
y(λ)

]
=

[
T (λ) U(λ)
V (λ) W (λ)

] [
ξ(λ)
u(λ)

]
,

which is solvable when the n × n matrix polynomial T (λ) is invertible. The elimination of the in-
ternal state ξ(λ) then also shows the relation between the transfer function R(λ) and the quadruple
{T (λ), U(λ), V (λ),W (λ)} :

R(λ) = W (λ)− V (λ)T (λ)−1U(λ),
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which is why this quadruple was also called a polynomial realization of the rational matrix R(λ). The
compound matrix polynomial

S(λ) :=

[
T (λ) U(λ)
V (λ) W (λ)

]
was called the system matrix, and it generalized the notion of state-space realizations studied by Kalman
[20], where the system matrix S(λ) was linear (i.e. a first degree matrix polynomial), to arbitrary degree
polynomial models. It was also shown in [24] that the Smith-McMillan zeros of the transfer function
R(λ) were the same as the Smith zeros of the system matrix S(λ), provided that the matrix polynomial
pairs [

T (λ) U(λ)
]

and

[
T (λ)
V (λ)

]
(1)

have, respectively, full row rank and full column rank n, for all λ. It was shown later on that not only
the finite zero structure of R(λ) is preserved in the polynomial system matrix S(λ), but also its infinite
zero structure, as well as its left and right null space structure, provided that the rank conditions on the
matrices (1) are made more stringent [12], [25]. It was shown, e.g. in [26], that under particular rank
conditions there always exist generalized state space realizations of any rational matrix R(λ) such that
the right and left null space structure of R(λ) and S(λ) are the same and that their finite and infinite
zero structures are also the same, as long as one uses the MacMillan definition for the zero structure at
infinity.

A second influential book on matrix polynomials is the one by Gohberg, Lancaster and Rodman [15].
In this book, the structure of a matrix polynomial P (λ) of an arbitrary degree d is revisited and much
attention is paid to the problem of linearization, which is a first degree matrix polynomial (in other words,
a pencil) that has the same zero structure as P (λ) in its finite zeros (i.e., the same finite eigenstructure).
But the authors also introduce a new notion of infinite eigenstructure, which differs from the definition of
MacMillan. This new definition is by now well accepted and has lead to the notion of strong linearization,
which was introduced in [14] and named later in [21]. Strong linearizations are those linearizations that
preserve also the infinite eigenstructure of the polynomial. Later on that notion was also extended to
matrix polynomials of arbitrary degree `, named strong `-ifications in [8]. Such constructions have so
far been limited to degrees ` that divide d, even though recent results [10] on the inverse eigenstructure
problem for matrix polynomials show that more general constructions are possible. In particular, it has
been proven in [10] that any singular matrix polynomial has a strong `-ification for any positive integer
`, while, if 1 ≤ ` ≤ d, regular n × n matrix polynomials have strong `-ifications if and only if ` divides
nd.

Constructing strong `-ifications is not merely a theoretical issue. The main interest of these construc-
tions is in potential applications, mainly related to the Polynomial Eigenvalue Problem (PEP) or, more
in general, in the problem of computing the complete eigenstructure of a general matrix polynomial of
arbitrary degree d. The PEP consists of computing the eigenvalues and eigenvectors of matrix polynomi-
als. The usual approach to this problem is through the use of (strong) linearizations and, in particular,
through the use of the classical Frobenius companion forms. For an arbitrary matrix polynomial, there
are infinitely many strong linearizations, which can be easily constructed from the eigenstructure of the
polynomial [3]. However, in the context of the PEP, it is important to derive general constructions, valid
for all matrix polynomials, that do not depend on the previous knowledge of the eigenstructure, which is
precisely the information to be computed.

In the past few years, considerable effort has been devoted to construct collections of companion lin-
earizations, see for instance [1, 2, 5, 6, 7, 8, 27] among many other references. More in general, companion
forms are uniform templates for building strong `-ifications of matrix polynomials P (λ) directly from the
coefficients of P (λ) without involving any other operations than multiplications by fixed constants, and
which are valid for every P (λ) (see [8, Def. 5.1] for the precise definition). A particular example of com-
panion linearizations are the classical Frobenius (companion) linearizations mentioned above [15]. Though
the use of companion linearizations in the PEP is widely extended and produces, in general, good results,
linearizations can increase significantly the size of the problem, modify the conditioning of the problem,
and loose the original structure. For instance, the linearizations of square matrix polynomials that are
commonly used in practice (in particular, the classical Frobenius companion linearizations), as well as all
companion linearizations (see [8]) have size nd× nd, instead of the size n× n of the original polynomial
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of degree d. By contrast, the size of companion `-ifications of a matrix polynomial with degree d and size
n × n introduced in [8, Cor. 7.10] for the case where ` divides d is n(d/`) × n(d/`). Something similar
occurs with the known companion linearizations and `-ifications for rectangular matrix polynomials [7, 8].

For the strong `-ifications to be useful in a practical setting, like the PEP, one would need to have
suitable algorithms for computing the eigenstructure of low-degree matrix polynomials that work directly
on the polynomial, without the use of linearizations. Though there are not too many references in
this direction, algorithms of this kind have been proposed in the literature, in particular for quadratic
palindromic matrix polynomials, as well as for even-degree palindromic polynomials using an appropriate
quadratification [17, 18]. More in general, to recover the whole eigenstructure of the polynomial and, in
particular, the singular structure, one should be able to relate the minimal indices of the `-ifications with
the corresponding minimal indices of the polynomial. In the few `-ifications known so far in the literature
[8], this relationship is obtained though very simple recovery formulas.

In this paper, we present a general construction for strong `-ifications of arbitrary matrix polynomials
of degree d and size m×n (that is, including rectangular polynomials) for the case when ` divides one of
nd or md. This construction is general in two senses. First, it is the same for all matrix polynomials of
a given size m× n and degree d. Second, the condition ` divides nd or md is the most general condition
for which a given construction can provide strong `-ifications for all matrix polynomials with such size
and degree, since this is the only case where strong `-ifications can exist for regular matrix polynomials
(see, for instance, [8, Th. 7.5] and [10, Th. 4.7, Cor. 4.9]). In the particular case of square n× n matrix
polynomials, the construction has size (nd)/` × (nd)/`, which is the size of any companion `-ification
for matrix polynomials of degree d and size n × n (see [8, Cor. 7.10] and [10, Cor. 4.9]). We want to
emphasize that our construction is not exactly a companion form, but a more general construction that
contains, as particular cases, some companion `-ifications which are essentially the ones that have been
recently introduced in [8] (see Section 4.4). Moreover, this construction also allows to easily recover the
minimal indices of the matrix polynomial. In particular, if ` divides nd then our strong `-ification has
the same left minimal indices as the matrix polynomial, and the right minimal indices are obtained from
the ones of the polynomial by adding a constant shift equal to d − `. In the case where ` divides md,
the situation is exactly the same after exchanging the roles of the left and right minimal indices. It is
worth to emphasize that in [10], it has been proved that there always exist a strong `-ification of a given
singular matrix polynomial for any degree ` [10, Remark 4.11], and all possible sizes of strong `-ifications,
together with the possible values of their left and right minimal indices have been described [10, Th.
4.10]. Also, necessary and sufficient conditions for the existence of strong `-ifications of regular matrix
polynomials have been provided, and it has been shown that, when they exist, they all have the same
size, namely (dn)/` × (dn)/` [10, Th. 4.7]. Hence, the problem of the complete characterization of the
existence, size, and minimal indices of strong `-ifications has been already solved in [10], but without
constructing such `-ifications. By contrast, the main contribution of the present paper is to provide an
explicit construction of strong `-ifications of arbitrary matrix polynomials.

