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Abstract We introduce a new family of strong linearizations ofmatrix polynomials—
which we call “block Kronecker pencils”—and perform a backward stability analysis
of complete polynomial eigenproblems. These problems are solved by applying any
backward stable algorithm to a block Kronecker pencil, such as the staircase algorithm
for singular pencils or the QZ algorithm for regular pencils. This stability analysis
allows us to identify those block Kronecker pencils that yield a computed complete
eigenstructure which is exactly that of a slightly perturbed matrix polynomial. The
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global backward error analysis in this work presents for the first time the following
key properties: it is a rigorous analysis valid for finite perturbations (i.e., it is not a
first order analysis), it provides precise bounds, it is valid simultaneously for a large
class of linearizations, and it establishes a framework that may be generalized to other
classes of linearizations. These features are related to the fact that block Kronecker
pencils are a particular case of the new family of “strong blockminimal bases pencils”,
which are robust under certain perturbations and, so, include certain perturbations of
block Kronecker pencils.

Mathematics Subject Classification 65F15 · 65F35 · 15A18 · 15A22 · 15A54 ·
93B18 · 93B40 · 93B60

1 Introduction

Matrix polynomials appear in many applications in engineering, mechanics, control,
linear systems theory, and computer-aided geometric design. They may arise directly
or as approximations of highly nonlinear eigenvalue problems.The classicalworks [36,
47,66] and themodern surveys [40,60,70] includediscussions of different applications
of matrix polynomials. Those readers unfamiliar with matrix polynomials can find in
Sect. 2 most of the concepts mentioned in this introduction.

Square regular matrix polynomials are related to polynomial eigenvalue problems
(PEPs), i.e., to the computation of all of the eigenvalues of the polynomial, while
singularmatrix polynomials are related to complete polynomial eigenproblems (CPEs),
i.e., to the computation of all of the eigenvalues and of all of the so-called minimal
indices of the polynomial. Although in the last years themain focus has been on regular
matrix polynomials, problems related to singular matrix polynomials are also quite
common. Thus, in engineering practice, singular problems allow to add redundancy
into the models and, in this way, to regularize ill-conditioned problems [5,49,59].
Moreover, singular matrix polynomials are fundamental in the area of systems and
control, where they model systems of differential equations whose behavior has to
be “controlled”. This was nicely synthesized in the pioneering work of Rosenbrock
[66], who introduced quadruples of matrix polynomials {T (λ),U (λ), V (λ),W (λ)} to
model such systems. The Smith form [33] of the matrix polynomials

Pp(λ) = T (λ), Pz(λ) =
[
T (λ) −U (λ)

V (λ) W (λ)

]
,

and of the first block row and the first block column of Pz(λ), denoted as Pc(λ) and
Po(λ), respectively, define the so-called poles and zeros of the transfer function of
such systems, as well as the notions of controllability and observability. The matrix
polynomial Pp(λ) is square and invertible and defines the poles of the system, which
are its natural frequencies. Thematrix polynomial Pz(λ)maybe non-square or singular
and describes the zeros of the system, which are the frequencies that are filtered by
the system, and the minimal indices that characterize its left and right “singular” null
space structures. Finally, the Smith form of the non-square matrix polynomials Pc(λ)
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and Po(λ) yields conditions on the controllability and observability of the system. The
importance of computing the finer details of the Smith zeros and minimal indices of a
matrix polynomial was already stressed in the eighties [47,72], andwas revived later in
the behavioral modeling of dynamical systems [57]. It also appears in other problems
in this area, as, e.g., in deadbeat control problems [73]. In all of these problems it
is very important to have reliable numerical algorithms for computing the relevant
structural information of potentially singular matrix polynomials.

The numerical solution of PEPs and CPEs is usually performed by embedding the
coefficients of the associatedmatrix polynomial into a larger linear matrix polynomial,
or matrix pencil, called a linearization, and then applying well-established algorithms
for matrix pencils to the linearization, like the QZ algorithm in the regular case [38],
or the staircase algorithm in the singular case [71], potentially enhanced with the
stratification of the orbits of pencils [28,29]. This linearization approach for solving
numerically PEPs and CPEs was proposed for the first time in [72,74]. We emphasize
that particular examples of linearizations of matrix polynomials had been used before
for different purposes. For instance, a variant of the Frobenius companion linearization
of anymatrix polynomial (regular or singular) is considered in [37, Section 3.4], where
some interesting properties of this Frobenius-like linearization are established. Formal
definitions of linearization and strong linearization of regular matrix polynomials can
be found in [36] and [35], respectively, and in [12] for singular matrix polynomials. A
thorough treatment of the definition of linearization and strong linearization and their
implications can be found in [17].

The linearizations used most often to solve PEPs and CPEs are the well known
Frobenius companion forms. They are used in [74] and in the command polyeig
of MATLAB. They have many favorable properties; in particular, it was proven in
[74] that they yield computed solutions of PEPs and CPEs which are exactly those of
slightly perturbed matrix polynomials (i.e., from the polynomial point of view they
have perfect structured backward stability). However, it is well known that the Frobe-
nius companion forms do not preserve the algebraic structures that are often present in
the matrix polynomials arising in applications. Therefore, the rounding errors inherent
to numerical computations may destroy qualitative properties of the eigenstructures
of such polynomials when they are computed via the Frobenius forms. In addition, it
is also known that Frobenius forms do not deliver accurate solutions of PEPs when the
matrix coefficients of the polynomial have very different norms; this problem has to
date only been addressed in the quadratic case [41,78]. These drawbacks have moti-
vated an intense activity in the last few years towards the development and analysis
of new classes of linearizations of matrix polynomials, with special emphasis on lin-
earizations that preserve certain structures important in applications (see, as a small
sample, [1,3,6,7,9,11,14,15,31,43,54,55,62,63,77]).

A key open problem in this area is that global backward error analyses of PEPs
and CPEs solved by the new classes of linearizations have not yet been developed,
and, so, it is not known if their use combined with the QZ or the staircase algorithm is
backward stable from the polynomial point of view. The only backward error analyses
available in this context are the “local” residual analyses valid for each particular
computed eigenpair in the case of the linearizations in vector spaces [42,44,69,78],
and a few first order global backward error analyses valid for particular “colleague”
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linearizations [51,53,64] or for the Frobenius linearizations [74]. Two obstacles for
extending these global backward error analyses to other classes of linearizations are
that these analyses are very particular, since they make use of the highly specific
structures of the considered linearizations, and that the new classes of linearizations are
very restricted in the sense that they are highly structured and, so, are not robust under
the unstructured perturbations coming from the backward errors of the algorithms.
Thus, it is not clear if they are still linearizations of some matrix polynomial when
they are perturbed, and even less of what polynomial they could be linearizations.

In order to overcome these obstacles, we introduce in this paper two new families
of strong linearizations of general matrix polynomials—square or rectangular, regular
or singular—whose minimal indices are related to those of the matrix polynomial
via constant uniform shifts. We call these families the strong block minimal bases
pencils, and a subfamily of it the block Kronecker pencils. Strong block minimal
bases pencils are defined in an abstract way in terms of the classical concept of dual
minimal bases [32]. This allows us to prove that they are always strong linearizations
of easily described matrix polynomials in a straightforward and general way and
that simple relationships exist between their minimal indices and those of the matrix
polynomial. These properties are inherited by the block Kronecker pencils, which
include—modulo permutations—all of the Fiedler and proper generalized Fiedler
pencils as very particular cases (see the extended version of this paper [25, Section
4] and [10]), and which have the property of being easily constructed in terms of the
polynomial coefficients.

Strong block minimal bases pencils have, in practice, only one structural feature,
that is the presence of a zero block, since the other ingredients of their definition are
polynomial minimal bases and “generically” all matrix polynomials of proper sizes
are minimal bases [75]. So, the class of strong block minimal bases pencils is robust
under perturbations that preserve that zero block and, in addition, it is easy to describe
the matrix polynomials of which they are linearizations. These properties enable us
to perform a global backward error analysis of PEPs and CPEs solved via block
Kronecker pencils, because arbitrary perturbations of these pencils lead, after some
manipulations, to other strong block minimal bases pencils with similar properties.
This error analysis has the following novel properties: (1) it is valid for perturbations
with finite norms, in contrast to previous analyses which are valid only to first order;
(2) it delivers precise bounds, in contrast to other analyses which only provide vague
big-O bounds; (3) it is valid simultaneously for a very large class of linearizations, in
contrast to other analyses that are specific for particular linearizations; and (4) it may
be generalized to other families of strong block minimal bases pencils. As a corollary,
this analysis solves the open problem of proving that the QZ algorithm, in the regular
case, or the staircase algorithm, in the singular case, applied to any Fiedler or proper
generalized Fiedler pencil compute complete eigenstructures of matrix polynomials
that enjoy perfect structured backward stability from the polynomial point of view, i.e.,
the computed complete eigenstructure is the exact one of a nearby matrix polynomial.

We emphasize that this backward error analysis does not imply that the eigenvalues
and/or minimal indices of the matrix polynomial are accurately computed, since they
are intrinsically ill-conditioned, or even ill-posed, when the eigenvalues are close to
be multiple or the minimal indices are not generic [28,29]. However, note that our

123



Block Kronecker linearizations of matrix polynomials and… 377

results guarantee that if a backward stable stratification-enhanced staircase algorithm
[29] is used on a block Kronecker pencil, then, although the computed complete
eigenstructure may be quite different from the exact one, it always corresponds (after
a fixed constant shift of the minimal indices) to the exact complete eigenstructure of
a nearby matrix polynomial.

The paper is organized as follows. Section 2 presents a summary of basic concepts.
In Sect. 3, the strong block minimal bases pencils are introduced and their properties
are established. Section 4 gives the definition of block Kronecker pencils and studies
their properties. The global backward error analysis of complete polynomial eigen-
problems solved by means of block Kronecker pencils is the subject of Sect. 5. Some
conclusions and lines of future research are discussed in Sect. 6. Finally, the Appen-
dices present long technical proofs of some results needed in the paper. For brevity,
this paper does not contain recovery procedures of eigenvectors and minimal bases
of a matrix polynomial from those of its strong block minimal bases pencils or of its
block Kronecker pencils. These results can be found in [25, Section 7].

2 Basic concepts, auxiliary results, and notation

Throughout the paper we use the following notation. Given an arbitrary field F, we
denote by F[λ] the ring of polynomials in the variable λ with coefficients in F and by
F(λ) the field of rational functions with coefficients in F. The set of m × n matrices
with entries in F[λ] is denoted by F[λ]m×n and is also called the set of m × n matrix
polynomials. In this context, row or column vector polynomials are just matrix polyno-
mials withm = 1 or n = 1. F(λ)m×n denotes the set ofm×n rational matrices. Given
two matrices A and B, A⊕ B denotes their direct sum, i.e., A⊕ B = diag(A, B), and
A ⊗ B denotes their Kronecker product [45]. The algebraic closure of F is denoted
by F. The results in Sects. 5 and 2.1 assume that F = R or F = C, while the rest of
results remain valid in any field.

A matrix polynomial P(λ) ∈ F[λ]m×n is said to have grade d if it is written as

P(λ) = Pdλ
d + · · · + P1λ + P0, with P0, . . . , Pd ∈ F

m×n, (2.1)

where any of the coefficient matrices Pk , including Pd , may be the zero matrix. As
usual, the degree of P(λ), denoted by deg(P), is the maximum integer k such that Pk
is a nonzero matrix. Thus, the degree of P(λ) is fixed while its grade d is a choice
that must satisfy d ≥ deg(P). The concept of grade has been used previously in
[17,56] and is convenient when the degree of a polynomial is not known in advance.
Throughout this paper when the grade of P(λ) is not explicitly stated, we consider its
grade equal to its degree. A matrix polynomial of grade 1 is called a matrix pencil.

For any d ≥ deg(P) the d-reversal matrix polynomial of P(λ) is defined as

revd P(λ) := λd P(λ−1).
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Observe that if P(λ) is assumed to have grade d, then it is assumed that revd P(λ)

has also grade d, but that the degree of revd P(λ) may be different than the degree of
P(λ), even in the case d = deg(P).

We define the rank of a matrix polynomial P(λ) ∈ F[λ]m×n as its rank over the
field F(λ), i.e., as the size of the largest non-identically zero minor of P(λ) [33], and
is denoted by rank(P). Sometimes, this is also called in the literature the “normal
rank” of P(λ), but we avoid to use this name for brevity. Note that expressions such
as rank(P(λ0)) denote the rank of the constant matrix P(λ0) ∈ F

m×n
, i.e., of the

polynomial evaluated at λ0 ∈ F. We will say that P(λ0) has full row (resp. column)
rank if rankP(λ0) = m (resp. rankP(λ0) = n). Observe that if the constant matrix
P(λ0) has full row (resp. column) rank, then also the matrix polynomial P(λ) has full
row (resp. column) rank.

A key distinction for matrix polynomials is between regular and singular matrix
polynomials. A matrix polynomial P(λ) is said to be regular if P(λ) is square (that
is, m = n) and det P(λ) is not the identically zero polynomial. Otherwise, P(λ) is
said to be singular (note that this includes all rectangular matrix polynomialsm �= n).
We refer the reader to [17, Section 2] for the precise definitions of the spectral and
the singular structures of a matrix polynomial, as well as for other related concepts
that are used in this paper. In addition, as in [21], the term complete eigenstructure of
P(λ) stands for the collection of all of the elementary divisors of P(λ), both finite and
infinite, and for the collection of all of its minimal indices, both left and right, i.e., for
the union of the spectral and singular structures of P(λ). In the next paragraph, we
explain in detail the concepts of minimal bases and minimal indices, as they play an
essential role in this paper.

If a matrix polynomial P(λ) ∈ F[λ]m×n is singular, then it has non-trivial left
and/or right rational null spaces:

N�(P) := {y(λ)T ∈ F(λ)1×m such that y(λ)T P(λ) = 0},
Nr (P) := {x(λ) ∈ F(λ)n×1 such that P(λ)x(λ) = 0}. (2.2)

These null spaces are particular examples of rational subspaces, i.e., subspaces over
the field F(λ) formed by p-tuples whose entries are rational functions [32]. It is not
difficult to show that any rational subspace V has bases consisting entirely of vector
polynomials. The order of a vector polynomial basis of V is defined as the sum of the
degrees of its vectors [32, Definition 2]. Amongst all of the possible polynomial bases
of V , those with least order are called minimal bases of V [32, Definition 3]. There
are infinitely many minimal bases of V , but the ordered list of degrees of the vector
polynomials in any minimal basis of V is always the same [32, Remark 4, p. 497].
This list of degrees is called the list of minimal indices of V . With these definitions at
hand, the left (resp. right) minimal indices and bases of a matrix polynomial P(λ) are
defined as those of the rational subspace N�(P) (resp. Nr (P)).

The following definitions are useful when working with minimal bases in practice.
The i th row degree of a matrix polynomial Q(λ) is the degree of the i th row of Q(λ).

Definition 2.1 Let Q(λ) ∈ F[λ]m×n be a matrix polynomial with row degrees
d1, d2, . . . , dm . The highest row degree coefficient matrix of Q(λ), denoted by Qh , is
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the m × n constant matrix whose j th row is the coefficient of λd j in the j th row of
Q(λ), for j = 1, 2, . . . ,m. The matrix polynomial Q(λ) is called row reduced if Qh

has full row rank.

Observe that Qh is equal to the leading coefficient Qd �= 0 in the expansion
Q(λ) =∑d

i=0 Qiλ
i if and only if all the row degrees of Q(λ) are equal to d.

Theorem 2.2 is the most useful characterization of minimal bases in practice. This
classical result was proved in [32,Main Theorem-2, p. 495], where is stated in abstract
terms. The statement we present can be found in [21, Theorem 2.14].

Theorem 2.2 The rows of a matrix polynomial Q(λ) ∈ F[λ]m×n are a minimal basis
of the rational subspace they span if and only if Q(λ0) ∈ F

m×n
has full row rank for

all λ0 ∈ F and Q(λ) is row reduced.

Remark 2.3 Most of theminimal bases appearing in this work are arranged as the rows
of a matrix. Therefore, throughout the paper—and with a slight abuse of notation—we
say that an m × n matrix polynomial (with m < n) is a minimal basis if its rows form
a minimal basis of the rational subspace they span.

Definition 2.1 and Theorem 2.2 admit obvious extensions “for columns”, which are
used occasionally in this paper.

Corollary 2.4 is a consequence of Theorem 2.2 and the property rank(A ⊗ B) =
rank(A) rank(B) [45, Theorem 4.2.15]. The simple proof is omitted.

Corollary 2.4 If a matrix polynomial Q(λ) is a minimal basis and Ip is the p × p
identity matrix, then Q(λ) ⊗ Ip is also a minimal basis.

The concept of dual minimal bases is fundamental in this paper and is introduced
in Definition 2.5.

Definition 2.5 Two matrix polynomials L(λ) ∈ F[λ]m1×n and N (λ) ∈ F[λ]m2×n are
called dual minimal bases if L(λ) and N (λ) are both minimal bases and they satisfy
m1 + m2 = n and L(λ)N (λ)T = 0.