Our construction strongly relies on the notion of dual minimal bases [11]. It is worth to emphasize
that some matrix polynomials which are particular pairs of dual minimal bases have been already used in
the construction of the Frobenius-like companion strong `-ifications in [8, Section 5.2], valid only when `
divides d, and even before in the classical Frobenius linearizations [8, Section 5.1], although the fact that
they are minimal bases has not received attention so far. The key contribution of this work is to use much
more general pairs of dual minimal bases to construct, from the coefficients of the matrix polynomial
P (λ), many new strong `-ifications in a process that generalizes significantly the developments in [8,

Sections 5.1 and 5.2]. More precisely, a pair of dual minimal bases L̂(λ), N̂(λ), with all degrees of the

rows of L̂(λ) (resp. N̂(λ)) being equal to ` (resp. to d − `), will be the skeleton of our construction.

The matrix polynomial L̂(λ) will be a submatrix of the desired `-ification L(λ) of P (λ), while N̂(λ) is
used to build up the unimodular transformations that take L(λ) into diag(I, P (λ)), and to construct the
remaining part of L(λ) as the solution of a linear system of equations. Observe that our results can be
seen as a new application of minimal bases to be added to the classical ones mentioned in [11].

The paper is organized as follows. In Section 2 we set the basic notation and recall the basic definitions
and previous results used in the paper (in particular, the notion of strong `-ification). In Section 3 we
recall the notion of minimal basis, as well as the notion of dual minimal bases, and we state some basic
results about them that will be needed later. In particular, we recall the zigzag construction introduced
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recently in [9]. Section 4 is the central section of the paper, and is devoted to explain the general
construction we propose of strong `-ifications. Finally, in Section 5 we summarize the main contributions
of the paper.

2. Basic definitions and notation

Along the paper we use the following notation. Given an arbitrary field F, we denote by F the algebraic
closure of F. By F[λ]m×n we denote the set of m× n matrix polynomials in the variable λ over the field
F, and F(λ)n denotes the vector space with n coordinates in the field of rational functions in λ (this field
is denoted by F(λ)). The matrix polynomial P (λ) ∈ F[λ]m×n has degree d if

P (λ) = λdPd + λd−1Pd−1 + · · ·+ λP1 + P0, (2)

with Pi ∈ Fm×n, for i = 0, 1, . . . , d, and Pd 6= 0. The reversal of the matrix polynomial P (λ) in (2) is

revP (λ) := λdP (1/λ) = λdP0 + λd−1P1 + · · ·+ λPd−1 + Pd.

Note that, if P0 6= 0, then revP (λ) is again a matrix polynomial of degree d. Otherwise, revP (λ) has
degree smaller than d. By P (λ)T we denote the transpose of P (λ).

The normal rank of the matrix polynomial P (λ) is the size of the largest non-identically zero minor
of P (λ), in other words, the rank of P (λ) when considered as a matrix with entries in the field F(λ).

For the eigenstructure of a matrix polynomial P (λ) we follow the same definition as in [10, Def. 2.17].
We recall that it consists of the regular eigenstructure, that comprises both the finite structure (invariant
polynomials of P (λ)), and the infinite structure (partial multiplicity sequence at ∞ of P (λ)), together
with the singular structure (left and right minimal indices of P (λ)). The partial multiplicity sequence of
P (λ) at λ0 ∈ F is the sequence containing the exponents of the factors λ−λ0 in the invariant polynomials
of P (λ) (see [10, Def. 2.3]). The partial multiplicity sequence at ∞ is the partial multiplicity sequence
at zero of revP (λ), as in [10, Def. 2.5]. For those readers familiarized with the definitions from linear
systems theory, we want to note that the infinite structure should not be confused with the structural
indices at ∞, as defined, for instance, in [19], though both notions are related (see [10, Remark 2.8]).
To illustrate these notions, and for the sake of a better understanding of the proof of Theorem 4.5, we
include the following example.

Example 2.1. Let P (λ) be the following 7× 7 singular quadratic matrix polynomial

P (λ) =



λ2 1 0 0 0 0 0
0 λ2 0 0 0 0 0
0 0 λ 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 λ2 1
0 0 0 0 0 0 0


.

The Smith normal form of P (λ) is ∆(λ) = diag(1, 1, 1, 1, λ, λ4, 0), so, in particular. the normal rank of
P (λ) is 6. Moreover, the nontrivial invariant polynomials of P (λ) are p1(λ) = λ, p2(λ) = λ4. Notice that
λ = 0 is the only finite eigenvalue of P (λ), and the partial multiplicity sequence at λ = 0 is (0, 0, 0, 0, 1, 4),
whose length is equal to the normal rank of the polynomial. By looking at the polynomial revP (λ), we see
that the partial multiplicity sequence at∞ of P (λ) is (0, 0, 0, 1, 2, 2). Finally, a simple direct computation
shows that P (λ) has one right minimal index ε1 = 2, and another left minimal index η1 = 0.

A square matrix polynomial U(λ) is said to be unimodular if U(λ) has constant nonzero determinant.
Therefore, the inverse of a unimodular matrix polynomial is again a unimodular matrix polynomial. Two
matrix polynomials P (λ) and Q(λ) are equivalent if there are two unimodular matrix polynomials U(λ)
and V (λ) such that Q(λ) = U(λ)P (λ)V (λ).

The main notion of this paper is the one of strong `-ification. We reproduce here, for completeness,
the definition, introduced in [8, Def. 3.3], but in the form presented in [10, Def. 4.1].
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Definition 2.1. (Strong `-ification). A matrix polynomial L(λ) of degree ` > 0 is said to be an `-ification
of a given matrix polynomial P (λ) if for some s, t ≥ 0 there exist unimodular matrix polynomials U(λ)
and V (λ) such that

U(λ)

[
Is

L(λ)

]
V (λ) =

[
It

P (λ)

]
. (3)

If, in addition, revL(λ) is an `-ification of revP (λ), then L(λ) is said to be a strong `-ification of P (λ).

The main property of (strong) `-ifications from the applied point of view is that strong `-ifications
preserve the regular eigenstructure and part of the singular structure of the matrix polynomial. More
precisely, if L(λ) is a strong `-ification of P (λ), then L(λ) and P (λ) have the same regular eigenstructure,
and the same number of left and right minimal indices [8, Th. 4.1]. Motivated by potential applications
of `-ifications to the problem of computing the eigenstructure of matrix polynomials (including the PEP),
in this work we are only interested in the case where ` < d, though there may exist strong `-ifications
with ` ≥ d [10, Th. 4.7, Th. 4.10].

It is shown in [8, Cor. 4.3] that at least one of s, t in Definition 2.1 may be taken to be zero. As the
following example shows, it may happen that t = 0.

Example 2.2. Set

P (λ) =

 λ2 1 0
0 0 λ2

0 0 1

 , and L(λ) =

[
λ 1
0 0

]
.

We have that
[

1
L(λ)

]
is equivalent to P (λ) and

[
1

revL(λ)

]
is equivalent to revP (λ), so L(λ) is a strong

linearization of P (λ).

However, when P (λ) is regular, has size n× n and degree d, and L(λ) is a strong `-ification of P (λ),
then neither P (λ) nor L(λ) have minimal indices (so that L(λ) is regular as well). Then, by the Index
Sum Theorem [8, Th. 6.5], we have nd = ñ`, where L(λ) has size ñ × ñ. Since we are assuming ` < d,
then we should have ñ > n, so that t = 0 in (3) is not possible.

In order to get constructions valid for both square and rectangular matrix polynomials, including
regular and singular ones, we look for `-ifications with size (n̂+m)× (n̂+ n) (with n̂ ≥ 0), so that:

M(λ)L(λ)N(λ)T =

[
In̂ 0
0 P (λ)

]
, (4)

with M(λ), N(λ) unimodular.
The reason for using N(λ)T in (4), instead of N(λ), will become clear later (the matrix N(λ) will be

constructed from a (row) minimal basis, as introduced in Definition 3.3).
The row degrees of a matrix polynomial P (λ) ∈ F[λ]m×n are d1, . . . , dm if the maximum degree of the

entries of the ith row of P (λ) is di, for i = 1, . . . ,m. We define similarly the column degrees of P (λ).

3. Dual minimal bases

In this section we revisit the notions of minimal polynomial bases of rational vector subspaces and
their minimal indices. The main purpose of this section is to recall the notion of dual minimal bases,
which play a crucial role in our constructive algorithms. For this, we first need to introduce Definitions
3.1, 3.2, and 3.3.