The name “dual minimal bases” and its definition were introduced in [18, Definition
2.10], but their origins can be traced back to [32]. We also use the expression “N (λ)

is a minimal basis dual to L(λ)”, or vice versa, for referring to matrix polynomials
L(λ) and N (λ) as those in Definition 2.5.

Example 2.6 We illustrate the concept of dual minimal bases with a simple example
that is important in this paper. Consider the following matrix polynomials:

Lk(λ) :=

⎡
⎢⎢⎣

−1 λ

−1 λ
. . .

. . .

−1 λ

⎤
⎥⎥⎦ ∈ F[λ]k×(k+1), (2.3)

and
�k(λ)T := [λk · · · λ 1

] ∈ F[λ]1×(k+1), (2.4)
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where here and throughout the paper we occasionally omit some, or all, of the zero
entries of a matrix. Theorem 2.2 guarantees that Lk(λ) and�k(λ)T are minimal bases.
In addition, Lk(λ)�k(λ) = 0 holds. Therefore, Lk(λ) and �k(λ)T are dual minimal
bases. From Corollary 2.4 and the properties of the Kronecker product we get that
Lk(λ) ⊗ Ip and �k(λ)T ⊗ Ip are also dual minimal bases.

Thematrix Lk(λ) is verywell known since is a right singular block of theKronecker
Canonical Form of pencils [33, Chapter XII]. Also the column vector polynomial
�k(λ) is very well known and plays an essential role, for instance, in the famous
vector spaces of linearizations studied in [43,55].

Theorem 2.7 establishes properties of minimal bases whose row degrees are all
equal. These are the minimal bases of interest in this work. The proof of Theorem
2.7 is omitted since it follows from results on row-wise reversals of minimal bases
[13,56]. For a simpler proof based on Theorem 2.2, see the extended version of this
paper [25].

Theorem 2.7 (a) Let K (λ) be a minimal basis whose row degrees are all equal to j .
Then rev j K (λ) is also a minimal basis whose row degrees are all equal to j .

(b) Let K (λ) and N (λ) be dual minimal bases. If the row degrees of K (λ) are all equal
to j and the row degrees of N (λ) are all equal to �, then rev j K (λ) and rev�N (λ)

are also dual minimal bases.

Example 2.8 Theorem 2.7(b) can be applied to the dual minimal bases Lk(λ) and
�k(λ)T in Example 2.6 to prove that

rev1Lk(λ) =

⎡
⎢⎢⎣

−λ 1
−λ 1

. . .
. . .

−λ 1

⎤
⎥⎥⎦ ∈ F[λ]k×(k+1)

and

revk�k(λ)T = [1 λ · · · λk
] ∈ F[λ]1×(k+1)

are also dual minimal bases. This fact follows also directly from Theorem 2.2 and
matrix multiplication.

Lemma 2.9 states that any matrix polynomial Q(λ) such that Q(λ0) has full row
rank for all λ0 ∈ F can be completed into a unimodular matrix polynomial, i.e., a
matrix polynomial with nonzero constant determinant. This is an old result that can
be traced back at least to [47] (a very simple proof appears in [21, Lemma 2.16(b)]).
Efficient algorithms for computing such completions can be found in [4].

Lemma 2.9 Let Q(λ) be a matrix polynomial over a field F. If Q(λ0) has full row
rank for all λ0 ∈ F, then there exists a matrix polynomial Q̃(λ) such that

Q̂(λ) =
[
Q(λ)

Q̃(λ)

]

is unimodular.
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Lemma 2.9 can be applied, in particular, when Q(λ) is a minimal basis, as a con-
sequence of Theorem 2.2. Moreover, Lemma 2.9 can be extended to Theorem 2.10,
which is one of the main tools employed in Sect. 3. Observe that Theorem 2.10 can
be applied, in particular, when L(λ) and N (λ) are dual minimal bases.

Theorem 2.10 Let L(λ) ∈ F[λ]m1×n and N (λ) ∈ F[λ]m2×n be matrix polynomials
such that m1 +m2 = n, L(λ0) and N (λ0) have both full row rank for all λ0 ∈ F, and
L(λ)N (λ)T = 0. Then, there exists a unimodular matrix polynomial U (λ) ∈ F[λ]n×n

such that

U (λ) =
[
L(λ)

L̂(λ)

]
and U (λ)−1 = [N̂ (λ)T N (λ)T

]
.

Proof By Lemma 2.9, there exist unimodular embeddings

[
L(λ)

Z1(λ)

]
and

[
Z2(λ)T N (λ)T

]
.

Since the product of two unimodular matrix polynomials is also unimodular, from

[
L(λ)

Z1(λ)

] [
Z2(λ)T N (λ)T

] =
[
L(λ)Z2(λ)T 0
Z1(λ)Z2(λ)T Z1(λ)N (λ)T

]
,

it follows that L(λ)Z2(λ)T ∈ F[λ]m1×m1 and Z1(λ)N (λ)T ∈ F[λ]m2×m2 must also
be unimodular matrix polynomials, as well as their inverses. Let us now consider the
following unimodular matrix polynomials

U (λ) =
[
Im1 0
0 (Z1(λ)N (λ)T )−1

] [
L(λ)

Z1(λ)

]

and

V (λ) = [Z2(λ)T N (λ)T
] [(L(λ)Z2(λ)T )−1 0

0 Im2

] [
Im1 0

−X (λ) Im2

]
,

where X (λ) = (Z1(λ)N (λ)T )−1Z1(λ)Z2(λ)T (L(λ)Z2(λ)T )−1. The statement of the
theorem then follows by verifying that U (λ)V (λ) = In . ��
Example 2.11 We illustrate Theorem 2.10 with a particular embedding of the dual
minimal bases Lk(λ) and�k(λ)T introduced in Example 2.6. If ek+1 is the last column
of Ik+1, then it is easily verified that

Vk(λ) =
[
Lk(λ)

eTk+1

]
=

⎡
⎢⎢⎢⎢⎣

−1 λ

−1 λ
. . .

. . .

−1 λ

0 · · · · · · 0 1

⎤
⎥⎥⎥⎥⎦ ∈ F[λ](k+1)×(k+1)

is unimodular and that its inverse is
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Vk(λ)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 −λ −λ2 · · · −λk−1 λk

−1 −λ
. . .

... λk−1

−1 . . . −λ2
...

. . . −λ λ2

−1 λ

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ F[λ](k+1)×(k+1). (2.5)

Note that the last column of Vk(λ)−1 is�k(λ). Therefore, Vk(λ) is a particular instance
of a matrix U (λ) in Theorem 2.10 for Lk(λ) and �k(λ)T . Moreover, Vk(λ) ⊗ Ip is a
particular instance of U (λ) for the dual minimal bases Lk(λ) ⊗ Ip and �k(λ)T ⊗ Ip
discussed also in Example 2.6.

We now recall the definitions of linearization and strong linearization of a matrix
polynomial, which are central in this paper. These definitions were introduced in
[35,36] for regular matrix polynomials, and extended to the singular case in [12]. We
refer the reader to [17] for a thorough treatment of these concepts and their properties.

Definition 2.12 A matrix pencil L(λ) is a linearization of a matrix polynomial P(λ)

of grade d if for some s ≥ 0 there exist two unimodular matrix polynomialsU (λ) and
V (λ) such that

U (λ)L(λ)V (λ) =
[
Is

P(λ)

]
. (2.6)

Furthermore, a linearization L(λ) is called a strong linearization of P(λ) if rev1L(λ)

is a linearization of revd P(λ).

The key property of any strong linearization L(λ) of a matrix polynomial P(λ) is
thatL(λ) and P(λ) share the same finite and infinite elementary divisors [17, Theorem
4.1]. However, Definition 2.12 only guarantees that the number of left (resp. right)
minimal indices of L(λ) is equal to the number of left (resp. right) minimal indices of
P(λ). In fact, except by these constraints on thenumbers,L(λ)mayhave any set of right
and left minimal indices [17, Theorem 4.11]. Therefore, in the case of singular matrix
polynomials, one needs to consider strong linearizations with the additional property
that theirminimal indices allow us to recover theminimal indices of the polynomial via
some simple rule. In addition, such rule should be robust under perturbations, in order
to be reliable in numerical computations affected by rounding errors, since minimal
indices of matrix polynomials may vary wildly under perturbations [28,29,46]. These
questions about recovery rules of minimal indices are carefully studied throughout
this paper.

Lemma 2.13 is a very simple result that allows us to easily recognize linearizations
in certain situations which are of interest in this work.

Lemma 2.13 Let P(λ) be an m × n matrix polynomial and L(λ) be a matrix pencil.
If there exist two unimodular matrix polynomials Ũ (λ) and Ṽ (λ) such that

Ũ (λ)L(λ)Ṽ (λ) =
⎡
⎣Z(λ) X (λ) It
Y (λ) P(λ) 0
Is 0 0

⎤
⎦ , (2.7)
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for some s ≥ 0 and t ≥ 0 and for some matrix polynomials X (λ), Y (λ), and Z(λ),
then L(λ) is a linearization of P(λ).

Proof Define the unimodular matrix polynomials

R(λ) =
⎡
⎣It 0 −Z(λ)

0 0 Is
0 Im −Y (λ)

⎤
⎦ , S(λ) =

⎡
⎣0 Is 0
0 0 In
It 0 −X (λ)

⎤
⎦ .

Then equation (2.7) implies that R(λ)Ũ (λ)L(λ)Ṽ (λ)S(λ) = diag(It , Is, P(λ)). This
proves that L(λ) is a linearization of P(λ). ��

2.1 Norms of matrix polynomials and their submultiplicative properties

The study of perturbations and backward errors in Sect. 5 requires the use of norms
of matrix polynomials. We have chosen the simple norm in Definition 2.14. In this
section the polynomials are assumed to have real or complex coefficients, i.e., F = R

orF = C.We refer the reader to [68] for the definitions and properties of the Frobenius
norm, ‖ · ‖F , and the spectral norm, ‖ · ‖2, of constant matrices.

Definition 2.14 Let P(λ) = ∑d
i=0 Piλ

i ∈ F[λ]m×n . Then the Frobenius norm of
P(λ) is

‖P(λ)‖F :=
√√√√ d∑

i=0

‖Pi‖2F .

Obviously ‖P(λ)‖F defines a norm on the vector space of matrix polynomials with
arbitrary grade and fixed sizem×n. In fact, Definition 2.14 defines a family of norms,
because we have a different vector space, and, so, a different norm for each particular
selection of size m × n. This is important when considering the norm of the product
P(λ)Q(λ) of two polynomials P(λ) and Q(λ), since the sizes of the two factors and
the product are, in general, different. In this context, it is also important to realize
that the value of ‖P(λ)‖F is independent of the grade chosen for P(λ). This property
allows us to work with ‖P(λ)‖F without specifying the grade of P(λ).

It is easy to construct examples that show that the norm ‖P(λ)‖F is not submulti-
plicative, i.e., ‖P(λ) Q(λ)‖F � ‖P(λ)‖F ‖Q(λ)‖F in general [25]. Therefore, since
in Sect. 5 we need to bound the norms of certain products of matrix polynomials,
we present Lemma 2.15, whose elementary but somewhat long proof is omitted. The
interested reader can find the proof in the extended version of this paper [25].

Lemma 2.15 Let P(λ) =∑d
i=0 Piλ

i , let Q(λ) =∑t
i=0 Qiλ

i , and let �k(λ)T be the
vector polynomial defined in (2.4). Then the following inequalities hold:

(a) ‖P(λ) Q(λ)‖F ≤ √
d + 1 ·

√√√√ d∑
i=0

‖Pi‖22 · ‖Q(λ)‖F ,
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(b) ‖P(λ) Q(λ)‖F ≤ √
t + 1 · ‖P(λ)‖F ·

√√√√ t∑
i=0

‖Qi‖22,

(c) ‖P(λ) Q(λ)‖F ≤ min{√d + 1,
√
t + 1} ‖P(λ)‖F ‖Q(λ)‖F ,

(d) ‖P(λ) (�k(λ) ⊗ Ip)‖F ≤ min{√d + 1,
√
k + 1} ‖P(λ)‖F ,

(e) ‖(�k(λ)T ⊗ Ip) Q(λ)‖F ≤ min{√t + 1,
√
k + 1} ‖Q(λ)‖F ,

where we assume that all the products are defined.

Finally, in Sect. 5 we need to consider pairs of matrices (C, D) where C and D
may have different sizes. Therefore, (C, D) cannot be considered as a matrix pencil.
For these pairs, we introduce the corresponding Frobenius norm as:

‖(C, D)‖F :=
√

‖C‖2F + ‖D‖2F . (2.8)

3 Block minimal bases linearizations

The linearizations considered in this work in Sects. 4 and 5 are particular cases of the
new pencils introduced in the following definition:

Definition 3.1 A matrix pencil

L(λ) =
[
M(λ) K2(λ)T

K1(λ) 0

]
(3.1)

is called a block minimal bases pencil if K1(λ) and K2(λ) are both minimal bases.
If, in addition, the row degrees of K1(λ) are all equal to 1, the row degrees of K2(λ)

are all equal to 1, the row degrees of a minimal basis dual to K1(λ) are all equal, and
the row degrees of a minimal basis dual to K2(λ) are all equal, then L(λ) is called a
strong block minimal bases pencil.

The pencils in Definition 3.1 include all the families of Fiedler-like linearizations
of matrix polynomials, which have received considerable attention recently. For more
information on this, see the extended version of this paper [25, Section 4] and [10].
Therefore, Definition 3.1 seems to be a key concept that unifies and simplifies the
theory of many of the linearizations existing in the literature. In this paper, the lin-
earizations in Definition 3.1 are of interest because they are generic and robust under
perturbations that preserve the zero block, as we discuss at the end of this section.

Remark 3.2 Observe in Definition 3.1 that the row degrees of any minimal basis dual
to K1(λ) are always the same, up to permutations, since they are the right minimal
indices of K1(λ). The same holds for K2(λ). Therefore, there are no ambiguities in
the definition of strong block minimal bases pencils with respect to the selection of
the minimal bases dual to K1(λ) and K2(λ).

Our next theorem reveals that (strong) block minimal bases pencils are (strong)
linearizations of certain matrix polynomials.
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Theorem 3.3 Let K1(λ) and N1(λ) be a pair of dual minimal bases, and let K2(λ)

and N2(λ) be another pair of dual minimal bases. Consider the matrix polynomial

Q(λ) := N2(λ)M(λ)N1(λ)T , (3.2)

and the block minimal bases pencil L(λ) in (3.1). Then:

(a) L(λ) is a linearization of Q(λ).
(b) IfL(λ) is a strong block minimal bases pencil, thenL(λ) is a strong linearization

of Q(λ), considered as a polynomial with grade 1+ deg(N1(λ)) + deg(N2(λ)).

Proof (a) According to Theorem 2.10, for i = 1, 2, there exist unimodular matrix
polynomials such that

Ui (λ) =
[
Ki (λ)

K̂i (λ)

]
and Ui (λ)−1 = [N̂i (λ)T Ni (λ)T

]
. (3.3)

Note that if mi is the number of rows of Ki (λ), for i = 1, 2, then (3.3) implies
Ki (λ)N̂i (λ)T = Imi and Ki (λ)Ni (λ)T = 0.Keep inmind that these equalities are used
in subsequent matrix products. Next, consider the unimodular matricesU2(λ)−T ⊕ Im1

and U1(λ)−1 ⊕ Im2 , and form the following matrix product:

(U2(λ)−T ⊕ Im1)L(λ) (U1(λ)−1 ⊕ Im2)

=
⎡
⎣N̂2(λ) 0
N2(λ) 0
0 Im1

⎤
⎦ [M(λ) K2(λ)T

K1(λ) 0

] [
N̂1(λ)T N1(λ)T 0

0 0 Im2

]

=
⎡
⎣Z(λ) X (λ) Im2

Y (λ) Q(λ) 0
Im1 0 0

⎤
⎦ , (3.4)

where the expressions of the matrix polynomials X (λ),Y (λ), and Z(λ) are not of
specific interest in this proof. Equation (3.4) and Lemma 2.13 prove that L(λ) is a
linearization of Q(λ).