Definition 3.1. Let N(λ) ∈ F[λ]m×n be a matrix polynomial whose row degrees are d1, . . . , dm, respec-
tively. Then the highest row degree coefficient matrix of N(λ), denoted by Nh ∈ Fm×n, is the matrix
whose j-th row is the coefficient of λdj in the j-th row of N(λ), for j = 1, . . . ,m.

Note that if N(λ) is a matrix polynomial with all row degrees equal to k, then N(λ) =
∑k
i=0 λ

iNi
and Nh = Nk. This elementary fact will be often used in Section 4 without mentioning it explicitly.

Definition 3.2. The matrix polynomial N(λ) ∈ F[λ]m×n is row reduced if the highest row degree coeffi-
cient matrix of N(λ) has full row rank.
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We can define, analogously, the notions of highest column degree coefficient matrix of a matrix poly-
nomial and column reduced matrix polynomial, by focusing on columns instead of rows.

Definition 3.3. The m × n matrix polynomial N(λ), with m ≤ n (respectively, m ≥ n) is a minimal
basis, if it has full row rank m (resp., full column rank n) for all λ ∈ F and it is row (resp., column)
reduced.

We illustrate the previous definitions with the following example.

Example 3.1. Let N(λ) ∈ F[λ]2×3 be the cubic matrix polynomial:

N(λ) =

[
λ3 1 λ
λ 3λ2 + 2 λ+ 1

]
.

Then the highest row degree coefficient matrix is

Nh =

[
1 0 0
0 3 0

]
,

which has full row rank, so N(λ) is row reduced. Moreover, after computing the 2× 2 minors is straight-
forward to check that N(λ) has full row rank for all λ ∈ F. Hence, N(λ) is a minimal basis.

Though the notion of minimal basis goes back to, at least, the 1970’s (see [11]), the way we have
introduced them in Definition 3.3 follows the characterization presented in Theorem 2.14 in [10] (see the
original Main theorem in [11, p. 495]). In [11], minimal bases are introduced as polynomial bases of a
vector subspace, V , of F(λ)n whose sum of the degrees of their vectors is minimal among all polynomial
bases of V . In Section 4.2, we will use this approach when considering minimal bases of the nullspace of
a matrix polynomial. We are also implicitly using this approach when considering the singular spectral
structure of P (λ) defined, in the classical way, as the left and right minimal indices of P (λ). More precisely,
they are the minimal indices of the left and right nullspaces of P (λ). We will refer to the minimal bases
of the left and right null spaces of P (λ) as left and right minimal bases of P (λ), respectively.

We are now in the position to introduce the notion of dual minimal bases.

Definition 3.4. Two matrix polynomials N1(λ) ∈ F[λ]m1×n and N2(λ) ∈ F[λ]m2×n are dual minimal
bases if N1(λ) and N2(λ) are both minimal bases and they satisfy:

m1 +m2 = n, and N1(λ)N2(λ)T = 0. (5)

The first condition m1 + m2 = n in (5) comes from the fact that we look for bases of subspaces of
F(λ)n that are “orthogonal complements” to each other or, rigorously, dual in the sense of Forney [11,
Sec. 6].

It is known since, at least, the 1970’s (see, for instance, [11, p. 503]), that if N1(λ) and N2(λ) are
dual minimal bases with respective row degrees η1, . . . , ηm1 , and ε1, . . . , εm2 , then

m1∑
j=1

ηj =

m2∑
i=1

εi . (6)

That the converse is also true has been recently proved in [9, Th. 6.1, Th. 6.4].

Theorem 3.5. Let (η1, . . . , ηm1) and (ε1, . . . , εm2) be two lists of arbitrary non-negative integers that
add up to the same sum:

m1∑
j=1

ηj =

m2∑
i=1

εi .

Then there always exist two matrix polynomials N1(λ) ∈ F[λ]m1×n and N2(λ) ∈ F[λ]m2×n, with n = m1 +
m2, which are dual minimal bases and whose row degrees are, respectively, (η1, . . . , ηm1) and (ε1, . . . , εm2).

6



In [9, Th. 6.1], a general explicit construction of a pair of dual minimal bases as stated in Theorem 3.5
is also provided. This construction proceeds by splitting the general problem into smaller subproblems
and building up the pair of dual minimal bases as direct sums of the pairs of dual minimal bases that
realize each of these smaller subproblems. The construction of the dual minimal bases of the smaller
subproblems uses the so called zigzag and dual zigzag matrices [9, Def. 3.1, Def 3.21] via the simple
algorithm presented in [9, Th. 5.1]. The nontrivial smaller subproblems satisfy, in addition to (6), the

following assumptions: ηj > 0, εi > 0, for all 1 ≤ j ≤ m1 and 1 ≤ i ≤ m2, and
∑α
j=1 ηj 6=

∑β
i=1 εi

whenever (α, β) 6= (m1,m2). The construction of dual “zigzag” minimal bases in [9, Th. 5.1] will be
fundamental in Section 4, so we illustrate it in Example 3.2.

Example 3.2. Let (η1, η2, η3) and (ε1, ε2, ε3) be two lists of positive integers such that

0 < η1 < ε1, η1 + η2 > ε1 + ε2, and η1 + η2 + η3 = ε1 + ε2 + ε3.

Hence, the ordering of the partial sums of (η1, η2, η3) and (ε1, ε2, ε3) is

0 < η1 < ε1 < ε1 + ε2 < η1 + η2 < η1 + η2 + η3 = ε1 + ε2 + ε3.

Now we set δ1, δ2, δ3, δ4, δ5 for the differences of two consecutive terms in the previous ordering, that is:

δ1 = η1, δ2 = ε1 − η1, δ3 = ε2, δ4 = η1 + η2 − (ε1 + ε2), δ5 = η3.

We construct a pair of dual minimal bases N1(λ), N2(λ) ∈ F[λ]3×6, where N1(λ) has m1 = 3 row degrees
η1, η2, η3, and N2(λ) has m2 = 3 row degrees ε1, ε2, ε3. The construction is:

N1(λ) =

 1 λδ1

1 λδ2 λδ2+δ3 λδ2+δ3+δ4

1 λδ5

 ,
N2(λ) =

 λδ1+δ2 −λδ2 1
λδ3 −1

−λδ4+δ5 λδ5 −1

 .
Indeed, the row degrees of N1(λ) and N2(λ) are respectively given by η1 = δ1, η2 = δ2 + δ3 + δ4, η3 = δ5,
and ε1 = δ1 + δ2, ε2 = δ3, ε3 = δ4 + δ5.

It is clear that these two matrix polynomials are row reduced and they have full row rank for all finite
λ ∈ F, which implies that they are minimal bases. They satisfy m1 + m2 = n = 6, and it is easy to see
from the particular zigzag structure of these matrices that they also satisfy N1(λ)N2(λ)T = 0.

The zigzag construction of dual minimal bases illustrated in Example 3.2 allows for some flexibility
regarding permutations of rows and columns in both N1(λ) and N2(λ). This flexibility is based on the
following property, which is satisfied by any pair N1(λ) and N2(λ) of dual minimal bases: if Π,Π1, and
Π2 are permutation matrices of appropriate sizes, then

Ñ1(λ) = Π1N1(λ)Π and Ñ2(λ) = Π2N2(λ)Π

are also dual minimal bases, since

Ñ1(λ)Ñ2(λ)T = (Π1N1(λ)Π)
(
ΠTN2(λ)TΠT

2

)
= Π1N1(λ)N2(λ)TΠT

2 = 0.

In addition, note that the roles of N1(λ) and N2(λ) can be exchanged, so that N2(λ)N1(λ)T = 0.

Remark 3.6. A standard normalization of dual minimal bases, N1(λ), N2(λ), is to perform an strict
equivalence, i.e., to multiply by constant invertible matrices, R,R−T , to get N1(λ)R and N2(λ)R−T , in
order to make sure that the highest row degree coefficient matrices are[

Im1
0
]

and
[

0 Im2

]
.

For the bases in Example 3.2 (see [10, Lemma 3.6]), the matrix R is just a column permutation with the
sign of the last column changed.
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4. Constructing strong `-ifications

In this section we focus on the construction of a strong `-ification of a given (arbitrary) matrix
polynomial P (λ). We consider the general case where P (λ) has size m× n, i.e., allowing for rectangular
matrix polynomials, normal rank r and degree d, so that P (λ) is as in (2). As mentioned in Section
2, we are interested in the case ` < d, and in constructing strong `-ifications satisfying (4). Then, the
`-ification L(λ) will have size (n̂+m)× (n̂+ n), and normal rank ρ = r + n̂. In addition, we define the
positive integer

d̂ := d− ` (7)

which plays a relevant role in the construction of L(λ).
A key point in our strategy is to look for solutions, (L(λ),M(λ), N(λ)), to (4) with the unimodular

matrix M(λ) constrained to be of the form

M(λ) =

[
In̂ 0

−X(λ) Im

]
, with n̂ > 0, (8)

for some matrix polynomial X(λ). Our original motivation to use this block triangular form for M(λ) is
that such structure has been previously employed in the particular unimodular transformations used for
the classical Frobenius linearizations (see for instance [8, Section 5.1]) and for the Frobenius-like strong
`-ifications introduced in [8, Section 5.2]1, when ` divides d. In fact, the developments in this section can
be seen as a wide nontrivial generalization of the unimodular transformations and the structure of the
strong `-ifications studied in [8, Sections 5.1 and 5.2].

The block-triangular structure of M(λ) in (8) allows us to split the construction introduced in this
section into two steps, such that the construction corresponding to the first one has been already presented
in [9, Th. 5.1, Th. 6.1]. These two steps are described in assumptions (a) and (b) of Theorem 4.1 in an
abstract way, but their explicit realization will be addressed in detail in Section 4.1 for the case where `
divides nd or md. Let us briefly explain the key ideas of the construction of strong `-ifications proposed
in Theorem 4.1, and the reason why conditions (a) and (b), together with left transformations of the

form (8) are enough to get (4). The starting point is a pair of dual minimal bases L̂(λ)N̂(λ)T = 0 of

appropriate degrees. Since N̂(λ) is a minimal basis, N̂(λ)T can be completed, by adding some columns

on the left, to a unimodular matrix N(λ)T in such a way that L̂(λ)N(λ)T =
[
I 0

]
, because the Smith

form of L̂(λ) is precisely
[
I 0

]
since L̂(λ) is also a minimal basis. In addition, L̂(λ) can be completed

with L̃(λ) to get L(λ) (see (10) below), so that L(λ)N(λ)T =
[

I 0
X(λ) P (λ)

]
, for some X(λ). Then M(λ)

as in (8) will be enough to get (4). We stronly encourage the reader to check that the unimodular
transformations used in [8, Sections 5.1 and 5.2] for the first Frobenius companion linearization and the
first Frobenius-like companion `-ification, as well as the structure of such companion forms, are particular
cases of the construction proposed in Theorem 4.1.

Theorem 4.1. Let P (λ) be an m× n matrix polynomial of degree d > 0 and assume that there are two

matrix polynomials L̂(λ) and L̃(λ) of respective sizes n̂× (n̂+ n) and m× (n̂+ n), satisfying:

(a) L̂(λ) is a minimal basis and has degree `.

(b) L̃(λ) has degree less than or equal to ` and satisfies

L̃(λ)N̂(λ)T = P (λ), (9)

where N̂(λ) is a minimal basis dual to L̂(λ) (that is, it has size n× (n̂+ n) and L̂(λ)N̂(λ)T = 0).

Then:

1We remark that in [8, Eq. (5.19)] the `-ification equation has as right-hand side diag(P (λ), In̂), that is, with the order
of the diagonal blocks reversed with respect to (4). Therefore the structure of M(λ) in [8] is block-upper triangular.
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(1) The matrix polynomial of degree `

L(λ) :=

[
L̂(λ)

L̃(λ)

]
∈ F[λ](n̂+m)×(n̂+n) (10)

is an `-ification of P (λ) that satisfies (4) with M(λ) being of the form (8).

(2) In addition, if the row degrees of L̂(λ) are all equal to ` and the row degrees of N̂(λ) are all equal
to d− `, then L(λ) is a strong `-ification of P (λ).

Proof. Since N̂(λ)T has full column rank for all λ ∈ F, there exists a matrix polynomial Nc(λ) of

size n̂× (n̂+ n) such that Ñ(λ)T :=
[
Nc(λ)T N̂(λ)T

]
is unimodular (see [10, Lemma 2.16]).

Now, since L̂(λ) is a minimal basis, it has full row rank for all λ ∈ F, and, since Ñ(λ) is unimodular,

the product L̂(λ)Ñ(λ)T has full row rank for all λ ∈ F. Since, by construction,

L̂(λ)Ñ(λ)T =
[
L̂(λ)Nc(λ)T 0

]
,

the n̂× n̂ matrix U(λ) := L̂(λ)Nc(λ)T has full row rank for all λ ∈ F, so it is unimodular.
Then, the matrix

N(λ)T := Ñ(λ)T
[
U(λ)−1

In

]
=
[
Nc(λ)TU(λ)−1 N̂(λ)T

]
is unimodular, since it is the product of two unimodular matrices. Note that[

L̂(λ)

L̃(λ)

]
N(λ)T =

[
L̂(λ)

L̃(λ)

] [
Nc(λ)TU(λ)−1 N̂(λ)T

]
=

[
In̂ 0
X(λ) P (λ)

]
,

with X(λ) := L̃(λ)Nc(λ)TU(λ)−1. Hence:[
In̂ 0

−X(λ) Im

] [
L̂(λ)

L̃(λ)

]
N(λ)T =

[
In̂ 0
0 P (λ)

]
,

and this proves the first part of the statement.
Let us now prove the second part, namely that L(λ) is a strong `-ification of P (λ) provided that the

row degrees of L̂(λ) are all equal to ` and the row degrees of N̂(λ) are all equal to d− `. First recall that
for any minimal basis, B(λ), of size p× q, with p < q and

B(λ) =

 b1(λ)
...

bp(λ)

 ,
the matrix  revb1(λ)

...
revbp(λ)

 ,
obtained by taking the reversal of each row with respect the degree of that row is also a minimal basis
(see [4, Th. 3.2] or [23, Th. 7.5]). Since all row degrees of L̂(λ) are equal, then revL̂(λ) is a minimal

basis and has degree `, because L̂(0) 6= 0. Analogously, revN̂(λ) is a minimal basis with degree d − `.
Moreover, the duality condition L̂(λ)N̂(λ)T = 0 is equivalent to L̂(1/λ)N̂(1/λ)T = 0, which implies

(λ` L̂(1/λ)) (λd−` N̂(1/λ)T ) = 0, and from the definition of reversal we get

revL̂(λ)(revN̂(λ))T = 0. (11)
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So revL̂(λ) and revN̂(λ) are dual minimal bases. In addition, equation (9) implies that the degree

of L̃(λ) is exactly ` (since the degree of N̂(λ)T is d − `), and that L̃(1/λ)N̂(1/λ)T = P (1/λ). Then

(λ`L̃(1/λ))(λd−`N̂(1/λ)T ) = λdP (1/λ), that is

revL̃(λ)(revN̂(λ))T = revP (λ). (12)

Now, (11) and (12) together imply that revL̂(λ), revN̂(λ), revL̃(λ), and revP (λ) satisfy conditions (a)
and (b) in the statement. Therefore,

revL(λ) =

[
revL̂(λ)

revL̃(λ)

]

is an `-ification of revP (λ) and this completes the proof. �

Looking at Theorem 4.1, a procedure to get a strong `-ification, L(λ), of P (λ) as in (10) would be as
follows:

Step 1: Choose L̂(λ) ∈ F[λ]n̂×(n̂+n) and N̂(λ) ∈ F[λ]n×(n̂+n) to be a pair of dual minimal bases,

with L̂(λ) and N̂(λ) having row degrees all equal to ` and d− `, respectively.