(b) Let us denote for brevity �1 = deg(N1(λ)) and �2 = deg(N2(λ)). Since L(λ) is
a strong block minimal bases pencil, Theorem 2.7(b) guarantees that rev1K1(λ) and
rev�1N1(λ) are dual minimal bases, as well as rev1K2(λ) and rev�2N2(λ). Therefore,

rev1L(λ) =
[
rev1M(λ) rev1K2(λ)T

rev1K1(λ) 0

]

is also a block minimal bases pencil and Theorem 3.3(a) implies that rev1L(λ) is a
linearization of

(rev�2N2(λ)) (rev1M(λ)) (rev�1N1(λ))T = λ�2N2

(
λ−1
)

λ M
(
λ−1
)

λ�1N1

(
λ−1
)T

λ1+�1+�2Q(λ−1) = rev1+�1+�2Q(λ),

proving part (b). ��
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Remark 3.4 Given a strong blockminimal bases pencilL(λ), there are infinitelymany
minimal bases N1(λ) and N2(λ) dual to K1(λ) and K2(λ), respectively. Therefore,
the matrix polynomial Q(λ) is not defined uniquely by L(λ). This is connected to the
following remark: the standard scenario when using linearizations is that the matrix
polynomial Q(λ) is given and one wants to construct a linearization of Q(λ) as easily
as possible, but Theorem 3.3 seems to operate in the opposite way. However, if Q(λ)

is given and N1(λ) and N2(λ) are fixed, then (3.2) can be viewed as a linear equation
for the unknown pencil M(λ). It is possible to prove that this equation is always
consistent, as a consequence of the properties of the minimal bases N1(λ) and N2(λ).
Despite its consistency, the equation (3.2) may be very difficult to solve for arbitrary
minimal bases N1(λ) and N2(λ). We will see in Sect. 4 that for certain particular
choices of N1(λ) and N2(λ) it is very easy to characterize all possible solutions M(λ)

and to define, in this way, a new wide class of linearizations easily constructible from
Q(λ). This new class includes, among many others, all Fiedler linearizations, up to
permutations, of square or rectangular polynomials [3,14,16,31].

Remark 3.5 We include in Definition 3.1 the cases in which either K1(λ) or K2(λ)

is an empty matrix. This means that L(λ) is either a 1 × 2 or a 2 × 1 block matrix,
and, so, the zero block is not present. All of the proofs in this paper remain valid in
these limiting cases with the following convention: if K1(λ) (resp. K2(λ)) is an empty
matrix, then N1(λ) = Is (resp. N2(λ) = Is), where s is the number of colums (resp.
rows) of M(λ).

Next, we investigate, for strong block minimal bases pencils, the relationship of the
minimal indices of Q(λ) in (3.2) with those of its strong linearization L(λ) in (3.1).
This result is a corollary of a technical lemma presented in Appendix A.

Theorem 3.6 Let L(λ) be a strong block minimal bases pencil as in (3.1), let N1(λ)

be a minimal basis dual to K1(λ), let N2(λ) be a minimal basis dual to K2(λ), and
let Q(λ) be the matrix polynomial defined in (3.2). Then the following hold:

(a) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of Q(λ), then

ε1 + deg(N1(λ)) ≤ ε2 + deg(N1(λ)) ≤ · · · ≤ εp + deg(N1(λ))

are the right minimal indices of L(λ).
(b) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq are the left minimal indices of Q(λ), then

η1 + deg(N2(λ)) ≤ η2 + deg(N2(λ)) ≤ · · · ≤ ηq + deg(N2(λ))

are the left minimal indices of L(λ).
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Proof Part (a) follows immediately from Lemma A.1(b) and equation (A.2). Part
(b) follows simply from applying part (a) to L(λ)T and Q(λ)T after taking into
account that: (i) L(λ)T is also a strong block minimal bases pencil with the roles
of (K1(λ), N1(λ)) and (K2(λ), N2(λ)) interchanged, (ii) so L(λ)T is a strong lin-
earization of Q(λ)T , and (iii) for any matrix polynomial its left minimal indices are
the right minimal indices of its transpose. ��

In order to concisely refer to results like those in Theorem 3.6 we use in this
paper expressions as “the right minimal indices of L(λ) are those of Q(λ) shifted by
deg(N1(λ))”, whose rigorous meaning is precisely the statement of Theorem 3.6(a).

Finally, we emphasize that “generically” any pencil partitioned into 2 × 2 blocks
with a (2, 2)-zero block as in (3.1) is a strong block minimal bases pencil if the sizes
of the blocks are adequate. This follows from the recent results in [75, Section 5]
when the pencils K1(λ) and K2(λ) have both more columns than rows and the excess
number of columns is a divisor of the number of rows, i.e. Ki (λ) have dimension
mi × (mi +ni ) and ni dividesmi for i = 1, 2. This makes the pencils in Definition 3.1
a very large family of strong linearizations very convenient for analyzing perturbations
of the highly structured strong linearizations used in computational practice, as for
instance the Frobenious companion forms [36], because although the perturbations
destroy the particular structures, as long as they are sufficiently small and the (2, 2)-
zero block is preserved, the perturbed linearization is still a strong linearization (in
fact, a strong block minimal bases pencil) of a nearby polynomial obtained by (3.2)
applied to the perturbed pencil. Note that the (2, 2)-zero block is not present in the
limiting cases discussed in Remark 3.5. These ideas are fundamental for the error
analysis in Sect. 5.

4 Block Kronecker linearizations

In this section we study those strong block minimal bases pencils with off-diagonal
blocks equal to the pencils in Example 2.6. They are called block Kronecker pen-
cils. Thus, these pencils have the structure in (3.1) with K1(λ) = Lε(λ) ⊗ In and
K2(λ) = Lη(λ) ⊗ Im . Since, according to Example 2.6, N1(λ) = �ε(λ)T ⊗ In and
N2(λ) = �η(λ)T ⊗ Im are minimal bases dual to these K1(λ) and K2(λ), respectively,
most properties of block Kronecker pencils follow immediately from the general and
simple theory in Sect. 3, for these particular Ki (λ) and Ni (λ), i = 1, 2. Nonetheless,
we emphasize that block Kronecker pencils have an essential advantage over general
strong block minimal bases pencils that is key in applications: given a matrix poly-
nomial P(λ) it is very easy to characterize an infinite set of (1, 1)-blocks M(λ) that
make L(λ) in (3.1) a strong linearization of P(λ). Moreover, as we discuss below,
block Kronecker pencils include, as particular cases, the classical Frobenius com-
panion forms and the Fiedler pencils [14,16] modulo permutations. Block Kronecker
pencils are formally introduced in Definition 4.1.

Definition 4.1 Let Lk(λ) be the matrix pencil defined in (2.3) and let λM1 + M0 be
an arbitrary pencil. Then any matrix pencil of the form

123



388 F. M. Dopico et al.

L(λ) =
[

λM1 + M0 Lη(λ)T ⊗ Im
Lε(λ) ⊗ In 0

] }
(η+1)m

} εn

︸ ︷︷ ︸
(ε+1)n

︸ ︷︷ ︸
ηm

, (4.1)

is called an (ε, n, η,m)-block Kronecker pencil or, simply, a block Kronecker pen-
cil. The block partitioning of L(λ) in (4.1) is called the natural partition of a block
Kronecker pencil.

The name “block Kronecker pencil” is motivated by the fact that the anti-diagonal
blocks of L(λ) in (4.1) are Kronecker products of singular blocks of the Kronecker
canonical form of pencils [33, Chapter XII] with identity matrices.

Since block Kronecker pencils are particular cases of strong block minimal bases
pencils, we obtain the following result for block Kronecker pencils as an immediate
corollary of Theorems 3.3 and 3.6 and the results in Example 2.6.

Theorem 4.2 Let L(λ) be an (ε, n, η,m)-block Kronecker pencil as in (4.1). Then
L(λ) is a strong linearization of the matrix polynomial

Q(λ) := (�η(λ)T ⊗ Im)(λM1 + M0)(�ε(λ) ⊗ In) ∈ F[λ]m×n (4.2)

of grade ε + η + 1, the right minimal indices of L(λ) are those of Q(λ) shifted by ε,
and the left minimal indices of L(λ) are those of Q(λ) shifted by η.

Remark 4.3 Explicit unimodular matrices that transform any block Kronecker pencil
as in (4.1) into a block anti-triangular form (3.4) can be described via the matrices
Vk(λ)−1 in Example 2.11. In fact, an immediate corollary of Example 2.11 and the
block matrix multiplications yielding (3.4) in the proof of Theorem 3.3 is that

((Vη(λ)−T ⊗ Im) ⊕ Iεn)L(λ) ((Vε(λ)−1 ⊗ In) ⊕ Iηm) (4.3)

has the block anti-triangular structure in (3.4). This can also be checked via a direct
multiplication, which proves in a simple way that block Kronecker pencils are lin-
earizations of Q(λ) as a consequence of Lemma 2.13. A similar approach can be used
to prove that L(λ) is a strong linearization of Q(λ).

The most transparent examples of block Kronecker pencils are the classical first
and second Frobenius companion forms of a matrix polynomial P(λ) =∑d

i=0 Piλ
i ∈

F[λ]m×n [17, Section 5.1]. The first Frobenius companion form is just L(λ) in (4.1)
with M(λ) = [λPd + Pd−1, Pd−2, . . . , P0], ε = d − 1, and η = 0, while the second
Frobenius companion form corresponds to M(λ) = [λPT

d + PT
d−1, P

T
d−2, . . . , P

T
0 ]T ,

ε = 0, and η = d − 1. Note that the application of Theorem 4.2 in these two cases
proves in a very simple way that the first and the second Frobenius companion forms
are strong linearizations of P(λ) with the well-known shifting relationships between
the minimal indices (compare with the proofs in [17, Section 5.1]).

It is also possible to prove with more effort that after performing some row and
column permutations all Fiedler pencils of P(λ) = ∑d

i=0 Piλ
i ∈ F[λ]m×n [14,16]
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become block Kronecker pencils with the pencil λM1 + M0 having a very simple
structure that can be explicitly described in terms of the coefficients of P(λ). This result
can be found in the extended version of this paper [25, Section 4], where it is proved
that the only nonzero block entries of λM1 + M0 are λPd + Pd−1, Pd−2, . . . , P1, P0
distributed along what is called a “staircase pattern” [19, Section 5] and [27]. Once
this is established, Theorem 4.2 proves again in a very simple way that all Fiedler
pencils are strong linearizations of P(λ) with the well-known shifting relationships
between the minimal indices (compare with the cumbersome proofs in [14] and the
very complicated ones in [16]).

Next, we show what conditions on λM1 + M0 are needed for a block Kronecker
pencil (4.1) to be a strong linearization of a prescribed matrix polynomial P(λ).

Theorem 4.4 Let P(λ) = ∑d
k=0 Pkλ

k ∈ F[λ]m×n, let L(λ) be an (ε, n, η,m)-block
Kronecker pencil as in (4.1)with ε+η+1 = d, let us consider M0 and M1 partitioned
into (η + 1) × (ε + 1) blocks each of size m × n, and let us denote these blocks by
[M0]i j , [M1]i j ∈ F

m×n for i = 1, . . . , η + 1 and j = 1, . . . , ε + 1. If

∑
i+ j=d+2−k

[M1]i j +
∑

i+ j=d+1−k

[M0]i j = Pk, for k = 0, 1, . . . , d, (4.4)

thenL(λ) is a strong linearization of P(λ), the right minimal indices ofL(λ) are those
of P(λ) shifted by ε, and the left minimal indices of L(λ) are those of P(λ) shifted by
η.

Proof A direct multiplication, the condition ε + η + 1 = d, and some elementary
manipulations of summations allow us to express Q(λ) in (4.2) as

Q(λ) =
d∑

k=0

λk

⎛
⎝ ∑

i+ j=d+2−k

[M1]i j +
∑

i+ j=d+1−k

[M0]i j
⎞
⎠ .

Then (4.4) implies that Q(λ) = P(λ) and the result follows from Theorem 4.2. ��
Note that equation (4.4) tells us that the sum of the blocks on the (d − k)th block

antidiagonal of M0 plus the sum of the blocks on the (d − k + 1)th block antidiagonal
of M1 must be equal to the coefficient Pk of P(λ). This implies that the upper-left
block of M1 must be equal to Pd , and that the lower-right block of M0 must be equal
to P0, that is, the pencil λM1 + M0 has the form

λM1 + M0 =
⎡
⎢⎣

λPd + [M0]11 . .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
λ[M1]η+1,ε+1 + P0

⎤
⎥⎦ . (4.5)

There are infinitely many ways to select the remaining block entries of M1 and M0 to
synthesize P(λ) in the pencil λM1 + M0.
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In Example 4.5 we show three different block Kronecker pencils that are all strong
linearizations of a grade 5 matrix polynomial P(λ). These three pencils have param-
eters ε = η = 2. Moreover, the corresponding pencils λM1 + M0 in these block
Kronecker pencils do not follow a staircase pattern for λP5 + P4, P3, . . . , P0, that is,
they are not permuted Fiedler pencils [25, Theorem 4.5].

Example 4.5 Let P(λ) = ∑5
k=0 Pkλ

k ∈ F[λ]m×n and let A, B ∈ F
m×n be arbitrary

constant matrices. The following block Kronecker pencils

⎡
⎢⎢⎢⎢⎣

λP5 + P4 0 0 −Im 0
0 λP3 + P2 0 λIm −Im
0 0 λP1 + P0 0 λIm

−In λIn 0 0 0
0 −In λIn 0 0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

λP5 λP4 λP3 −Im 0
0 0 λP2 λIm −Im
0 0 λP1 + P0 0 λIm

−In λIn 0 0 0
0 −In λIn 0 0

⎤
⎥⎥⎥⎥⎦ , and

⎡
⎢⎢⎢⎢⎣

λP5 A P2 −Im 0
λP4 −λA λB + P1 λIm −Im
λP3 −λB P0 0 λIm
−In λIn 0 0 0
0 −In λIn 0 0

⎤
⎥⎥⎥⎥⎦

are all strong linearizations of P(λ).

Remark 4.6 As discussed above, equation (4.4) allows us to construct infinitely many
block Kronecker pencils that are strong linearizations of a prescribed matrix poly-
nomial P(λ). Therefore, a natural question is which ones can be reliably used for
computing all the eigenvalues of P(λ), when P(λ) is regular, or all the eigenvalues
and minimal indices of P(λ), when P(λ) is singular, via either the QZ algorithm [38]
or the staircase algorithm [23,24,71]. From the point of view of backward errors, this
is clearly stated in Corollary 5.24 and carefully analyzed in the paragraphs before that
corollary, but we advance here the main conclusions for impatient readers. First, the
use of block Kronecker pencils (4.1) is reliable only if ‖λM1 + M0‖F ≈ ‖P(λ)‖F .
This is intuitively natural, because, according to (4.2), if ‖λM1 + M0‖F  ‖P(λ)‖F ,
then small relative perturbations in λM1 + M0 might produce huge perturbations in
P(λ), and ‖λM1 + M0‖F � ‖P(λ)‖F cannot happen as a consequence of (4.2) and
Lemma 2.15. In addition, ‖λM1 + M0‖F ≈ ‖P(λ)‖F ≈ 1 must also hold, which is
also natural since either ‖P(λ)‖F � 1 or ‖P(λ)‖F  1 would lead to highly unbal-
anced block Kronecker pencils (4.1), with the norms of the antidiagonal blocks either
much larger or much smaller than the norm of the (1, 1) block. In fact, it is proved in
Corollary 5.24 that any block Kronecker pencil with ‖λM1 + M0‖F ≈ ‖P(λ)‖F ≈ 1
leads to small relative backward errors from the polynomial point of view. This condi-
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tion still allows us to use infinitely many pencils that might have additional advantages
as preservation of structures.

5 Backward error analysis of complete polynomial eigenproblems solved
via block Kronecker pencils

The problem of computing in floating point arithmetic the complete eigenstructure
of a matrix polynomial P(λ) is called in this paper the complete polynomial eigen-
problem. The complete eigenstructure consists of all of the eigenvalues, finite and
infinite, and all of the minimal indices, left and right, of P(λ). This eigenstructure
can be efficiently computed via the staircase algorithm for matrix pencils applied to
any strong linearization L(λ) of the polynomial that allows us to recover the minimal
indices of the polynomial from those of the linearizations via constant shifts (like
those of Theorem 4.4 for block Kronecker pencils). The staircase algorithm for pen-
cils was introduced for the first time in [71] and was further developed in [23,24],
where reliable software for computing such a staircase form was presented. Though
problems involving singular polynomials arise very often in control theory, the matrix
polynomials arising inmany other applications are normally square and regular. In this
case the complete eigenstructure does not include minimal indices and the algorithm
of choice is the simpler QZ algorithm [38].