Step 2: Solve for L̃(λ) in equation (9), to get L̃(λ) of degree at most `.

We emphasize that Theorem 4.1 establishes that (strong) `-ifications can be constructed through the

dual minimal bases L̂(λ) and N̂(λ) and the matrix polynomial L̃(λ) associated with P (λ), but Theorem
4.1 does not guarantee the existence of such matrix polynomials nor explains how to construct them.
Next, we are going to show that, provided that ` divides nd, any pair of dual minimal bases (independent

of P (λ)), L̂(λ) and N̂(λ) as in Step 1 above, allow us to find a matrix polynomial L̃(λ) as in Step 2

(in general non-unique), and so L(λ) in Theorem 4.1 is a strong `-ification of P (λ). Moreover, L̂(λ) and

N̂(λ) can be chosen to follow a general simple construction, valid for all matrix polynomials P (λ) with
fixed size m× n and degree d.

4.1. General construction for the case ` divides md or nd

We focus on the case ` divides nd. The case ` divides md is considered at the end of the section in
Remark 4.3 as a corollary. The goal is to show how to construct, first, dual minimal bases L̂(λ) and N̂(λ)

as in Step 1 above and, then, to show that for each N̂(λ) satisfying the conditions of Step 1, equation

(9) has a solution L̃(λ) of degree `, and characterize the set of all possible solutions of (9). Then, the
matrix L(λ) defined in (10) will be a strong `-ification of P (λ). Note that, given any m × n matrix
polynomial P (λ) of degree d and any integer ` such that 0 < ` < d and such that ` divides nd, we have
that k` = nd, for some integer k > n. Therefore, there exists an integer n̂ > 0 such that k = n̂+n. Then:

(n̂+ n)` = nd, (13)

which is equivalent to
n̂` = nd̂, (14)

with d̂ as in (7), where n̂ is going to be the size of the identity block in (4) or, in other words, the
`-ification L(λ) is going to be of size (n̂+m)× (n̂+ n).

Equation (14) above, together with Theorem 3.5 guarantee that there exist dual minimal bases L̂(λ) ∈
F[λ]n̂×(n̂+n) and N̂(λ) ∈ F[λ]n×(n̂+n) such that the row degrees of L̂(λ) are all equal to ` and the row

degrees of N̂(λ) are all equal to d̂. Note that, conversely, given any 0 < ` < d, the existence of such dual
minimal bases implies, by (6), that (14) holds, and this in turn implies (13), so that ` divides nd. This
means that the assumptions in Theorem 4.1(2) imply ` divides nd, which is not an additional assumption
to those of Theorem 4.1.

Once the existence of L̂(λ) and N̂(λ) has been established, we discuss their construction in Step 1.
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Step 1. (Construction of dual minimal bases, L̂(λ) ∈ F[λ]n̂×(n̂+n), N̂(λ) ∈ F[λ]n×(n̂+n), with all row

degrees equal to ` and d̂, respectively, when ` divides nd and n̂+ n = (nd)/`).

In order to build up such dual minimal bases L̂(λ) and N̂(λ) we can follow the procedure devised in
[9, Th. 5.1, Th. 6.1] (see also the alternative method in [9, Th. 5.3], which fits very well in our context).

However, as explained in [9], there are infinitely many dual minimal bases L̂(λ) and N̂(λ) with the desired
properties, although the ones constructed in [9, Th. 6.1] are particularly simple. We emphasize that for

any of these infinitely many pairs of dual minimal bases L̂(λ) and N̂(λ) the construction we present below

for the matrix polynomial L̃(λ) in (9) works, and L(λ) in (10) is a strong `-ification of P (λ).

Step 2. (Solutions, L̃(λ), of degree ` of L̃(λ)N̂(λ)T = P (λ) for a given N̂(λ) and P (λ)).

We need to show that, given any N̂(λ) constructed in Step 1 above, there is a solution L̃(λ) to (9)

with degree `. For this, we set L̃(λ) = λ`L̃`+λ`−1L̃`−1 + · · ·+λL̃1 + L̃0 and N̂(λ) = λd̂N̂d̂+λd̂−1N̂d̂−1 +

· · ·+ λN̂1 + N̂0, and write the convolution

[
L̃0 . . . L̃`−1 L̃`

]

N̂T

0 . . . N̂T
d̂

N̂T
0 . . . N̂T

d̂
. . .

. . .

N̂T
0 . . . N̂T

d̂

 =
[
P0 . . . Pd−1 Pd

]
, (15)

corresponding to (9), where:
N̂T

0 . . . N̂T
d̂

N̂T
0 . . . N̂T

d̂
. . .

. . .

N̂T
0 . . . N̂T

d̂

 ∈ F(n̂+n)(`+1)×n(d+1), (16)

and [
P0 . . . Pd−1 Pd

]
∈ Fm×(d+1)n,

so that
[
L̃0 . . . L̃`−1 L̃`

]
is a matrix of unknowns with size m× (n̂+ n)(`+ 1).

Equation (15) does not have a unique solution, since the block Toeplitz matrix (16) has n̂ more rows
than columns. However, the equation is consistent for any P (λ) and the degrees of freedom are easy to

describe. Indeed, one can solve first for L̃` from

L̃`N̂
T
d̂

= Pd , (17)

which is always consistent since N̂T
d̂

has full column rank, and we can move the last block row of the
block Toeplitz matrix to the right hand side to obtain the reduced equation

[
L̃0 . . . L̃`−1

]

N̂T

0 . . . N̂T
d̂

N̂T
0 . . . N̂T

d̂
. . .

. . .

N̂T
0 . . . N̂T

d̂

 = (18)

[
P0 P1 . . . Pd−1

]
− L̃`

[
0 . . . 0 N̂T

0 . . . N̂T
d̂−1

]
,

where now the block Toeplitz matrix is (n̂ + n)` × nd = nd × nd and invertible. Indeed, if this square
matrix was singular, it would have a left null vector. But that would correspond to a polynomial left null
vector of N̂(λ)T that would have degree `− 1, rather than `, so that L̂(λ) would not be a dual minimal

basis to N̂(λ). Therefore, (18) determines
[
L̃0 . . . L̃`−1

]
uniquely for each possible choice of L̃`.

We stress the fact that the arguments above proving the consistency of the equation (15), i.e., of (9),
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are heavily based on the fact that L̂(λ) and N̂(λ) are dual minimal bases, and not just submatrices of
unimodular matrices.

We can also describe the degrees of freedom of L̃`. Following Remark 3.6, if we choose the dual bases
such that their highest degree coefficients are

L̂` =
[
In̂ 0

]
, N̂T

d̂
=

[
0
In

]
,

respectively, then the general solutions for L̃` and the coefficient L` of L(λ) in Theorem 4.1 are given by

L̃` =
[
X` Pd

]
, and L` =

[
In̂ 0
X` Pd

]
,

with X` ∈ Fm×n̂ arbitrary. Clearly, the different solutions for L` (and therefore also L(λ)) are related by
a constant left multiplication [

In̂ 0
X` Im

]
that we omit when choosing L̃` =

[
0 Pd

]
.

Let us finish this section by summarizing part of the developments performed in Step 2.

Theorem 4.2. Let P (λ) be an m × n matrix polynomial of degree d > 0 and let L̂(λ) ∈ F[λ]n̂×(n̂+n)

and N̂(λ) ∈ F[λ]n×(n̂+n) be dual minimal bases with the row degrees of L̂(λ) all equal to `, for some

0 < ` < d, and the row degrees of N̂(λ) all equal to d̂ = d − `. Then the equation (9) for the unknown

matrix polynomial L̃(λ) of degree at most ` has infinitely many solutions, all of them of degree exactly `,
and the set of solutions depends on mn̂ free variables. If, in addition, the highest degree coefficients of
L̂(λ) and N̂(λ) are chosen to be

[
In̂ 0

]
and

[
0 In

]
, respectively, and L̃(λ) is a particular solution

of (9), then any other solution can be written as

X`L̂(λ) + L̃(λ),

where X` ∈ Fm×n̂ is an arbitrary matrix.