The staircase and the QZ algorithms have been shown to be backward stable, but it
ought to be stressed that the backward stability of these two algorithms does not imply
that the computed eigenstructure is the exact one of the given linearization: in general
this problem is ill-posed, which implies that even an arbitrarily small perturbationmay
yield a different eigenstructure. Since this is not the subject of this paper, we refer to
[28,29] for a more elaborate discussion on these aspects. Nonetheless, the standard
backward error results guarantee that if the staircase algorithm or the QZ algorithm
are applied to a strong linearization L(λ) in a computer with unit roundoff u, then the
computed complete eigenstructure of L(λ) is the exact complete eigenstructure of a
nearby matrix pencil L(λ) + �L(λ) such that

‖�L(λ)‖F
‖L(λ)‖F = O(u), (5.1)

where ‖ · ‖F denotes the Frobenius norm introduced in Definition 2.14. However,
(5.1) is not the desired ideal result for the original problem of computing the complete
eigenstructure of the matrix polynomial P(λ) of given grade d. The desired backward
error result would be that the computed complete eigenstructure of P(λ) is the exact
complete eigenstructure of a nearby matrix polynomial P(λ) + �P(λ) also of grade
d and such that ‖�P(λ)‖F

‖P(λ)‖F = O(u). (5.2)

In order to establish (5.2), if possible, starting from (5.1), two results must be
proved: (i) that the perturbed pencil L(λ) + �L(λ) is a strong linearization for some
matrix polynomial P(λ) + �P(λ) of grade d with the shifting relations between the
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minimal indices of L(λ) + �L(λ) and P(λ) + �P(λ) equal to the shifting relations
between the minimal indices ofL(λ) and P(λ); and (ii) to prove a perturbation bound
of the type

‖�P(λ)‖F
‖P(λ)‖F ≤ CP,L

‖�L(λ)‖F
‖L(λ)‖F , (5.3)

withCP,L a moderate number depending, in principle, on P(λ) andL(λ). We empha-
size that to prove (i) is much easier for regular than for singular polynomials, because
in the former case there are no minimal indices involved in the computations. Observe
also that the minimal indices of P(λ) + �P(λ) are computed via the recovery rules
valid for the unperturbed linearization L(λ) applied to the computed minimal indices
of L(λ), that is, to the exact minimal indices of L(λ) + �L(λ). Therefore, if the
recovery rules for the minimal indices of L(λ) + �L(λ) were different than those
of L(λ), such a method for computing the minimal indices of P(λ) would not make
any sense because the minimal indices are integer numbers. We repeat that thereby,
we do not claim that the exact eigenstructure of L(λ) was computed, or, even more,
that the computed eigenstructure is close to that of L(λ), but rather that the exact
eigenstructure of a nearby pencil L(λ) + �L(λ) was computed, which may be quite
different than the one of L(λ) for ill-conditioned problems [28,29].

The goal of this section is to study these questions for any block Kronecker pencil
L(λ) as in (4.1) of a given polynomial P(λ) of grade d and sizem×n. In plain words,
we will prove that if the block Kronecker pencil satisfies ‖λM1 + M0‖F ≈ ‖P(λ)‖F
and P(λ) is scaled to satisfy ‖P(λ)‖F = 1, then (5.3) holds withCP,L ≈ d3

√
m + n.

Therefore, under these two conditions, we get perfect structured backward stability
from the polynomial point of viewwhen the blockKronecker pencils are combinedwith
the staircase or QZ algorithms for computing the complete eigenstructure of P(λ). We
emphasize that this is no longer true if ‖λM1 + M0‖F  ‖P(λ)‖F , because in this
case we will prove that CP,L in (5.3) is huge. Note that ‖λM1 + M0‖F  ‖P(λ)‖F
may happen, for instance, if in the last block Kronecker pencil of Example 4.5 the
arbitrary matrices A or B have very large norms. Observe that the permuted Fiedler
pencils in [25, Theorem 4.5] satisfy ‖λM1 + M0‖F = ‖P(λ)‖F and, so, our analysis
guarantees perfect structured polynomial backward stability for all Fiedler pencils.

Backward error analyses valid simultaneously for the complete eigenstructure, i.e.,
global analyses, of complete polynomial eigenproblems (and complete scalar rootfind-
ing problems) solved by linearizations are not new in the literature. They appeared for
the first time in the seminal paper [74], were studied in the influential work [30], and
have received considerable attention in recent years [20,50,51,53,61,64]. However,
we stress that the analysis developed in this paper has a number of key features which
are not present in any of the other analyses published so far: first, it is not a first order
analysis since it holds for perturbations �L(λ) of finite norm; second, it provides
very detailed bounds, and not just vague big-O bounds as other analyses do; third,
it is valid simultaneously for a very large class of linearizations for which backward
error analyses are not yet known; and, fourth, it establishes a framework that may be
generalized to other classes of linearizations.

Before proceeding, we remark that our analysis is of a completely different nature
than the “local” residual backward error analyses presented in [42,69], which are only
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valid for regularmatrix polynomials, are based on the residual of a particular computed
eigenvalue-vector pair, and find a nearby polynomial to the original one that has as
exact eigenpair the particular computed one. A key difference with our analysis is that
in these local analyses the nearby polynomial is different for each computed eigenpair,
while in our case it is the same for the complete eigenstructure.

The main result in this section is Theorem 5.21, whose proof requires considerable
efforts. The proof is split into three main steps that are briefly described in the next
paragraphs in such a way that the reader may follow easily the main flow of the
proof. We emphasize that the complete eigenstructure of the initial perturbed pencil
L(λ) + �L(λ) does not change in the three steps except for the constant shifts of the
minimal indices in the third step. In this section we assume that F = R or F = C.

Initial data A matrix polynomial P(λ) = ∑d
k=0 Pkλ

k ∈ F[λ]m×n and a block Kro-
necker pencil L(λ) as in (4.1) such that

P(λ) = (�η(λ)T ⊗ Im)(λM1 + M0)(�ε(λ) ⊗ In), with ε + η + 1 = d, (5.4)

are given. A perturbation pencil �L(λ) of L(λ) is also given and is partitioned con-
formably to the natural partition of L(λ), that is,

L(λ) + �L(λ) =
[

λM1 + M0 + �L11(λ) Lη(λ)T ⊗ Im + �L12(λ)

Lε(λ) ⊗ In + �L21(λ) �L22(λ)

]
. (5.5)

First step We establish a bound on ‖�L(λ)‖F that allows us to construct a strict
equivalence transformation that returns the (2, 2)-block of the perturbed pencil (5.5)
back to zero as in L(λ):

[
I(η+1)m 0

C Iεn

]
(L(λ) + �L(λ))

[
I(ε+1)n D

0 Iηm

]
(5.6)

=
[

λM1 + M0 + �L11(λ) Lη(λ)T ⊗ Im + �L̃12(λ)

Lε(λ) ⊗ In + �L̃21(λ) 0

]
=: L(λ) + �L̃(λ).

This construction is equivalent to solving a nonlinear system of matrix equations
whose unknowns are the constant matrices C and D. Moreover, we prove detailed
bounds on ‖(C, D)‖F , ‖�L̃12(λ)‖F , and ‖�L̃21(λ)‖F in terms of ‖�L(λ)‖F . It is
important to remark that L(λ) + �L(λ) and the pencil L(λ) + �L̃(λ) in (5.6) have
the same complete eigenstructures (including minimal indices), since they are strictly
equivalent [17, Definition 3.1].

Remark 5.1 In the cases where either ε = 0 or η = 0 this first step is not necessary
since either the last block row or last block column of L(λ) + �L(λ) are not present
and one may proceed directly with the second step. We remind the reader that these
cases are important since they include the Frobenius companion pencils.

Second step The second step consists of establishing bounds on ‖�L̃12(λ)‖F and
‖�L̃21(λ)‖F that guarantee thatL(λ)+�L̃(λ) in (5.6) is a strong blockminimal bases
pencil. This requires two substeps: (a) to prove that K1(λ) := Lε(λ) ⊗ In + �L̃21(λ)
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and K2(λ) := Lη(λ)⊗ Im +�L̃12(λ)T are both minimal bases with their row degrees
all equal to 1, and (b) to prove that there exist minimal bases

�ε(λ)T ⊗ In + �Rε(λ)T and �η(λ)T ⊗ Im + �Rη(λ)T

dual, respectively, to K1(λ) and K2(λ)with their row degrees all equal, respectively, to
ε andη. In addition,we prove detailed bounds on ‖�Rε(λ)‖F in terms of ‖�L̃21(λ)‖F ,
and on ‖�Rη(λ)‖F in terms of ‖�L̃12(λ)‖F .
Remark 5.2 It is only needed to prove the results in the substeps (a) and (b) for
K1(λ) = Lε(λ) ⊗ In + �L̃21(λ) and �ε(λ)T ⊗ In + �Rε(λ)T , since, then, the
ones for K2(λ) = Lη(λ) ⊗ Im + �L̃12(λ)T and �η(λ)T ⊗ Im + �Rη(λ)T follow as
corollaries.

Third step Combining the first and second steps and Theorems 3.3 and 3.6, we get
that L(λ) + �L(λ) is a strong linearization of the matrix polynomial

P(λ) + �P(λ) :=
(
�η(λ)T ⊗ Im + �Rη(λ)T

)

(λM1 + M0 + �L11(λ)) (�ε(λ) ⊗ In + �Rε(λ)) , (5.7)

that the right minimal indices of L(λ) + �L(λ) are those of P(λ) + �P(λ) shifted
by ε, and that the left minimal indices of L(λ) + �L(λ) are those of P(λ) + �P(λ)

shifted by η, i.e., the shifting relations between the minimal indices are the same as
those between the minimal indices of L(λ) and P(λ). The rest of the proof consists
of bounding ‖�P(λ)‖F/‖P(λ)‖F in terms of ‖�L(λ)‖F/‖L(λ)‖F using the bounds
obtained in the first and second steps.

In the rest of this section, the three steps described above are developed in detail.
We use very often, without explicitly referring to, the properties of the Frobenius norm
of matrix polynomials in Lemma 2.15 and, also, that for any matrix polynomial P(λ)

and any submatrix B(λ) of P(λ), the inequality ‖B(λ)‖F ≤ ‖P(λ)‖F holds.

5.1 First step: solving a system of quadratic Sylvester-like matrix equations for
constructing the strict equivalence (5.6)

For brevity, hereafter we use the following notation for the anti-diagonal blocks of
block Kronecker pencils, which are constructed from the pencil (2.3): Lk(λ) ⊗ I� =:
(λFk − Ek) ⊗ I� =: λFk� − Ek�, where

Ek� = [ Ik 0k×1
]⊗ I� , and Fk� = [0k×1 Ik

]⊗ I� . (5.8)

In addition, the natural blocks of the perturbation �L(λ) in (5.5) are denoted by

�L(λ) =
[

�L11(λ) �L12(λ)

�L21(λ) �L22(λ)

]
=:
[

λ�B11 + �A11 λ�B12 + �A12

λ�B21 + �A21 λ�B22 + �A22

]
. (5.9)

According to Remark 5.1, we assume that ε �= 0 and η �= 0 throughout this subsection.
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The main result of this subsection is Theorem 5.9 and the starting point is the
trivial Lemma 5.3, which follows from elementary matrix operations applied to the
lower-right block in (5.6).

Lemma 5.3 There exist constant matrices C ∈ F
εn×(η+1)m and D ∈ F

(ε+1)n×ηm

satisfying (5.6) if and only if

[
C Iεn

]
(L(λ) + �L(λ))

[
D
Iηm

]
= 0 . (5.10)

Moreover, with the notation introduced in (5.8) and (5.9), the equation (5.10) is equiv-
alent to the following system of quadratic Sylvester-like matrix equations

C(ET
ηm − �A12) + (Eεn − �A21)D = �A22 + C(M0 + �A11)D

C(FT
ηm + �B12) + (Fεn + �B21)D = −�B22 − C(M1 + �B11)D

, (5.11)

for the unknown matrices C and D.

The system of matrix equations (5.11) is equivalent to a system of 2εηnm quadratic
scalar equations in the 2εηnm + (ε + η)mn unknown entries of C and D. Therefore,
(5.11) is an underdetermined system of equations that may have infinitely many solu-
tions. Our aim is to establish conditions on ‖�L(λ)‖F that guarantee the existence of a
solution (C, D) to (5.11) with ‖(C, D)‖F � ‖�L(λ)‖F , where the norm ‖(C, D)‖F
was defined in (2.8). This is done in Theorem 5.8, whose proof follows that of Stew-
art [67, Theorem 5.1] (see also [68, Theorem 2.11, p. 242] for a more general and
more accesible result) and is based on a fixed point iteration argument. However, we
emphasize that the result by Stewart is valid only for certain nonlinearmatrix equations
having a unique solution, while in our case there may be infinitely many solutions.

The solution of (5.11) relies upon first solving the system of linear Sylvester equa-
tions obtained by removing the quadratic terms in C and D of (5.11). Such a system
is:

C(ET
ηm − �A12) + (Eεn − �A21)D = �A22

C(FT
ηm + �B12) + (Fεn + �B21)D = −�B22

, (5.12)

which is equivalent to the underdetermined standard linear system (T + �T )x = b
given by

⎛
⎜⎜⎜⎜⎝
[
Eηm ⊗ Iεn Iηm ⊗ Eεn

Fηm ⊗ Iεn Iηm ⊗ Fεn

]
︸ ︷︷ ︸

=:T

+
[

−�AT
12 ⊗ Iεn −Iηm ⊗ �A21

�BT
12 ⊗ Iεn Iηm ⊗ �B21

]

︸ ︷︷ ︸
=:�T

⎞
⎟⎟⎟⎟⎠
[
vec(C)

vec(D)

]
︸ ︷︷ ︸

=:x

=
[

vec(�A22)

−vec(�B22)

]
︸ ︷︷ ︸

=:b

, (5.13)
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where, for anym×nmatrixM = [mi j
]
, the column vector vec(M) is the vectorization

of M , namely, vec(M) := [m11 . . . mm1m12 . . . mm2 . . . m1n . . . mmn]T (see Horn
and Johnson [45, Def. 4.2.9], for instance). For brevity, and with an abuse of notation
we use expressions such as “(C, D) is a solution of (5.13)”.

Lemma 5.4 proves that the matrix T in (5.13) has full row rank and provides an
expression for itsminimum singular value. This implies that if ‖�T ‖2 is small enough,
then T + �T also has full row rank and the linear system (5.13) is consistent, as is
the equivalent system of matrix equations (5.12). The proof of Lemma 5.4 is long and
can be found in Appendix B. Here and in the rest of the paper the minimum singular
value of any matrix M is denoted by σmin(M).

Lemma 5.4 The matrix T in (5.13) has full row rank and its minimum singular value
is given by

σmin(T ) =
{
2 sin π

4min (η,ε)+2 , ε �= η

2 sin π
4η , ε = η

. (5.14)

The following simple lower bound on σmin(T ) is useful to get bounds that can be
easily handled and are related to the grade of the original matrix polynomial.

Corollary 5.5 Let T be the matrix in (5.13) and d = ε + η + 1. Then

σmin(T ) ≥ 2
√
2

d
.

Proof It follows from (5.14) and the inequality sin(x) ≥ 2
√
2x/π for 0 ≤ x ≤ π/4.

��
Lemma 5.6 bounds the norm of the minimum 2-norm solution of (5.13) or, equiv-

alently, of the minimum Frobenius norm solution of the matrix equation (5.12), since
‖[vec(C)T , vec(D)T ]T ‖2 = ‖(C, D)‖F .
Lemma 5.6 Let (T + �T )x = b be the underdetermined linear system (5.13), and
let us assume that σmin(T ) > ‖�T ‖2. Then (T + �T )x = b is consistent and its
minimum norm solution (C0, D0) satisfies

‖(C0, D0)‖F ≤ 1

δ
‖(�A22,�B22)‖F , (5.15)

where δ := σmin(T ) − ‖�T ‖2.
Proof From Weyl’s perturbation theorem for singular values [45, Theorem 3.3.16],
we get σmin(T + �T ) ≥ σmin(T ) − ‖�T ‖2 > 0. Therefore, T + �T has full row
rank and the linear system (5.13) is consistent. Its minimum norm solution, (C0, D0),
is given by (T +�T )†b, where (T +�T )† denotes the Moore-Penrose pseudoinverse
of T + �T . Then,

‖(C0, D0)‖F ≤‖(T+�T )†‖2‖(�A22,�B22)‖F = 1

σmin(T+�T )
‖(�A22,�B22)‖F
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≤ 1

σmin(T )−‖�T ‖2 ‖(�A22,�B22)‖F .

��
From Lemma 5.6, it is clear that the quantity δ = σmin(T ) − ‖�T ‖2 will play a

relevant role in our analysis. Therefore, we establish a tractable lower bound on δ.

Lemma 5.7 Let T and�T be the matrices in (5.13), let�L(λ) be the pencil in (5.9),
and d = ε + η + 1. If ‖�L(λ)‖F < 1/d, then

σmin(T ) − ‖�T ‖2 ≥ 2(
√
2 − 1)

d
> 0.

Proof Using standard properties of norms and Kronecker products [45, Chapter 4]
(pay particular attention to [45, p. 247, paragraph 1]), we get

‖�T ‖2 ≤
∥∥∥∥∥
[

−�AT
12 ⊗ Iεn

�BT
12 ⊗ Iεn

]∥∥∥∥∥
2

+
∥∥∥∥∥
[

−Iηm ⊗ �A21

Iηm ⊗ �B21

]∥∥∥∥∥
2

=
∥∥∥∥∥
[

−�AT
12

�BT
12

]∥∥∥∥∥
2

+
∥∥∥∥∥
[

−�A21

�B21

]∥∥∥∥∥
2

≤
∥∥∥∥∥
[

−�AT
12

�BT
12

]∥∥∥∥∥
F

+
∥∥∥∥∥
[

−�A21

�B21

]∥∥∥∥∥
F

≤ 2‖�L(λ)‖F .

From this inequality and Corollary 5.5, the result is obtained as follows:

σmin(T ) − ‖�T ‖2 ≥ 2
√
2

d
− 2‖�L(λ)‖F >

2(
√
2 − 1)

d
.

��
Theorem 5.8 is the key technical result of this section. It proves that the system

of quadratic Sylvester-like matrix equations (5.11) has a solution (C, D) such that
‖(C, D)‖F � ‖�L(λ)‖F , whenever ‖�L(λ)‖F is properly upper bounded. As men-
tioned before, this theorem extends to underdetermined quadratic matrix equations
results proved by Stewart for equations with a unique solution [67, Theorem 5.1], [68,
Theorem 2.11, p. 242]. The proof of Theorem 5.8 follows those in [67,68].

Theorem 5.8 There exists a solution (C, D) of the quadratic system of Sylvester-like
matrix equations (5.11) satisfying

‖(C, D)‖F ≤ 2
θ

δ
, (5.16)

whenever

δ > 0 and
θω

δ2
<

1

4
, (5.17)

where δ = σmin(T )−‖�T ‖2, θ := ‖(�A22,�B22)‖F , andω := ‖(M0+�A11, M1+
�B11)‖F .
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Proof Lemma 5.6 and the hypothesis δ > 0 guarantee that the linear system of matrix
equations (5.12) is consistent, and, even more, that it is consistent for any right-hand
side. Let the minimum norm solution of (5.12) be denoted by (C0, D0). It satisfies

‖(C0, D0)‖F ≤ 1

δ
‖(�A22,�B22)‖F = θ

δ
=: ρ0,

according to Lemma 5.6. Then, let us define a sequence {(Ci , Di )}∞i=0 of pairs of
matrices as follows: for i > 0 the pair (Ci , Di ) is the minimum norm solution of

Ci (ET
ηm − �A12) + (Eεn − �A21)Di = �A22 + Ci−1(M0 + �A11)Di−1

Ci (FT
ηm + �B12) + (Fεn + �B21)Di = −�B22 − Ci−1(M1 + �B11)Di−1

.

(5.18)

Therefore, vectorizing (5.18) and using the matrix T + �T defined in (5.13), we get

[
vec(Ci )

vec(Di )

]
=
[
vec(C0)

vec(D0)

]
+ (T + �T )†

([
vec(Ci−1(M0 + �A11)Di−1)

−vec(Ci−1(M1 + �B11)Di−1)

])
.

(5.19)

We claim that the sequence {(Ci , Di )}∞i=0 converges to a solution (C, D) of (5.11)
satisfying (5.16). To prove this, we first show that the sequence {‖(Ci , Di )‖F }∞i=0 is a
bounded sequence. If ‖(Ci−1, Di−1)‖F ≤ ρi−1, then we have from (5.19) that

‖(Ci , Di )‖F ≤ ‖(C0, D0)‖F
+ ‖(T + �T )†‖2‖‖(Ci−1, Di−1)‖2F‖(M0 + �A11, M1 + �B11)‖F

≤ ρ0 + ρ2
i−1ωδ−1 =: ρi .

We may write the quantity ρi in the equation above as ρi = ρ0(1 + κi ), where κi
satisfies the recursion

κ1 = ρ0ωδ−1 = θωδ−2,

κi+1 = κ1(1 + κi )
2 .

(5.20)

The equation (5.20) is the fixed point iteration κi+1 = g(κi ) with g(x) := κ1(1+ x)2

and with initial iterate κ1, which satisfies 0 ≤ κ1 < 1/4 according to (5.17). If
κ1 = 0, then κi = 0 and ρi = ρ0 for all i ≥ 1, which means that the sequence
{‖(Ci , Di )‖F }∞i=0 is bounded. Next we consider the case 0 < κ1 < 1/4. It can be
proved that 0 < κ1 < κ2 < · · · < κi < · · · by induction as follows: it is obvious that
κ1 < κ2 and if we assume κi−1 < κi , then κi+1/κi = (1 + κi )

2/(1 + κi−1)
2 > 1.

Another induction argument proves that 0 < κi < 1 for all i ≥ 1 as follows: by
assumption 0 < κ1 < 1/4 < 1, and if 0 < κi < 1, then 0 < κi+1 = κ1(1 + κi )

2 <

κ1 4 < 1. The iteration κi+1 = g(κi ) has two positive fixed points: one strictly larger
than 1 and the other equal to κ := 2κ1/(1−2κ1 +√

1 − 4κ1) and strictly smaller than
1. Observe that g′(x) = 2κ1(1+ x) satisfies 0 < g′(x) < 4κ1 < 1 for any 0 < x < 1.
Thus the mean value theorem implies |κi+1 − κ| = |g(κi ) − g(κ)| < 4κ1|κi − κ|,
which in turn implies |κi+1 − κ| < (4κ1)i |κ1 − κ| and
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κ = lim
i→∞ κi = 2κ1

1 − 2κ1 + √
1 − 4κ1

< 1,

and κi < κ for all i ≥ 1. Thus, the norms of the elements of the sequence {(Ci , Di )}∞i=0
are bounded as

‖(Ci , Di )‖F ≤ ρ := lim
i→∞ ρi = ρ0(1 + κ) . (5.21)

Wenowshow that the sequence {(Ci , Di )}∞i=0 converges provided that 2δ
−1ωρ < 1,

which is ensured by (5.17). For this purpose, let Si = (S(C)
i , S(D)

i ) := (Ci+1 −
Ci , Di+1 − Di ). Then (5.19) implies

‖Si‖F ≤ ‖(T + �T )†‖2
∥∥∥∥
[
vec (Ci (M0 + �A11)Di − Ci−1(M0 + �A11)Di−1)

vec (Ci (M1 + �B11)Di − Ci−1(M1 + �B11)Di−1)

]∥∥∥∥
2

≤ δ−1

∥∥∥∥∥∥
⎡
⎣vec

(
S(C)
i−1(M0 + �A11)Di + Ci−1(M0 + �A11)S

(D)
i−1

)
vec

(
S(C)
i−1(M1 + �B11)Di + Ci−1(M1 + �B11)S

(D)
i−1

)
⎤
⎦
∥∥∥∥∥∥
2

≤ 2δ−1ωρ‖Si−1‖F .

Therefore, the sequence {(Ci , Di )}∞i=0 is a Cauchy sequence, since 2δ−1ωρ < 1, and
must have a limit (C, D) := limi→∞(Ci , Di ).Taking limits of both sides of (5.18), we
get that (C, D) is a solution of (5.11). Finally, from (5.21), ‖(C, D)‖F ≤ ρ0(1+κ) <

2ρ0 = 2δ−1θ , which concludes the proof. ��
Theorem 5.9 completes the first step of the backward error analysis. Its proof

follows from Theorem 5.8 and norm inequalites. The numerical constants appearing
in Theorem 5.9 are not optimal and have been chosen to keep the analysis and the
bounds simple.

Theorem 5.9 Let L(λ) be an (ε, n, η,m)-block Kronecker pencil as in (4.1), let ε +
η + 1 = d, and let �L(λ) be any pencil with the same size as L(λ) and such that

‖�L(λ)‖F <

(
(
√
2 − 1)

d

)2
1

1 + ‖λM1 + M0‖F . (5.22)

Then, there exist matrices C ∈ F
εn×(η+1)m and D ∈ F

(ε+1)n×ηm that satisfy

‖(C, D)‖F ≤ d‖�L(λ)‖F
(
√
2 − 1)

, (5.23)

and the equality (5.6) with

max{‖�L̃21(λ)‖F , ‖�L̃12(λ)‖F }
≤ ‖�L(λ)‖F

(
1 + d

(
√
2 − 1)

(‖λM1 + M0‖F + ‖�L(λ)‖F )

)
. (5.24)
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Proof The notation in (5.9) for the blocks of �L(λ) is used throughout the proof. We
first prove that (5.22) implies (5.17) and, so, the existence of C and D satisfying (5.6).
For this purpose, note that (5.22) implies ‖�L(λ)‖F < 1/d < 1 and, therefore, that
Lemma 5.7 holds and that δ > 0. With this, and the notation in Theorem 5.8, we get

θω

δ2
≤ ‖�L(λ)‖F (‖λM1 + M0‖F + ‖�L(λ)‖F )

4(
√
2−1)2

d2

<
1

4
,

and (5.17) indeed holds. Then, Theorem 5.8 implies that there exist matrices C and
D satisfying (5.6) and

‖(C, D)‖F ≤ 2
θ

δ
≤ d‖�L(λ)‖F

(
√
2 − 1)

,

which proves (5.23). Finally, from (5.5) and (5.6), we obtain that

�L̃12(λ) = (λM1 + M0 + �L11(λ))D + �L12(λ),

�L̃21(λ) = C(λM1 + M0 + �L11(λ)) + �L21(λ),

which combined with (5.23) leads to (5.24). ��

5.2 Second step: proving that L(λ) + � ˜L(λ) in (5.6) is a strong block minimal
bases pencil

The main result of this section is Theorem 5.17. From the definition of strong block
minimal bases pencils, it is not surprising that part of the proof of Theorem 5.17 relies
on algebraic results that characterize when amatrix polynomial is aminimal basis with
all its row degrees equal and such that any minimal basis dual to it has also all its row
degrees equal. In the first part of this section, we establish such characterizations. In
this process, we use the complete eigenstructure of a matrix polynomial. Since it may
include infinite eigenvalues, whose definition depends on which grade is chosen for
the polynomial [17, Section 2], we adopt the convention in this section that anytime
a complete eigenstructure is mentioned, the grade of the corresponding polynomial is
equal to its degree.

A simple result that is used in this section is the next lemma.

Lemma 5.10 Let Q(λ) ∈ F[λ]m×n with m < n. Then, Q(λ) is a minimal basis with
all its row degrees equal if and only if the complete eigenstructure of Q(λ) consists of
only n − m right minimal indices.

Proof It is a simple consequence of Theorem 2.2 and the fact that if all the row
degrees of Q(λ) =∑q

i=0 Qiλ
i (where Qq �= 0) are equal, then its highest row degree

coefficient matrix is equal to its leading coefficient Qq . So, if Q(λ) is a minimal basis
with all its row degrees equal, then Theorem 2.2 guarantees that Q(λ) has no finite
eigenvalues, since Q(λ0) has full row rank for all λ0 ∈ F, and that Q(λ) has no infinite
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eigenvalues, since it is row reduced. In addition, Q(λ) has no left minimal indices,
since it has full row rank. Therefore, the complete eigenstructure of Q(λ) consists of
only n − m right minimal indices.

Conversely, if the complete eigenstructure of Q(λ) consists of only n − m right
minimal indices, then rankQq = rankQ(λ) = m, because Q(λ) has neither infinite
eigenvalues nor left minimal indices. This implies that all the row degrees of Q(λ)

are equal, since otherwise rankQq < m, and that Q(λ) is row reduced. Moreover,
rankQ(λ0) = m for all λ0 ∈ F because Q(λ) has no finite eigenvalues, and we get
from Theorem 2.2 that Q(λ) is a minimal basis with all its row degrees equal. ��

Convolution matrices will be useful in our characterizations of minimal bases and
in a number of perturbation results. For any matrix polynomial Q(λ) = ∑q

i=0 Qiλ
i

of grade q and arbitrary size, we define in the spirit of Gantmacher [33, Chapter XII]
the sequence of its convolution matrices as follows

C j (Q(λ)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qq

Qq−1 Qq
... Qq−1

. . .

Q0
...

. . . Qq

Q0 Qq−1
. . .

...

Q0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
j + 1 block columns

, for j = 0, 1, 2, . . .. (5.25)

Observe that for every j the matrix C j (Q(λ)) is a constant matrix. In particular for
j = 0, the matrix C0(Q(λ)) is a block column matrix whose block entries are the
matrix coefficients of the polynomial. The fundamental property of these convolution
matrices is that if Z(λ) is any matrix polynomial of grade j for which the product
Q(λ)Z(λ) is defined and is considered to have grade q + j , then

C0(Q(λ)Z(λ)) = C j (Q(λ))C0(Z(λ)). (5.26)

Another easy property of convolution matrices that we often use is that ‖C j (Q(λ))‖F
= √

j + 1 ‖Q(λ)‖F . Note also that if S(λ) is another matrix polynomial with the
same grade as Q(λ), then C j (Q(λ) + S(λ)) = C j (Q(λ)) + C j (S(λ)), for all j . The
convolution matrices for pencils are particularly simple. For instance, for the pencil
Lε(λ) ⊗ In in the (2, 1)-block of (4.1), we have with the notation in (5.8) that

Cε−1(Lε(λ) ⊗ In) =

⎡
⎢⎢⎢⎣

Fεn

−Eεn
. . .
. . . Fεn

−Eεn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ε block columns

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ε + 1 block rows . (5.27)
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Lemma 5.10 motivates us to look deeper into the right minimal indices of a matrix
polynomial Q(λ) and into the rational right null subspaceNr (Q) defined in (2.2). This
is the purpose of Lemma 5.11, which proves for general matrix polynomials ideas that
can be found in [33, Chapter XII] only for matrix pencils.

Lemma 5.11 Let Q(λ) ∈ F[λ]m×n and let Cs(Q(λ)), s = 0, 1, 2, . . ., be the sequence
of convolution matrices of Q(λ). Then, the following statements hold.

(a) Let v(λ) ∈ F[λ]n×1 be a polynomial vector of grade j . Then, v(λ) ∈ Nr (Q) if
and only if C0(v(λ)) ∈ Nr (C j (Q(λ))).

(b) The smallest right minimal index of Q(λ) is j if and only if C j−1(Q(λ)) has full
column rank and C j (Q(λ)) does not have full column rank.

(c) If j is the smallest right minimal index of Q(λ) and dimNr (C j (Q(λ))) = p, then
Q(λ) has at least p minimal indices equal to j .

Proof Part (a) follows immediately from (5.26). Before proceeding, note that part (a)
establishes the natural bijection1 v(λ) �−→ C0(v(λ)) between the set of polynomial
vectors of grade j in Nr (Q) ⊆ F(λ)n and Nr (C j (Q(λ))) ⊆ F

( j+1)n×1. Indeed
v(λ) �→ C0(v(λ)) is a bijection, since its inverse can be trivially constructed as
follows: partition any x ∈ Nr (C j (Q(λ))) ⊆ F

( j+1)n×1 as x = [xTj , . . . , xT1 , xT0 ]T ,
where xi ∈ F

n×1, and note that

x �−→
j∑

i=0

xiλ
i =: P(x; λ) ∈ Nr (Q) (5.28)

is the inverse of v(λ) �→ C0(v(λ)).
Part (b). From part (a), it is obvious that if the smallest right minimal index of Q(λ)

is j , then C j−1(Q(λ)) has full column rank but C j (Q(λ)) does not. The converse
also follows from part (a) by taking into account that if C j−1(Q(λ)) has full col-
umn rank, then C j−2(Q(λ)), . . . ,C0(Q(λ)) have also full column ranks. Therefore,
Nr (C j−1(Q(λ))) = {0}, . . . ,Nr (C1(Q(λ))) = {0},Nr (C0(Q(λ))) = {0} and part
(a) implies that Nr (Q) does not include vectors different from 0 of degree less than
j , but does include vectors of degree j because C j (Q(λ)) does not have full column
rank and so Nr (C j (Q(λ))) �= {0}.

The proof of part (c) requires more work. Let {v(1), . . . , v(p)} be a basis of
Nr (C j (Q(λ))) and consider, according to (5.28), the vector polynomialsP(v(k); λ) =∑ j

i=0 v
(k)
i λi ∈ Nr (Q) for k = 1, . . . , p. Note that P(v(k); λ) �= 0, because v(k) �= 0,

and that deg(P(v(k); λ)) = j , because otherwise Q(λ) would have right minimal
indices smaller than j . The result follows fromproving thatP(v(1); λ), . . . ,P(v(p); λ)

are linearly independent. We prove this by contradiction. Assume that there exists a
linear combination

a1(λ)P(v(1); λ) + a2(λ)P(v(2); λ) + · · · + ap(λ)P(v(p); λ) = 0,

1 We emphasize that this bijection is not a linear map since the fields of the linear spaces corresponding to
the domain and the codomain are different. Nevertheless, it has some obvious linear properties that can be
used.
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where, without loss of generality, we assume that a1(λ), . . . , ap(λ) are scalar poly-
nomials not all equal to zero (if they were rational functions we may multiply the
equation above by their least common denominator). The coefficient of the highest
power in the equation above satisfies

c1v
(1)
j + c2v

(2)
j + · · · + cpv

(p)
j = 0,

for some constants c1, c2, . . . , cp, where at least one of them is nonzero. Then, let us
define the polynomial vector q(λ) :=∑p

k=1 ckP(v(k); λ). Notice that q(λ) ∈ Nr (Q)

and that deg(q(λ)) < j . Then q(λ) = 0, because otherwise Q(λ) would have right
minimal indices smaller than j ,which implies

∑p
k=1 ckv

(k) = 0.This is a contradiction
since {v(1), v(2), . . . , v(p)} is a linearly independent set of vectors. ��

Next, we study when arbitrary pencils with the same size as the (2, 1)-block of
L(λ) + �L̃(λ) in (5.6) are the corresponding block of a strong block minimal bases
pencil.