Remark 4.3. If the process developed in this section is applied to the matrix polynomial P (λ)T , of size
n×m and degree d, when ` divides md, then a strong `-ification L(λ)T of P (λ)T is constructed, and this
gives a strong `-ification L(λ) of P (λ).

4.2. Recovery of minimal indices

Theorem 4.10 in [10] proves that any singular m× n matrix polynomial P (λ), i. e., having nontrivial
left or right null spaces, has strong `-ifications for any value of ` > 0. In addition, Theorem 4.10 in [10]
characterizes all possible minimal indices of the strong `-ifications of P (λ) and shows that they may take
a wide variety of values completely unrelated, in general, to the minimal indices of P (λ). Surprisingly,
all the infinitely many strong `-ifications of P (λ) constructed in Section 4.1 according to the two-step
strategy presented in Section 4.1 have the same minimal indices and they are related in a very simple
way with the ones of P (λ). To prove this fact is the goal of this section. We focus first on the case `
divides nd and consider the case ` divides md as a corollary in Remark 4.6.

We will make use of the following lemma.

Lemma 4.4. Let A(λ) be an n× p matrix polynomial all whose columns have the same degree d, and let
B(λ) be another p ×m matrix polynomial whose column degrees are ε1, . . . , εm. If both A(λ) and B(λ)
are column reduced, then the product A(λ)B(λ) is column reduced as well, and its column degrees are
ε1 + d, . . . , εm + d.

Proof. In the conditions of the statement we can write:

A(λ) = λdAh +Alow(λ), B(λ) = Bh

 λε1

. . .

λεm

+Blow(λ),
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where Ah, Bh are the highest column degree coefficient matrices of A(λ) and B(λ), respectively. Then:

A(λ)B(λ) = AhBh

 λd+ε1

. . .

λd+εm

+ (AB)low(λ),

where the jth column of (AB)low(λ) has degree smaller than d+ εj , for j = 1, . . . ,m. Hence, the highest
column degree coefficient matrix of A(λ)B(λ) is AhBh. Since, by hypothesis, both Ah and Bh are of full
(column) rank, their product AhBh is of full column rank as well, so A(λ)B(λ) is column reduced. �

We are now in the position of proving the main result of this section.

Theorem 4.5. Let P (λ) be an m × n matrix polynomial of degree d > 0 with left minimal indices
equal to η1, η2, . . . , ηq and right minimal indices ε1, ε2, . . . , εp. Let L(λ) ∈ F[λ](n̂+m)×(n̂+n) be any strong
`-ification of P (λ) as in part (2) of Theorem 4.1. Then:

(a) The right minimal indices of L(λ) are ε1 + (d− `), ε2 + (d− `), . . . , εp + (d− `).

(b) The left minimal indices of L(λ) are η1, η2, . . . , ηq.

Proof. We are going to see first that the right minimal indices of L(λ) are the ones of P (λ) all
increased by d − `. For this, let the columns of Nr(λ) form a minimal basis for the right null space of
P (λ). Then by Theorem 4.1 we have

L(λ)N̂(λ)TNr(λ) =

[
0

P (λ)

]
Nr(λ) = 0.

Since N̂(λ)T is column reduced and, by construction, all its columns have the same degree d̂, and Nr(λ)

is column reduced as well, Lemma 4.4 guarantees that the product N̂(λ)TNr(λ) is column reduced and

its column degrees are the column degrees of Nr(λ) all increased by d̂, with d̂ as in (7). Since both N̂(λ)T

and Nr(λ) are of full rank for all λ ∈ F, their product N̂(λ)TNr(λ) has the same property. Moreover,

L(λ) and P (λ) have the same number of right minimal indices by [8, Th. 4.1]. Hence, N̂(λ)TNr(λ) is a

right minimal basis of L(λ) whose minimal indices are the ones of P (λ) increased by d̂.
Now, we are going to prove that the left minimal indices of L(λ) coincide with those of P (λ). We

already know that both P (λ) and L(λ) have the same number of left minimal indices (see [8, Th. 4.1]).
Set η1(P ), . . . , ηq(P ) and η1(L), . . . , ηq(L) for the left minimal indices of P (λ) and L(λ), respectively. Let
δfin be the sum of (the numbers in) all partial multiplicity sequences of P (λ), and µ∞ be the sum of (all
numbers in) the infinite partial multiplicity sequence at ∞ of P (λ). Since L(λ) is a strong `-ification
of P (λ), δfin and µ∞ coincide with, respectively, the sum of (the numbers in) all partial multiplicity
sequences and the sum of (all numbers in) the infinite partial multiplicity sequence of L(λ) [8, Th. 4.1].
Then, by applying the Index Sum Theorem [8, Th. 6.5] to P (λ) and L(λ), respectively, we get:

q∑
j=1

ηj(P ) +

p∑
i=1

εi + δfin + µ∞ = rd, (19)

and
q∑
j=1

ηj(L) +

p∑
i=1

(εi + d̂) + δfin + µ∞ = ρ`, (20)

where r is the normal rank of P (λ) and ρ is the normal rank of L(λ). By (4), we have ρ = r + n̂ and,
since p = n− r, by subtracting (19) from (20), we get:

q∑
j=1

ηj(L)−
q∑
j=1

ηj(P ) + (n− r)d̂ = (r + n̂)`− rd,
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so that, using (13),

q∑
j=1

ηj(L)−
q∑
j=1

ηj(P ) = nd− n`+ r`− rd− (n− r)d̂ = (n− r)(d− `)− (n− r)d̂ = 0,

hence
q∑
j=1

ηj(L) =

q∑
j=1

ηj(P ). (21)

Now, we are going to see that ηj(P ) ≤ ηj(L), for j = 1, . . . , q, which, together with (21) imply that
ηj(L) = ηj(P ), for all j = 1, . . . , q.

Let v(λ) ∈ F1×(n̂+m)[λ] be a vector polynomial in the left nullspace of L(λ). Let us partition v(λ) =[
v1(λ) v2(λ)

]
, with v1(λ) ∈ F1×n̂[λ] and v2(λ) ∈ F1×m[λ]. By Theorem 4.1 we know that L(λ)

satisfies (4) with M(λ) of the form (8) and, therefore:

0 = v(λ)L(λ)N(λ)T =
[
v1(λ) v2(λ)

] [ In̂ 0
X(λ) P (λ)

]
=
[
v1(λ) + v2(λ)X(λ) v2(λ)P (λ)

]
,

so v2(λ) is a vector polynomial in the left nullspace of P (λ) and v1(λ) = −v2(λ)X(λ). As a consequence,
any minimal basis of L(λ) is of the form

BL =
{[
−Z1(λ)X(λ) Z1(λ)

]
, . . . ,

[
−Zq(λ)X(λ) Zq(λ)

]}
,

for some Z1(λ), . . . , Zq(λ), which are vector polynomials belonging to the left nullspace of P (λ). In fact,
{Z1(λ), . . . , Zq(λ)} must be linearly independent, because otherwise BL would not be linearly indepen-
dent. So {Z1(λ), . . . , Zq(λ)} is a basis of the left null space of P (λ). If {Z1(λ), . . . , Zq(λ)} is not a left
minimal basis of P (λ), then there would be a left minimal basis of P (λ), {w1(λ), . . . , wq(λ)}, so that

q∑
j=1

ηj(P ) = degw1(λ) + · · ·+ degwq(λ) < degZ1(λ) + · · ·+ degZq(λ)

≤ deg
([
−Z1(λ)X(λ) Z1(λ)

])
+ · · ·+ deg

([
−Zq(λ)X(λ) Zq(λ)

])
=

q∑
j=1

ηj(L),

which is in contradiction with (21). Hence {Z1(λ), . . . , Zq(λ)} is a left minimal basis of P (λ), and then
ηj(P ) = degZj(λ) ≤ deg

([
−Zj(λ)X(λ) Zj(λ)

])
= ηj(L), for j = 1, . . . , q, as wanted. �

Remark 4.6. In the case ` divides md any strong `-ification of P (λ), of size m × n and degree d,
constructed according the procedure described in Remark 4.3, has the same right minimal indices as
P (λ), while the left minimal indices are those of P (λ) shifted by d− `.