Theorem 5.12 Let A+ λB ∈ F[λ]εn×(ε+1)n and let Cs(A+ λB), s = 0, 1, 2, . . ., be
the sequence of convolution matrices of A + λB. Then, A + λB is a minimal basis
with all its row degrees equal to 1 and with all the row degrees of any minimal basis
dual to it equal to ε if and only if Cε−1(A + λB) ∈ F

ε(ε+1)n×ε(ε+1)n is nonsingular
and Cε(A + λB) ∈ F

ε(ε+2)n×(ε+1)2n has full row rank.

Proof Bear in mind that the right minimal indices of a minimal basis are the row
degrees of anyminimal basis dual to it. First, assume that A+λB is aminimal basiswith
all its row degrees equal to 1 andwith all the row degrees of anyminimal basis dual to it
equal to ε. Then, the complete eigenstructure of A+λB consists of onlyn rightminimal
indices equal to ε, by Lemma 5.10. From Lemma 5.11(b), we get that Cε−1(A+ λB)

has full column rank and, since it is square, it must be nonsingular. From Lemma
5.11(c), we get that n ≥ dimNr (Cε(A + λB)) = (ε + 1)2n − rank(Cε(A + λB)),
which implies that rank(Cε(A+ λB)) ≥ (ε + 1)2n − n = ε(ε + 2)n and, finally, that
rank(Cε(A + λB)) = ε(ε + 2)n, because Cε(A + λB) has ε(ε + 2)n rows.

Next, assume thatCε−1(A+λB) is nonsingular andCε(A+λB) has full row rank.
Therefore, dimNr (Cε(A + λB)) = (ε + 1)2n − rank(Cε(A + λB)) = (ε + 1)2n −
ε(ε + 2)n = n. From Lemma 5.11(b), we get that the smallest right minimal index of
A+λB is ε, and from Lemma 5.11(c), we get that A+λB has at least n right minimal
indices equal to ε. Also note that the degree of A + λB must be 1, since otherwise
its minimal indices would be all equal to zero. Combining this information with the
index sum theorem [17, Theorem 6.5] applied to A+ λB and with the obvious bound
εn ≥ rank(A + λB), we get

nε ≥ rank(A + λB) ≥ nε + δ(A + λB) + μle f t (A + λB), (5.29)

where δ(A + λB) is the sum of the degrees of all the elementary divisors (finite and
infinite) of A + λB and μle f t (A + λB) is the sum of the left minimal indices of
A + λB. The inequalities (5.29) imply that rank(A + λB) = nε and that A + λB has
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no elementary divisors at all. Moreover, rank(A + λB) = nε implies that A + λB
has no left minimal indices and that it has exactly n right minimal indices. Therefore,
the complete eigenstructure of A+ λB consists of only n right minimal indices equal
to ε, which implies, by Lemma 5.10, that A + λB is a minimal basis with all its row
degrees equal to 1 and with all the row degrees of any minimal basis dual to it equal
to ε. ��

We now present the counterpart of Theorem 5.12 concerning matrix polynomials
that may be minimal bases dual to the pencils considered in Theorem 5.12. The proof
of Theorem 5.13 is omitted, since it is very similar to that of Theorem 5.12 and is
based again on Lemmas 5.10 and 5.11.

Theorem 5.13 Let Q(λ) = ∑ε
i=0 Qiλ

i ∈ F[λ]n×(ε+1)n and let Cs(Q(λ)), s =
0, 1, 2, . . ., be the sequence of convolution matrices of Q(λ). Then, Q(λ) is a minimal
basis with all its row degrees equal to ε and with all the row degrees of any minimal
basis dual to it equal to 1 if and only if C0(Q(λ)) ∈ F

(ε+1)n×(ε+1)n is nonsingular
and C1(Q(λ)) ∈ F

(ε+2)n×2(ε+1)n has full row rank.

Theorems 5.12 and 5.13 have established the characterizations of a minimal basis
with all its row degrees equal and with all the row degrees of any minimal basis
dual to it also equal that are needed in this paper. We now return to our perturbation
problem for L(λ) + �L̃(λ) in (5.6). In Theorem 5.14, we give some properties of
the unperturbed (2, 1)-block of L(λ), that is, Lε(λ) ⊗ In , and its dual minimal basis
�ε(λ)T ⊗ In . The proof is given in Appendix C.

Theorem 5.14 Let Lε(λ) and �ε(λ)T be the pencil and the row vector polynomial
defined in (2.3) and (2.4), respectively. Then the following statements hold.

(a) Cε−1(Lε(λ) ⊗ In) ∈ F
ε(ε+1)n×ε(ε+1)n is nonsingular and Cε(Lε(λ) ⊗ In) ∈

F
ε(ε+2)n×(ε+1)2n has full row rank.

(b) C0(�ε(λ)T ⊗ In) = I(ε+1)n and, therefore, is nonsingular, and C1(�ε(λ)T ⊗
In) ∈ F

(ε+2)n×2(ε+1)n has full row rank.

(c) σmin(Cε−1(Lε(λ)⊗ In)) = σmin(Cε(Lε(λ)⊗ In)) = 2 sin
π

(4ε + 2)
≥ 3

2(ε + 1)
.

(d) σmin(C0(�ε(λ)T ⊗ In)) = σmin(C1(�ε(λ)T ⊗ In)) = 1.

As a corollary of Theorem 5.12 and Theorem 5.14(a)–(c), we obtain the following
perturbation result for the (2, 1)-block of L(λ) + �L̃(λ) in (5.6).

Corollary 5.15 Let �L̃21(λ) be any pencil of size εn × (ε + 1)n such that

‖�L̃21(λ)‖F <
3

2(ε + 1)
3
2

. (5.30)

Then, Lε(λ) ⊗ In + �L̃21(λ) is a minimal basis with all its row degrees equal to 1
and with all the row degrees of any minimal basis dual to it equal to ε.
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Proof Observe that (5.30) implies that ‖Cε−1(�L̃21(λ))‖2 ≤ ‖Cε−1(�L̃21(λ))‖F
= √

ε ‖�L̃21(λ)‖F < 3
2(ε+1) ≤ σmin(Cε−1(Lε(λ) ⊗ In)), where we have used The-

orem 5.14(c). Therefore, Cε−1(Lε(λ) ⊗ In + �L̃21(λ)) = Cε−1(Lε(λ) ⊗ In) +
Cε−1(�L̃21(λ)) is nonnsingular, as a consequence of Theorem 5.14(a) and Weyl’s
perturbation theorem for singular values [45, Theorem 3.3.16]. An analogous argu-
ment proves that Cε(Lε(λ) ⊗ In + �L̃21(λ)) has full row rank. The result follows
from Theorem 5.12. ��

As a corollary of Theorem 5.13 and Theorem 5.14(b)–(d), we obtain the following
perturbation result for the minimal basis dual to Lε(λ) ⊗ In .

Corollary 5.16 Let �Rε(λ)T be a matrix polynomial of size n × (ε + 1)n, grade ε,
and such that

‖�Rε(λ)‖F <
1√
2
. (5.31)

Then, �ε(λ)T ⊗ In + �Rε(λ)T is a minimal basis with all its row degrees equal to ε

and with all the row degrees of any minimal basis dual to it equal to 1.

Proof Observe that (5.31) implies that ‖C1(�Rε(λ)T )‖2 ≤ ‖C1(�Rε(λ)T )‖F =√
2 ‖�Rε(λ)T ‖F < 1 = σmin(C1(�ε(λ)T ⊗ In)), where we have used Theorem

5.14(d). Therefore,C1(�ε(λ)T ⊗ In+�Rε(λ)T ) = C1(�ε(λ)T ⊗ In)+C1(�Rε(λ)T )

has full row rank, as a consequence of Theorem 5.14(b) and Weyl’s perturbation
theorem for singular values. An analogous argument proves that C0(�ε(λ)T ⊗ In +
�Rε(λ)T ) is nonsingular. The result follows from Theorem 5.13. ��

Now, we are in the position of proving the main result of this section.

Theorem 5.17 Let Lε(λ) and �ε(λ)T be the pencil and the row vector polynomial
defined in (2.3) and (2.4), respectively, and let �L̃21(λ) be any pencil of size εn ×
(ε + 1)n such that

‖�L̃21(λ)‖F <
1

2(ε + 1)3/2
. (5.32)

Then, there exists a matrix polynomial �Rε(λ)T with size n × (ε + 1)n and grade ε

such that

(a) Lε(λ) ⊗ In + �L̃21(λ) and �ε(λ)T ⊗ In + �Rε(λ)T are dual minimal bases,
with all the row degrees of the former equal to 1 and with all the row degrees of
the latter equal to ε, and

(b) ‖�Rε(λ)‖F ≤ √
2 (ε + 1) ‖�L̃21(λ)‖F <

1√
2
.

Proof The hypothesis (5.32) implies ‖�L̃21(λ)‖F < 3/(2(ε+1)3/2). Therefore, from
Corollary 5.15, we get that Lε(λ) ⊗ In + �L̃21(λ) is a minimal basis with all its row
degrees equal to 1 and with all the row degrees of any minimal basis dual to it equal
to ε, and, according to Theorem 5.12, we also have that Cε(Lε(λ) ⊗ In + �L̃21(λ))

has full row rank. Using this fact, the goal of the rest of the proof is to show that there
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exists a matrix polynomial�Rε(λ)T with grade ε, that satisfies the bound in Theorem
5.17(b), and such that

(Lε(λ) ⊗ In + �L̃21(λ)) (�ε(λ) ⊗ In + �Rε(λ)) = 0. (5.33)

Once this is proved, the proof of Theorem 5.17 concludes by the application of Corol-
lary 5.16.

Since (Lε(λ) ⊗ In) (�ε(λ) ⊗ In) = 0, the equation (5.33) is equivalent to the
following linear equation for �Rε(λ)

(Lε(λ) ⊗ In + �L̃21(λ)) (�Rε(λ)) = −�L̃21(λ) (�ε(λ) ⊗ In). (5.34)

Both sides of (5.34) have grade ε+1, therefore, by using convolutionmatrices, (5.34) is
equivalent toC0((Lε(λ)⊗ In+�L̃21(λ)) (�Rε(λ))) = −C0(�L̃21(λ) (�ε(λ)⊗ In)),
which in turn, by using (5.26), is equivalent to

Cε(Lε(λ) ⊗ In + �L̃21(λ)) C0(�Rε(λ)) = −C0(�L̃21(λ) (�ε(λ) ⊗ In)). (5.35)

Observe that (5.35) is a consistent linear system for the unknown C0(�Rε(λ)), since
Cε(Lε(λ)⊗ In +�L̃21(λ)) has full row rank, with minimum Frobenius norm solution

C0(�Rε(λ)) = −Cε(Lε(λ) ⊗ In + �L̃21(λ))† C0(�L̃21(λ) (�ε(λ) ⊗ In)). (5.36)

From (5.36), we get the bound

‖C0(�Rε(λ))‖F ≤ ‖Cε(Lε(λ) ⊗ In + �L̃21(λ))†‖2 ‖C0(�L̃21(λ) (�ε(λ) ⊗ In))‖F
= 1

σmin(Cε(Lε(λ) ⊗ In + �L̃21(λ)))
‖C0(�L̃21(λ) (�ε(λ) ⊗ In))‖F . (5.37)

In the rest of the proof, the two factors in the right-hand side of (5.37) are bounded.
To bound the first factor, we use Theorem 5.14(c) and (5.32) as follows:

1

σmin(Cε(Lε(λ) ⊗ In + �L̃21(λ)))
≤ 1

σmin(Cε(Lε(λ) ⊗ In)) − ‖Cε(�L̃21(λ))‖2
≤ 1

σmin(Cε(Lε(λ) ⊗ In)) − ‖Cε(�L̃21(λ))‖F
≤ 1

3
2(ε+1) − √

ε + 1 ‖�L̃21(λ))‖F
≤ 1

3
2(ε+1) − 1

2(ε+1)

= (ε + 1) . (5.38)
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To bound the second factor of (5.37), we use Lemma 2.15(d) with d = 1 as follows:

‖C0(�L̃21(λ) (�ε(λ) ⊗ In))‖F = ‖�L̃21(λ) (�ε(λ) ⊗ In)‖F ≤ √
2 ‖�L̃21(λ)‖F .

(5.39)

Finally, by combining (5.37, 5.38, 5.39), the following bound is obtained

‖�Rε(λ)‖F = ‖C0(�Rε(λ))‖F ≤ √
2(ε + 1) ‖�L̃21(λ)‖F ≤ 1√

2(ε + 1)
,

and the proof is finished. ��
Theorem 5.17 can be applied with ε replaced by η and In replaced by Im , i.e., to

the transpose of the (1, 2)-block of L(λ) + �L̃(λ) in (5.6). This allows us to state, as
a corollary of Theorem 5.17, the final conclusion of this section in Theorem 5.18.

Theorem 5.18 Let L(λ) + �L̃(λ) be the pencil in (5.6) and let d = ε + η + 1. If

max{‖�L̃21(λ)‖F , ‖�L̃12(λ)‖F } <
1

2 d3/2
,

then L(λ) + �L̃(λ) is a strong block minimal bases pencil. Moreover, there exist
matrix polynomials �Rε(λ)T and �Rη(λ)T of grades ε and η, respectively, such that
�ε(λ)T ⊗ In +�Rε(λ)T is a minimal basis dual to the (2, 1)-block of L(λ)+�L̃(λ)

with all its row degrees equal to ε, �η(λ)T ⊗ Im + �Rη(λ)T is a minimal basis dual
to the transpose of the (1, 2)-block of L(λ) + �L̃(λ) with all its row degrees equal to
η, and

max{‖�Rε(λ)‖F , ‖�Rη(λ)‖F } ≤ √
2 d max{‖�L̃21(λ)‖F , ‖�L̃12(λ)‖F } <

1√
2
.

The bound max{‖�Rε(λ)‖F , ‖�Rη(λ)‖F } < 1/
√
2 in the equation above has the

main purpose to emphasize that the hypotheses of Corollary 5.16 hold. In addition,
it motivates the assumptions in Lemmas 5.19 and 5.20 that allow us to get rid of
nonlinear terms in bounding ‖�P(λ)‖F .

5.3 Third step: mapping perturbations to a block Kronecker pencil onto the
matrix polynomial

In this section,we combine the results in Sects. 5.1 and 5.2 to obtain ourmain backward
error (or perturbation) results, that is, Theorem 5.21 for general block Kronecker
pencils as in (4.1) and Theorem 5.22 for degenerate block Kronecker pencils in which
either ε = 0 or η = 0, that is, in which one of the anti-diagonal blocks and the zero
block are not present. According to Remark 5.1 both cases require somewhat different
treatments which makes the discussion longer.
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The proofs of Theorems 5.21 and 5.22 are direct consequences of previous results,
but require some delicate (although elementary) normmanipulationswhich are simpli-
fied if the technical Lemmas 5.19 and 5.20 are stated in advance. The relevance of these
lemmas comes from the fact that the strong block minimal bases pencilL(λ)+�L̃(λ)

in Theorem 5.18 is a strong linearization of the matrix polynomial in (5.7), as a con-
sequence of Theorem 3.3. The numerical constants appearing in Lemmas 5.19 and
5.20, and in the rest of the analysis, are not optimal but allow us to keep the analysis
simple.

Lemma 5.19 Let P(λ) and P(λ) + �P(λ) be the matrix polynomials in (5.4) and
(5.7), respectively. If the matrix polynomials �Rε(λ) and �Rη(λ) of grades ε and η,
respectively, satisfy ‖�Rε(λ)‖F < 1/

√
2 and ‖�Rη(λ)‖F < 1/

√
2, then

‖�P(λ)‖F ≤√
d
(
5‖�L11(λ)‖F+4‖λM1+M0‖F max{‖�Rε(λ)‖F , ‖�Rη(λ)‖F }) ,

where d = ε + η + 1.

Proof For brevity, we use in this proof the notation �T
εn := �ε(λ)T ⊗ In and omit the

dependence on λ of some matrix polynomials. From (5.4) and (5.7), we get that

�P(λ) = �RT
η (λM1 + M0)�εn + �T

ηm�L11�εn + �RT
η �L11�εn

+ �T
ηm(λM1 + M0)�Rε + �RT

η (λM1 + M0)�Rε

+ �T
ηm�L11�Rε + �RT

η �L11�Rε. (5.40)

The result follows from bounding the Frobenius norm of each of the terms in the
right-hand side of (5.40). For this purpose, Lemma 2.15 is used and, in addition, the
inequalities ‖�Rε(λ)‖F < 1/

√
2 and ‖�Rη(λ)‖F < 1/

√
2 are used in those terms

that are not linear in �L11(λ), �Rε(λ), and �Rη(λ) for bounding them with linear
terms. Let us show how to bound only one of the terms in (5.40), since the rest are
bounded via similar procedures,

‖�RT
η (λM1 + M0)�Rε‖F ≤ √

d ‖�Rη‖F‖(λM1 + M0)�Rε‖F
≤ √

2d ‖�Rη‖F‖λM1 + M0‖F‖�Rε‖F
≤ √

d ‖λM1 + M0‖F‖�Rε‖F .

��
Lemma 5.20 is the counterpart of Lemma 5.19 that is needed to deal with pertur-

bations of degenerate block Kronecker pencils. The proof of Lemma 5.20 is omitted
because it is similar to, and simpler than, the one of Lemma 5.19.

Lemma 5.20 (a) Let us consider the matrix polynomials

P(λ) = (λM1 + M0)(�ε(λ) ⊗ In),

P(λ) + �P(λ) = (λM1 + M0 + �L11(λ)) (�ε(λ) ⊗ In + �Rε(λ)) .
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If the matrix polynomial �Rε(λ) satisfies ‖�Rε(λ)‖F < 1/
√
2, then

‖�P(λ)‖F ≤ 3 ‖�L11(λ)‖F + √
2 ‖λM1 + M0‖F ‖�Rε(λ)‖F .

(b) Let us consider the matrix polynomials

P(λ) = (�η(λ)T ⊗ Im)(λM1 + M0),

P(λ) + �P(λ) =
(
�η(λ)T ⊗ Im + �Rη(λ)T

)
(λM1 + M0 + �L11(λ)) .

If the matrix polynomial �Rη(λ) satisfies ‖�Rη(λ)‖F < 1/
√
2, then

‖�P(λ)‖F ≤ 3 ‖�L11(λ)‖F + √
2 ‖λM1 + M0‖F ‖�Rη(λ)‖F .

Next, we state and prove the main results of Sect. 5 concerning perturbations of the
block Kronecker pencils defined and studied in Sect. 4. Recall that these pencils are
strong linearizations of prescribedmatrix polynomials whose right (resp. left) minimal
indices are obtained by summing ε (resp. η) to each of the right (resp. left) minimal
indices of the matrix polynomial (see Theorems 4.2 and 4.4).

Theorem 5.21 Let P(λ) = ∑d
i=0 Piλ

i ∈ F[λ]m×n and let L(λ) be an (ε, n, η,m)-
block Kronecker pencil with d = ε + η + 1 such that P(λ) = (�η(λ)T ⊗ Im)(λM1 +
M0)(�ε(λ)⊗ In), where λM1+M0 is the (1, 1)-block in the natural partition ofL(λ)

and �k(λ) is the vector polynomial in (2.4). If �L(λ) is any pencil with the same size
as L(λ) and such that

‖�L(λ)‖F < (
√
2 − 1)2

1

d5/2
1

1 + ‖λM1 + M0‖F , (5.41)

then L(λ) + �L(λ) is a strong linearization of a matrix polynomial P(λ) + �P(λ)

with grade d and such that

‖�P(λ)‖F
‖P(λ)‖F ≤ 14 d5/2

‖L(λ)‖F
‖P(λ)‖F (1 + ‖λM1 + M0‖F + ‖λM1 + M0‖2F )

‖�L(λ)‖F
‖L(λ)‖F .

In addition, the right minimal indices of L(λ) + �L(λ) are those of P(λ) + �P(λ)

shifted by ε, and the left minimal indices ofL(λ)+�L(λ) are those of P(λ)+�P(λ)

shifted by η.

Proof Observe that the condition (5.41) implies that (5.22) holds. Therefore, we can
applyTheorem5.9 toL(λ)+�L(λ) for proving that it is strictly equivalent to the pencil
L(λ)+�L̃(λ) in (5.6) and thus both pencils have the same complete eigenstructures.
By combining (5.41), which implies d‖�L(λ)‖F < (

√
2 − 1), with (5.24), we get

the following bound
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max{‖�L̃21(λ)‖F , ‖�L̃12(λ)‖F } ≤ ‖�L(λ)‖F
(
2 + d√

2 − 1
‖λM1 + M0‖F

)

≤ (
√
2 − 1)

1

d3/2
<

1

2

1

d3/2
, (5.42)

which allows us to apply Theorem 5.18 to L(λ) + �L̃(λ). Then, L(λ) + �L̃(λ) is
a strong block minimal bases pencil which, according to Theorem 3.3, is a strong
linearization of the matrix polynomial P(λ) + �P(λ) in (5.7). Moreover, Theorem
3.6 guarantees that the right minimal indices of L(λ) + �L̃(λ) are those of P(λ) +
�P(λ) shifted by ε, and that the left minimal indices of L(λ) + �L̃(λ) are those of
P(λ) + �P(λ) shifted by η. The same holds for L(λ) + �L(λ), since it is strictly
equivalent toL(λ)+�L̃(λ). It only remains to bound ‖�P(λ)‖F . For this purpose, we
combine Lemma 5.19 and the bound on max{‖�Rε(λ)‖F , ‖�Rη(λ)‖F } in Theorem
5.18. By using Theorem 5.18 and (5.42), the inequality

max{‖�Rε(λ)‖F , ‖�Rη(λ)‖F } ≤
√
2

(
√
2 − 1)

d2 ‖�L(λ)‖F (1 + ‖λM1 + M0‖F ) ,

is proved. If this inequality is introduced in the bound of Lemma 5.19, then we obtain

‖�P(λ)‖F ≤ 14 d5/2 ‖�L(λ)‖F (1 + ‖λM1 + M0‖F + ‖λM1 + M0‖2F ),

and the proof concludes. ��

Next,we state andproveTheorem5.22,which is the counterpart ofTheorem5.21 for
degenerate block Kronecker pencils. For brevity, degenerate block Kronecker pencils
are called either (0, n, η,m)-block Kronecker pencils when the second block row in
(4.1) ismissing or (ε, n, 0,m)-blockKronecker pencils when the second block column
in (4.1) is missing, i.e., they correspond to taking either ε = 0 or η = 0.We emphasize
that the perturbation bound in Theorem 5.22 is smaller than the one in Theorem 5.21
because performing the strict equivalence (5.6) is not needed in the degenerate case.
The most relevant difference in Theorem 5.22 with respect to the bound in Theorem
5.21 is that the term ‖λM1 + M0‖2F is not present, which is in agreement with the
first order results obtained in [20] for Fiedler matrices (not pencils) of scalar monic
polynomials.

Theorem 5.22 Let P(λ) = ∑d
i=0 Piλ

i ∈ F[λ]m×n and let L(λ) be either a
(0, n, η,m)-block Kronecker pencil with d = η + 1 such that P(λ) = (�η(λ)T ⊗
Im)(λM1 + M0) or an (ε, n, 0,m)-block Kronecker pencil with d = ε + 1 such that
P(λ) = (λM1 + M0)(�ε(λ)⊗ In), where λM1 + M0 is the (1, 1)-block in the natural
partition of L(λ) and �k(λ) is the vector polynomial in (2.4). If �L(λ) is any pencil
with the same size as L(λ) and such that

‖�L(λ)‖F <
1

2 d3/2
, (5.43)
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then L(λ) + �L(λ) is a strong linearization of a matrix polynomial P(λ) + �P(λ)

with grade d and such that

‖�P(λ)‖F
‖P(λ)‖F ≤ 2 d

‖L(λ)‖F
‖P(λ)‖F (1 + ‖λM1 + M0‖F )

‖�L(λ)‖F
‖L(λ)‖F .

In addition, the right minimal indices of L(λ) + �L(λ) are those of P(λ) + �P(λ)

shifted by ε, and the left minimal indices ofL(λ)+�L(λ) are those of P(λ)+�P(λ)

shifted by η, where either ε = 0 or η = 0.

Proof We simply sketch the proof, since it follows the same ideas as the proof of
Theorem 5.21. We remind the reader of Remark 3.5, which implies that either the last
block row or last block column of L(λ) + �L(λ) is empty. Thus, in these limiting
cases, we can directly apply Theorem 5.18 to L(λ)+�L(λ) = L(λ)+�L̃(λ). After
that, it only remains to prove the bound on ‖�P(λ)‖F . For this purpose, we combine
Lemma 5.20 and the bound on max{‖�Rε(λ)‖F , ‖�Rη(λ)‖F } in Theorem 5.18 for
obtaining

‖�P(λ)‖F ≤ 2 d ‖�L(λ)‖F (1 + ‖λM1 + M0‖F ).

This ends the proof. ��
Finally, we discuss when Theorems 5.21 and 5.22 guarantee backward stability

of complete polynomial eigenproblems solved via the staircase or the QZ algorithms
applied to a block Kronecker pencil. We restrict the discussion to nondegenerate block
Kronecker pencils, since the obtained conclusions are also valid for the degenerate
case. According to our discussion at the beginning of Sect. 5, to equation (5.3), and
to Theorem 5.21, if

CP,L := 14 d5/2
‖L(λ)‖F
‖P(λ)‖F (1 + ‖λM1 + M0‖F + ‖λM1 + M0‖2F ) (5.44)

is a moderate number, then the backward stability is guaranteed. From (5.44), it is
clear that the following elementary lemma is useful for our discussion.

Lemma 5.23 Let P(λ) = ∑d
k=0 Pkλ

k ∈ F[λ]m×n and let L(λ) be an (ε, n, η,m)-
block Kronecker pencil with d = ε + η + 1 such that P(λ) = (�η(λ)T ⊗ Im)(λM1 +
M0)(�ε(λ) ⊗ In). Then:

(a)
‖L(λ)‖F
‖P(λ)‖F =

√(‖λM1 + M0‖F
‖P(λ)‖F

)2

+ 2(nε + mη)

‖P(λ)‖2F
≥ 1√

2 d
.

(b) ‖λM1 + M0‖F ≥ ‖P(λ)‖F/
√
2 d.

Proof The equality in part (a) follows from (4.1) and Definition 2.14. The inequality
follows from (4.4), which implies, for k = 0, 1, . . . , d,

‖Pk‖F ≤
∑

i+ j=d+2−k

‖[M1]i j‖F +
∑

i+ j=d+1−k

‖[M0]i j‖F
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≤ √
2d
√ ∑

i+ j=d+2−k

‖[M1]i j‖2F +
∑

i+ j=d+1−k

‖[M0]i j‖2F .

This in turn implies ‖P(λ)‖F ≤ √
2d ‖λM1 + M0‖F , which is the result in part (b),

and gives the inequality in part (a). ��
From (5.44) and Lemma 5.23(a), we see that if ‖P(λ)‖F � 1, then CP,L is huge,

since 2(nε + mη)/‖P(λ)‖2F is huge. Moreover, from (5.44) and Lemma 5.23(b), we
see that if ‖P(λ)‖F  1, then CP,L is also huge, since ‖λM1 + M0‖F is huge and
‖L(λ)‖F/‖P(λ)‖F ≥ 1/

√
2 d. Therefore, one should scale P(λ) in advance in such

a way that ‖P(λ)‖F = 1 to have a chance of CP,L is moderate. But even in this case,
CP,L is large if ‖λM1 + M0‖F is large. This happens, for instance, in the last pencil
in Example 4.5 if the arbitrary matrices A and/or B have huge norms.

As a consequence of the discussion above and Theorems 5.21 and 5.22, we can state
the informal Corollary 5.24, which establishes sufficient conditions for the backward
stability of the solution of complete polynomial eigenproblems via block Kronecker
pencils (degenerate or not). For the sake of clarity and simplicity any nonessential
numerical constant is omitted in Corollary 5.24.

Corollary 5.24 Let P(λ) = ∑d
i=0 Piλ

i ∈ F[λ]m×n with ‖P(λ)‖F = 1. Let L(λ) be
an (ε, n, η,m)-block Kronecker pencil as in (4.1) with d = ε + η + 1 and such that
P(λ) = (�η(λ)T ⊗ Im)(λM1 + M0)(�ε(λ) ⊗ In). Let �L(λ) be any pencil with the
same size asL(λ)andwith‖�L(λ)‖F sufficiently small. If‖λM1+M0‖F ≈ ‖P(λ)‖F ,
then L(λ) + �L(λ) is a strong linearization of a matrix polynomial P(λ) + �P(λ)

with grade d and such that

‖�P(λ)‖F
‖P(λ)‖F � d3

√
m + n

‖�L(λ)‖F
‖L(λ)‖F . (5.45)

In addition, the right minimal indices of L(λ) + �L(λ) are those of P(λ) + �P(λ)

shifted by ε, and the left minimal indices of L(λ) + �L(λ) are those of P(λ) +
�P(λ) shifted by η. In particular, this corollary holds for all permuted Fiedler pencils
presented in [25, Theorem 4.5], since for them ‖λM1 + M0‖F = ‖P(λ)‖F .

For limiting block Kronecker pencils, the bound (5.45) can be improved as follows:
the factor d3 can be replaced by d3/2, as a consequence of Theorem 5.22, and

√
m + n

by
√
m if ε = 0 or by

√
n if η = 0, as a consequence of Lemma 5.23(a).

Remark 5.25 We emphasize that Corollary 5.24 can be applied also to non-permuted
Fiedler pencils, since the Frobenius norm is invariant under permutations and permu-
tations preserve strong linearizations and minimal indices. Therefore, given a Fiedler
pencil and a perturbation of it, we can permute both and transform the corresponding
perturbation problem into the problem we have solved in this section.

Remark 5.26 Consider that each block-entry of the (1, 1)-blockλM1+M0 of the block
Kronecker pencil L(λ) in Theorems 5.21 and 5.22, and in Corollary 5.24, is a linear
combination of the coefficients Pd , . . . , P0 of P(λ) and of some arbitrary matrices
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satisfying (4.4). Then, the pencil L(λ) + �L(λ) in Theorems 5.21 and 5.22, and in
Corollary 5.24, is strictly equivalent to a block Kronecker pencil L̂(λ) with exactly the
same structure as L(λ) but for the polynomial P(λ) + �P(λ) instead of P(λ). This
means that each block-entry of the (1, 1)-block of the block Kronecker pencil L̂(λ) is
obtained from the corresponding block-entry of the (1, 1)-block of L(λ) by replacing
Pj by Pj + �Pj for j = 0, . . . , d. In particular, if L(λ) is a given permuted Fiedler
pencil of P(λ) (see [25, Theorem 4.5]), then L(λ) + �L(λ) is strictly equivalent to
the same permuted Fiedler pencil of P(λ) + �P(λ). This result follows from the
fact that Theorem 4.4 guarantees that L̂(λ) has the same complete eigenstructure as
L(λ)+�L(λ), and so both pencils must be strictly equivalent [33, Chapter XII]. This
remark by itself does not prove that the strict equivalence transformations connecting
L̂(λ) and L(λ) + �L(λ) are small perturbations of identity matrices, despite the fact
that L̂(λ) and L(λ) + �L(λ) are indeed very close each other. However, it is clear
that this remark opens the possibility of proving directly that L̂(λ) and L(λ)+�L(λ)

are strictly equivalent via nonsingular matrices that are very close to the identity, as it
was done in [74] for the Frobenius companion linearizations.

6 Conclusions and future work

The new family of strong block minimal bases pencils has been introduced and ana-
lyzed.We have proven in a simple and general way that these pencils are always strong
linearizations of matrix polynomials and that their minimal indices and those of the
polynomials satisfy constant uniform shifting relationships. These proofs are based
on the properties of dual minimal bases—classical tools in multivariable linear system
theory that have been used recently in different matrix polynomial eigenproblems. As
an immediate corollary of this general theory, we obtain that the same results hold
for the subfamily of block Kronecker pencils, which form a wide subclass of block
minimal bases pencils easily constructible from the coefficients of a given but general
matrix polynomial (general in the sense that it may be square or rectangular, regular or
singular). The fundamental property that strong blockminimal bases pencils are robust
under arbitrary perturbations that are sufficiently small and that preserve the (2, 2)-
zero block allows us to develop a rigorous global backward error analysis of complete
polynomial eigenproblems solved via block Kronecker pencils. The key point of the
analysis is that although perturbations of block Kronecker pencils destroy the deli-
cate block Kronecker structure, they lead, after some manipulations, to strong block
minimal bases pencils with similar properties. The backward error bounds delivered
by this analysis enjoy a number of novel features not present so far in the literature
as, for instance, the fact that they are finite precise bounds instead of first order big-O
bounds.

The results in this work have already motivated considerable research in the area.
For instance, they have clarified many of the results that have been published in the
last few years on linearizations of matrix polynomials, since it has been proved in
[10] that all generalized Fiedler linearizations [3,8,15], all Fiedler linearizations with
repetition [7,11,77], and all generalized Fiedler linearizations with repetition [9] may
be transformed through proper permutations into particular strong blockminimal bases
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pencils that can be described very easily; structured versions of the backward error
analysis in this paper have been developed for many classes of structured strong
block minimal bases linearizations of structured matrix polynomials in [26]; in [65]
particular blockminimal bases linearizations have been used to compute efficiently and
in a stable way the zeros of a polynomial that is the sum of two polynomials expressed
in two different bases, as well as for solving other challenging numerical problems;
extensions of block Kronecker pencils that linearize matrix polynomials expressed
in Chebyshev bases have been developed in [52]; it has been shown that each strong
block minimal bases pencil can be used to construct strong linearizations of rational
matrices with non-constant polynomial part [2]; etc. In addition to these publications,
several other ongoing research projects related to block minimal bases pencils are
being currently developed by different researchers. They include the extension of the
error analysis to other strong blockminimal bases linearizations and the generalization
of the ideas presented in this work to the context of �-ifications of matrix polynomials
[17,22].