4.3. Main results and example

In this subsection we gather together the main results of this paper, which are immediate consequences
of the arguments and developments carried out in Sections 4.1 and 4.2. In addition, we present an explicit
example of constructing a strong `-ification directly from the coefficients of the polynomial in a situation
not covered by previous results in the literature, which are only valid for the case where ` divides d.

Theorem 4.7. Let P (λ) be an m × n matrix polynomial of degree d. Then for any ` such that n · d =
` · (n̂ + n), with n̂ > 0, we can construct a strong `-ification L(λ) of P (λ) with size (n̂ + m) × (n̂ + n)
following Step 1 and Step 2 in Section 4.1. This strong `-ification has the same left minimal indices as
P (λ), and the right minimal indices are those of P (λ) all increased by d− `. More precisely:

(i) If ε1, . . . , εp are the right minimal indices of P (λ), then the right minimal indices of L(λ) are
ε1 + (d− `), . . . , εp + (d− `).
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(ii) If η1, . . . , ηq are the left minimal indices of P (λ), then the left minimal indices of L(λ) are η1, . . . , ηq.

By considering the transpose of P (λ), we can construct a strong `-ification, L(λ)T , of P (λ)T , satisfying
the statement of Theorem 4.7. Since the left (respectively, right) minimal indices of a matrix polynomial
P (λ)T correspond to the right (resp., left) minimal indices of P (λ), we get the analogue of Theorem 4.7.

Theorem 4.8. Let P (λ) be an m× n matrix polynomial of degree d. Then for any ` such that m · d =
` · (m̂ + m), we can construct a strong `-ification L(λ) of size (m̂ + m) × (m̂ + n), which has the same
right minimal indices as P (λ), and the left minimal indices are those of P (λ) all increased by d− `. More
precisely:

(i) If ε1, . . . , εp are the right minimal indices of P (λ), then the right minimal indices of L(λ) are
ε1, . . . , εp.

(ii) If η1, . . . , ηq are the left minimal indices of P (λ), then the left minimal indices of L(λ) are η1 +(d−
`), . . . , ηq + (d− `).

Remark 4.9. Note that the size of the strong `-ifications in the statement of Theorem 4.7 are (n̂ +
m) × (n̂ + n), where n̂ = n(d − `)/`. Similarly, the size of the strong `-ifications in Theorem 4.8 is
(m̂ + m) × (m̂ + n), with m̂ = m(d − `)/`. For large values of m,n and `, this quantity may be much
smaller than the size of all families of strong linearizations of matrix polynomials with size m × n and
degree d known so far. In particular, the size of the Fielder companion linearizations [7] is at least
((d− 1)s+m)× ((d− 1)s+n), where s = min{m,n}. This is the only family of companion linearizations
known so far which is valid for rectangular matrix polynomials, and includes the classical first and second
Frobenius companion forms, that have size ((d−1)n+m)×dn and dm×((d−1)m+n), respectively. Note
also that for square n× n matrix polynomials of degree d the size of the strong `-ifications in Theorems
4.7 and 4.8 is (nd)/`× (nd)/`.

We warn the reader that the existence of strong `-ifications as those in Theorems 4.7 and 4.8 follows
immediately from [10, Th. 4.10] and that the main contribution of this work is to present an explicit
procedure for their construction using only the coefficients of the given polynomial.

We want to emphasize that, though the strong `-ifications L(λ) constructed in Section 4.1 are not
always companion forms, each of them is a general construction valid for all matrix polynomials in the
conditions of the statements of Theorems 4.7 and 4.8. Example 4.1 illustrates one of these constructions
for quadratifications (i.e., `-ifications with ` = 2) of cubic m × 2 matrix polynomials. We remark that
Example 4.1 is the first known concrete example of a strong quadratification of an arbitrary m× 2 cubic
matrix polynomial. In fact, Example 4.1 is the first concrete example of a strong `-ification where ` does
not divide d.

Example 4.1. Let P (λ) be an m×2 cubic matrix polynomial. We explicitly describe how to construct a
quadratification L(λ) of P (λ) following Steps 1–2 in Section 4.1. Note that in this setting n = 2, d = 3,
and ` = 2, so that ` divides nd, but ` does not divide d. According to the notation above, we have n̂ = 1
and d̂ = 1.

Set P (λ) = λ3P3 + λ2P2 + λP1 + P0, as in (2). Following the zigzag construction in [9, Th. 5.1, Th.

6.1], the matrices L̂(λ) and N̂(λ) in Step 1 in Section 4.1 can be taken as:

L̂(λ) =
[
λ2 −λ 1

]
, and N̂(λ)T =

 1 0
λ 1
0 λ

 .
In particular,

N̂T
d̂

= N̂T
1 =

 0 0
1 0
0 1

 .
We look for a quadratic m × 3 matrix polynomial L̃(λ) = λ2L̃2 + λL̃1 + L̃0 satisfying the convolution

equation (15). We start by choosing L̃2 as a solution of (17), for instance:

L̃2 =
[

0m×1 P3

]
,
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and then the convolution equation (18) for L̃0, L̃1 becomes

[
L̃0 L̃1

]


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1

 =
[
P0 P1 P2

]
−
[

0m×1 P3

]  0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 .

The block Toeplitz matrix in the left hand side of this equation is invertible, so the equation has a unique
solution, which is

[
L̃0 L̃1

]
=
[
P0 P1 P2 − P3e1e

T
2

]


1 0 0 0 0 0
0 1 0 −1 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 −1 0 1 0
0 0 0 0 0 1

 ,

that is:
L̃0 =

[
P0 P1e2 − P2e1

]
, and L̃1 =

[
P1e1 − P0e2 P2 − P3e1e

T
2

]
,

where
[
e1 e2

]
= I2 is the 2× 2 identity matrix.

With all this information, the quadratification of P (λ) we obtain is:

L(λ) =

[
L̂(λ)

L̃(λ)

]
= λ2

[
1 0 0
0 P3e1 P3e2

]
+ λ

[
0 −1 0

P1e1 − P0e2 P2e1 P2e2 − P3e1

]
+

[
0 0 1

P0e1 P0e2 P1e2 − P2e1

]
.

4.4. The special case where ` divides d: Companion `-ifications

The first known construction of companion `-ifications was introduced in [8, p. 304, Th. 5.7, Th.
5.8] for the case where ` divides d. These companion strong `-ifications where termed Frobenius-like
companion forms of degree `, because they resemble very much the first and second Frobenius companion
linearizations. We are going to show that our construction allows us to get a companion form which is
closely related to those.

Before proceeding, let us recall the basic features of companion forms of degree `, or companion `-
ifications [8, Def. 5.1]. Companion `-ifications are uniform templates for constructing matrix polynomials

of degree `,
∑`
i=0 λ

iXi, which are strong `-ifications for any matrix polynomial P (λ) =
∑d
i=0 λ

iPi of a
fixed degree and size, and such that, for i = 0, 1, . . . , `, each entry of the coefficient matrix Xi is a scalar-
valued function of the entries of [P0, P1, . . . , Pd]. These scalar-valued functions are either a constant or
a constant multiple of just one of the entries of [P0, P1, . . . , Pd]. In particular, note that sums of several
different entries of [P0, P1, . . . , Pd] cannot appear in any coefficient Xi. As a consequence, the strong
quadratification L(λ) constructed in Example 4.1 is not a companion `-ification, since some entries of the
coefficients of the zero and the first degree terms of L(λ) are sums of entries of [P0, P1, . . . , Pd].

The companion forms known in the literature include, among others, the family of Fiedler lineariza-
tions [5, 7] (which comprise the first and second Frobenius companion linearizations), and the companion
`-ifications introduced in [8]. It is worth emphasizing that all companion forms known so far share a com-
mon interesting feature, namely, their coefficients are block-partitioned matrices, whose nonzero blocks
are either coefficients of the matrix polynomial or identity matrices, multiplied in some cases by −1.

When ` divides d we can write d = k`, with k ≥ 1. It then follows from (13) that n̂ = n(k − 1), so

L̂(λ) in Step 1 in Section 4.1 has size n(k− 1)× nk and N̂(λ) has size n× nk. The row degrees of L̂(λ)

and N̂(λ) are, respectively, ηj = `, for j = 1, . . . , n(k − 1), and εi = d̂ = (k − 1)`, for i = 1, . . . , n. We
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can choose these dual minimal bases L̂(λ) and N̂(λ) as follows :

L̂(λ) =


 λ` −1

. . .
. . .

λ` −1


(k−1)×k

⊗ In, and N̂(λ)T =


1
λ`

λ2`

...
λ(k−1)`

⊗ In. (22)

Following the construction of Section 4.1, we take:

L̃` =
[

0 . . . 0 Pd
]
∈ Fm×nk, (23)

where each zero block in (23) has size m × n, and the reduced (invertible) block-Toeplitz matrix of
equation (18), namely

Tred :=


N̂T

0 . . . N̂T
d̂

N̂T
0 . . . N̂T

d̂
. . .

. . .

N̂T
0 . . . N̂T

d̂

 ∈ Fnd×nd,

is then just a permutation matrix, since N̂T
i = e(i/`)+1 ⊗ In for i = 0, `, 2`, . . . , (k− 1)` = d̂, and N̂T

i = 0

otherwise, so each row has exactly one entry equal to 1 and the remaining ones are zero. Here ej ∈ Fk×1

stands for the j-th canonical vector.
The resulting `-ification follows a similar pattern to the one of the first Frobenius-like companion

`-ification C`1(λ) introduced in [8, p. 304]. To see this, note first that the matrix Tred above is equal to:

Tred =
[
I` ⊗ e1 I` ⊗ e2 · · · I` ⊗ ek

]
⊗ In,

which is a permutation matrix as mentioned before, so its inverse is equal to its transpose. Hence:

T−1
red =


I` ⊗ eT1
I` ⊗ eT2

...
I` ⊗ eTk

⊗ In.
Moreover, since

N̂T
i =

[
∗

0n×n

]
, for i = 1, . . . , d̂− 1,

where the block ∗ is not of relevance in the argument, from (23) we get

L̃`

[
0 . . . 0 N̂T

0 . . . N̂T
d̂−1

]
= 0.
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Then (18) reads

[
L̃0 L̃1 . . . L̃`−1

]
=
[
P0 P1 . . . Pd−1

]


I` ⊗ eT1
I` ⊗ eT2

...
I` ⊗ eTk

⊗ In


=
[
P0 P1 . . . P`−1 P` P`+1 . . . P2`−1 . . . P(k−1)` P(k−1)`+1 . . . Pk`−1

]

eT1 ⊗ In 0 0

0 eT1 ⊗ In
...

...
... · · · 0

0 0 eT1 ⊗ In
eT2 ⊗ In 0 0

0 eT2 ⊗ In
...

...
... · · · 0

0 0 eT2 ⊗ In
...

... · · ·
...

eTk ⊗ In 0 0

0 eTk ⊗ In
...

...
... · · · 0

0 0 eTk ⊗ In


=
[
P0(eT1 ⊗ In) + P`(e

T
2 ⊗ In) + · · ·+ P(k−1)`(e

T
k ⊗ In)|

P1(eT1 ⊗ In) + P`+1(eT2 ⊗ In) + · · ·+ P(k−1)`+1(eTk ⊗ In)| · · ·
| P`−1(eT1 ⊗ In) + P2`−1(eT2 ⊗ In) + · · ·+ Pk`−1(eTk ⊗ In)

]
=
[
P0 P` . . . P(k−1)` P1 P`+1 . . . P(k−1)`+1 . . . P`−1 P2`−1 . . . Pk`−1

]
.

Then, the strong `-ification that we get is

L(λ) =


λ`In −In

. . .
. . .

λ`In −In
B0(λ) . . . Bk−2(λ) Bk−1(λ)

 ,
where Bj(λ) = Pj` + λPj`+1 + · · · + λ`−1P(j+1)`−1, for j = 0, 1, . . . , k − 2, and Bk−1(λ) = P(k−1)` +

λP(k−1)`+1 + · · ·+ λ`−1Pk`−1 + λ`Pk`.
Here we display the construction for ` = 2 and d = 6:

L(λ) =

 λ2In −In
λ2In −In

P0 + λP1 P2 + λP3 P4 + λP5 + λ2P6

 ,
since [

L̃0 L̃1

]
=
[
P0 P2 P4 P1 P3 P5

]
,

which is a block permutation of the coefficients of P (λ).

The construction of the dual minimal bases L̂(λ) and N̂(λ) in (22) is, after exchanging the roles of

L̂(λ) and N̂(λ), a variation of the construction in [9, Th. 6.1] in terms of direct sums of dual zigzag
matrices. More precisely, the construction in [9] gives a pair of dual minimal bases N1(λ) ∈ F[λ]n×nk and
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N2(λ) ∈ F[λ]n(k−1)×nk, with N2(λ)N1(λ)T = 0, where:

N2(λ) = In ⊗


 λ` 1

. . .
. . .

λ` 1


(k−1)×k

Σk

 , and N1(λ)T = In ⊗


1
λ`

λ2`

...
λ(k−1)`

 ,

where Σk is the alternating signs matrix of size k×k, Σk := diag(1,−1, 1, . . . , (−1)k−1). Now, since, first, λ` −1
. . .

. . .

λ` −1


(k−1)×k

= Σk−1

 λ` 1
. . .

. . .

λ` 1


(k−1)×k

Σk

and, second, the Kronecker products A⊗B and B ⊗A of two arbitrary matrices A,B are equivalent by
permutations [16, Cor. 4.3.10], comparing with (22) and using that (CD)⊗ In = (C ⊗ In)(D ⊗ In) (see
[16, Lemma 4.2.10]), we get

L̂(λ) = (Σk−1 ⊗ In)Π1N2(λ)Π, and N̂(λ)T = ΠTN1(λ)TΠ2,

for some permutation matrices Π,Π1, and Π2 (see formula (4.3.11) in [16]). Hence, L̂(λ) and N̂(λ) are
permutationally equivalent to the construction in [9], as explained in the paragraph right after Example
3.2.

5. Concluding remarks

We have presented a general construction of strong `-ifications for arbitrary matrix polynomials with
size m× n and degree d which is valid in the case where ` divides one of nd or md. The contribution of
this construction relies not only on the fact that it is a general construction of strong `-ifications using
only simple operations on the coefficients of the matrix polynomial in a more general setting than the
one considered so far (namely, when ` divides d), but also on the fact that there is a simple relationship
between the left and right minimal indices of the `-ification and the ones of the matrix polynomial. Hence,
we can easily recover all the spectral information of the matrix polynomial from the spectral information
of the `-ification. More precisely, in the first case (that is, when ` divides nd), the left minimal indices of
the `-ification coincide with those of the polynomial, whereas the right minimal indices of the `-ification
are those of the polynomial increased by a fixed quantity equal to d−` (each). In the case where ` divides
md, the situation is the same one after exchanging the roles of the left and right minimal indices, namely,
the right minimal indices of the `-ification coincide with the ones of the polynomial, and the left minimal
indices of the `-ification are the ones of the polynomial increased by d− ` (each). Our construction allows
for some flexibility that depends on the choice of some of the ingredients involved in the construction, so
that it gives not only a single `-ification, but a family of strong `-ifications.

When particularizing to the case when ` divides d, a particular choice of the ingredients just mentioned
above allows us to derive a companion `-ification, which resembles the ones presented recently in [8]. That
ones were the only companion `-ifications known so far (for arbitrary ` dividing d). It is likely that other
possible choices of these ingredients may give different companion forms. The analysis of this issue
remains as an open question and will be the subject of further research
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