Appendix A. The minimal bases of strong block minimal bases pencils

In this appendix, we state and prove Lemma A.1, which establishes, first, the relation-
ship between the vectors in the rational right null spaces of any of the strong block
minimal bases pencils L(λ) introduced in Definition 3.1 and of the corresponding
matrix polynomial Q(λ) in (3.2), and, second, the relationship between the right min-
imal bases of L(λ) and Q(λ). In this paper Lemma A.1 is only used in the proof of
Theorem 3.6, but we emphasize that is very useful for proving the recovery procedures
of eigenvectors and minimal bases of block Kronecker pencils in [25, Section 7] and
that is a fundamental result in the theory of strong block minimal bases linearizations.

Lemma A.1 LetL(λ) be a strong block minimal bases pencil as in (3.1), let N1(λ) be
a minimal basis dual to K1(λ), let N2(λ) be a minimal basis dual to K2(λ), let Q(λ)

be the matrix polynomial defined in (3.2), and let N̂2(λ) be the matrix appearing in
(3.3). Then the following hold:

(a) If h(λ) ∈ Nr (Q), then

z(λ) :=
[

N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
h(λ) ∈ Nr (L). (A.1)

Moreover, if 0 �= h(λ) ∈ Nr (Q) is a vector polynomial, then z(λ) is also a vector
polynomial and

deg(z(λ)) = deg(N1(λ)T h(λ)) = deg(N1(λ)) + deg(h(λ)). (A.2)

(b) If {h1(λ), . . . , h p(λ)} is a right minimal basis of Q(λ), then

{[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
h1(λ), . . . ,

[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
h p(λ)

}
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is a right minimal basis of L(λ).

Proof (a) It can be checked, via a direct multiplication, that the matrix X (λ) in (3.4)
satisfies X (λ) = N̂2(λ)M(λ)N1(λ)T . Then, from (3.4), we get that

(U2(λ)−T ⊕ Im1)L(λ) (U1(λ)−1 ⊕ Im2)

⎡
⎣ 0

I
−X (λ)

⎤
⎦ =

⎡
⎣ 0
Q(λ)

0

⎤
⎦ ,

where the sizes of the identity and zero blocks are conformable with the partition of
the last matrix in (3.4). By using the structure of U1(λ)−1 ⊕ Im2 (recall (3.3)), the
multiplication of the last two factors in the left-hand side of the previous equation
leads to

(U2(λ)−T ⊕ Im1)L(λ)

[
N1(λ)T

−X (λ)

]
=
⎡
⎣ 0
Q(λ)

0

⎤
⎦ . (A.3)

This equation implies that z(λ) ∈ Nr (L) if h(λ) ∈ Nr (Q), and also that z(λ) is a
vector polynomial if h(λ) is, because N1(λ) and X (λ) are matrix polynomials.

It only remains to prove the degree shift property (A.2) to conclude the proof of
part (a). First, take into account that all the row degrees of the minimal basis N1(λ)

are equal and that its highest degree coefficient has full row rank. Therefore,

deg(N1(λ)T g(λ)) = deg(N1(λ)) + deg(g(λ)), (A.4)

for any vector polynomial g(λ) �= 0. The same argument applied to the minimal basis
K2(λ) proves that

deg(K2(λ)T y(λ)) = deg(K2(λ)) + deg(y(λ)) = 1 + deg(y(λ)), (A.5)

for any vector polynomial y(λ) �= 0. Next, observe that

deg(z(λ)) = max{deg(N1(λ)T h(λ)), deg(X (λ)h(λ))}. (A.6)

Therefore (A.2) follows trivially if X (λ)h(λ) = 0. Finally, assume that X (λ)h(λ) �= 0
and h(λ) ∈ Nr (Q). Then use L(λ)z(λ) = 0, and perform the multiplication corre-
sponding to the first block of L(λ)z(λ), using the expressions of z(λ) in (A.1) and
L(λ) in (3.1), to get

M(λ)N1(λ)T h(λ) = K2(λ)T X (λ)h(λ).

This equality implies, together with (A.5), that

1 + deg(X (λ)h(λ)) = deg(K2(λ)T X (λ)h(λ)) ≤ deg(M(λ)) + deg(N1(λ)T h(λ))

≤ 1 + deg(N1(λ)T h(λ)),
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and, so, deg(X (λ)h(λ)) ≤ deg(N1(λ)T h(λ)). This inequality, together with (A.4) and
(A.6) thus prove (A.2).

(b) Let us consider the matrix product

B(λ) :=
[

N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
[h1(λ) · · · h p(λ)],

and let us prove that their columns are a minimal basis of the rational subspace they
span by applying a version of Theorem 2.2 for columns. Note that for all λ0 ∈ F,
B(λ0) has full column rank since N1(λ0)

T and [h1(λ0) · · · h p(λ0)] have both full
column rank, since the columns of N1(λ)T and [h1(λ) · · · h p(λ)] are minimal bases.
Next, observe that (A.2) implies that the highest column degree coefficient matrix
Bhc of B(λ) has as a submatrix the highest column degree coefficient matrix Chc of
C(λ) := N1(λ)T [h1(λ) · · · h p(λ)]. Since the column degrees of N1(λ)T are all equal,
we have that Chc is the product of the highest column degree coefficient matrices of
N1(λ)T and [h1(λ) · · · h p(λ)], which have both full column rank because the columns
of both matrices are minimal bases. So Chc has full column rank, as well as Bhc.
This implies that the columns of B(λ) are a minimal basis of a rational subspace
S. In addition, S ⊆ Nr (L(λ)) by part (a). Finally, note that S = Nr (L) because
dim(Nr (Q)) = dim(Nr (L)), sinceL(λ) is a strong linearization of Q(λ) by Theorem
3.3(b) and, then, Theorem 4.1 in [17] holds. ��

Appendix B. Proof of Lemma 5.4

In this appendix, we assume that ε �= 0 and η �= 0 according to Remark 5.1. We first
reduce in Lemma B.1 the problem of computing σmin(T ) to the problem of computing
the minimum singular value of a matrix of size 2εη × (2εη + ε + η), which is much
smaller than the size of T .

Lemma B.1 Let T be the matrix defined in (5.13) and

T̂ :=
[
Iε ⊗ Eη Eε ⊗ Iη
Iε ⊗ Fη Fε ⊗ Iη

]
, (B.1)

where λFk − Ek := Lk(λ) is the pencil in (2.3). Then σmin(T ) = σmin(T̂ ).

Proof Since the Kronecker product is associative [45, Chapter 4], we may write the
matrix T as

T =
[
Eη ⊗ Im ⊗ Iε ⊗ In Iη ⊗ Im ⊗ Eε ⊗ In
Fη ⊗ Im ⊗ Iε ⊗ In Iη ⊗ Im ⊗ Fε ⊗ In

]

=
[

(Eη ⊗ Im) ⊗ Iε Iηm ⊗ Eε

(Fη ⊗ Im) ⊗ Iε Iηm ⊗ Fε

]
⊗ In =: T̃ ⊗ In .

(B.2)

Thus, σmin(T ) = σmin(T̃ ) by [45, Theorem 4.2.15]. Following Van Loan [76], let us
perform a perfect shuffle on the matrix T̃ on the right of (B.2) to swap the order of

123



Block Kronecker linearizations of matrix polynomials and… 417

the Kronecker products of its blocks. That is, there exist permutation matrices S, RT
1

and RT
2 of sizes εηm × εηm, ε(η + 1)m × ε(η + 1)m and (ε + 1)ηm × (ε + 1)ηm,

respectively, such that

[
S
S

] [
(Eη ⊗ Im) ⊗ Iε Iηm ⊗ Eε

(Fη ⊗ Im) ⊗ Iε Iηm ⊗ Fε

] [
RT
1

RT
2

]

=
[
Iε ⊗ (Eη ⊗ Im) Eε ⊗ Iηm
Iε ⊗ (Fη ⊗ Im) Fε ⊗ Iηm

]
=
[
Iε ⊗ Eη Eε ⊗ Iη
Iε ⊗ Fη Fε ⊗ Iη

]
⊗ Im = T̂ ⊗ Im .

Using again [45, Theorem 4.2.15], we get σmin(T ) = σmin(T̃ ) = σmin(T̂ ). ��

Lemma B.2 reduces the problem of computing the minimum singular value of T̂
in (B.1) to compute the largest singular value of a matrix smaller than T̂ , essentially
with half its size, and with a simpler structure.

Lemma B.2 Let T̂ be the matrix in (B.1). Then

σmin(T̂ ) = √2 − σmax(Wε,η), (B.3)

where Wε,η = Iε ⊗ EηFT
η + EεFT

ε ⊗ Iη ∈ R
εη×εη and σmax(Wε,η) denotes its

maximum singular value.

Proof The singular values of T̂ are the square roots of the eigenvalues of

T̂ T̂ T =
[
2Iεη Wε,η

WT
ε,η 2Iεη

]
= 2 I2εη +

[
0 Wε,η

WT
ε,η 0

]
,

whereWε,η = Iε ⊗EηFT
η +EεFT

ε ⊗ Iη. It is well known (see, for instance, [68, Theo-
rem I.4.2]) that the eigenvalues of [0, Wε,η ; WT

ε,η, 0] are±σ1(Wε,η), . . . ,±σεη(Wε,η),
where σ1(Wε,η) ≥ · · · ≥ σεη(Wε,η) are the singular values of Wε,η. Therefore, the
eigenvalues of T̂ T̂ T are 2 ± σ1(Wε,η), . . . , 2 ± σεη(Wε,η), which implies the result.
Observe that T̂ T̂ T is positive semidefinite and, thus, its eigenvalues are nonnegative.

��

The advantage of the matrix Wε,η is that has a bidiagonal block Toeplitz structure
with very simple blocks. This comes from the fact that

Ek F
T
k =

⎡
⎢⎢⎢⎢⎣

0
1 0

1 0
. . .

. . .

1 0

⎤
⎥⎥⎥⎥⎦ =: Jk ∈ R

k×k (with J1 := 01×1),
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which implies

Wε,η = Iε ⊗ EηF
T
η + EεF

T
ε ⊗ Iη =

⎡
⎢⎢⎢⎢⎣

Jη
Iη Jη

Iη Jη
. . .

. . .

Iη Jη

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ε block columns

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ε block rows .

(B.4)
This structure will allow us to compute explicitly the largest singular value of Wε,η.
Without loss of generality, we assume that ε ≥ η, since, otherwise,Wε,η is transformed
into Wη,ε with a perfect shuffle permutation, i.e., by interchanging the order of the
Kronecker products in the summands ofWε,η. In this situation, note that if η = 1, then
W1,1 = 01×1 and Wε,1 = Jε for ε > η = 1. Therefore,

σmax(W1,1) = 0 and σmax(Wε,1) = 1, if ε > η = 1. (B.5)

If η > 1, then σmax(Wε,η) can be computed with the help of Lemma B.3, where we
show that Wε,η is permutationally equivalent to a direct sum involving the following
two types of matrices

Mk :=

⎡
⎢⎢⎢⎢⎣

1 1
1 1

. . .
. . .

1 1
1

⎤
⎥⎥⎥⎥⎦ ∈ R

k×k and Gk :=

⎡
⎢⎢⎢⎢⎣

1
1 1

. . .
. . .

1 1
1

⎤
⎥⎥⎥⎥⎦ ∈ R

(k+1)×k .

(B.6)

Lemma B.3 Let Wε,η be the matrix in (B.4), let Mk and Gk be the matrices in (B.6),
and assume that ε ≥ η. Then, there exist two permutation matrices P1 and P2 such
that

P1Wε,ηP2 = (Mη ⊕ Mη ⊕ · · · ⊕ Mη)︸ ︷︷ ︸
ε−η times

⊕(Gη−1 ⊕GT
η−1) ⊕ · · · ⊕ (G1 ⊕GT

1 ) ⊕ 01×1.

(B.7)

Proof If η = 1, then the result follows trivially from the discussion in the two lines
above (B.5) with the convention G0 ⊕ GT

0 := 01×1. Therefore, we assume in the rest
of the proof that η > 1. Observe that the 01×1 block in (B.7) is a consequence of the
fact that the first row and the last column of Wε,η are both zero. Thus, permuting the
first row to the last row position produces the 01×1 block.

We first point out that every nonzero row or column of Wε,η contains only one or
two 1’s and if there are two 1’s, their indices differ exactly by η−1. We now construct
the permutations P1 and P2 that yield (B.7). Let us use for this the MATLAB index
notation to indicate which permutations are “extracting” the different blocks of the
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direct sum decomposition (B.7). It is easy to see that the 2× 1 submatrix ofWε,η with
row indices (2, η + 1) and column index 1 yields G1:

G1 = Wε,η(2 : η − 1 : η + 1, 1)

and this block is “decoupled” from the rest of the matrix Wε,η since the remaining
elements in the corresponding rows and column are zero. In a similar manner, one
extracts for i = 1, . . . , η − 1 the following (i + 1) × i decoupled blocks

Gi = Wε,η(i + 1 : η − 1 : iη + 1, i : η − 1 : (i − 1)η + 1), 1 ≤ i ≤ η − 1,

each starting from the element (i + 1, i) in the leading block Jη and ending at the
leading 1 of the block Iη at the (i + 1, i) block-entry. In a similar fashion one also
extracts for i = 1, . . . , η−1 the “transposed”matricesGT

i backwards from the trailing
block Jη, i.e., each GT

i starting from the element (η− i +1, η− i) in the trailing block
Jη and ending (backwards) at the trailing 1 of the block Iη at the (ε − i + 1, ε − i)
block-entry. In MATLAB index notation this amounts to

GT
i = Wε,η(εη − i + 1 : 1 − η : (ε − i + 1)η, εη − i : 1 − η : (ε − i)η).

So far, we have “extracted” η − 1 trailing 1s of the η − 1 trailing blocks Iη. This
allows us to find the remaining (ε − η) blocks Mη in (B.7) as follows: each of them
starts from the trailing 1 in the block Iη at the (i + 1, i) block-entry and ends at the
leading 1 of the block Iη at the (i + η, i + η − 1) block-entry. In MATLAB index
notation this amounts to

M (i)
η = Wε,η((i + 1)η : η − 1 : (η + i − 1)η + 1, iη : η − 1 : (η + i − 2)η + 1),

1 ≤ i ≤ ε − η.

Finally, it is also easy to verify that the dimensions and the number of 1s of the direct
sumdecomposition in the right-hand side of (B.7)match those ofWε,η. This completes
the proof. ��

Now, we are in the position of computing σmax(Wε,η).

Proposition B.4 Let Wε,η be the matrix in (B.4). Then

σmax(Wε,η) =
{
2 cos π

2min{ε,η}+1 , if ε �= η,

2 cos π
2η , if ε = η.

(B.8)

Proof As explained after the equation (B.4), wemay assumewithout loss of generality
that ε ≥ η. In addition, if η = 1, then the result follows immediately from (B.5). Thus,
the rest of the proof assumes ε ≥ η > 1.

Let us consider first the case ε = η > 1. Lemma B.3 implies that σmax(Wη,η) =
max{σmax(Gη−1), . . . , σmax(G2), σmax(G1)}. In addition, since Gk is a submatrix of
Gk+1, we have that σmax(Gη−1) ≥ · · · ≥ σmax(G2) ≥ σmax(G1) [45, Corollary 3.1.3].
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Therefore, σmax(Wη,η) = σmax(Gη−1). The singular values of Gη−1 are the square
roots of the eigenvalues of

GT
η−1Gη−1 =

⎡
⎢⎢⎢⎢⎢⎣

2 1
1 2 1

1 . . .
. . .

. . . 2 1
1 2

⎤
⎥⎥⎥⎥⎥⎦

∈ R
(η−1)×(η−1),

which are known at least from the 1940s [34, p. 111]. They are

λ j = 2

(
1 − cos

π j

η

)
, for j = 1, 2, . . . , η − 1.

Therefore the maximum of these eigenvalues is

λη−1 = 2

(
1 − cos

π(η − 1)

η

)
= 2

(
1 + cos

π

η

)
= 4 cos2

π

2η
.

The result follows from σmax(Wη,η) = σmax(Gη−1) = √λη−1.
Next, we consider the case ε > η > 1. In this situation, Lemma B.3 implies that

σmax(Wε,η) = max{σmax(Mη), σmax(Gη−1), . . . , σmax(G1)} = σmax(Mη), where we
have used again that Gk is a submatrix of Gk+1 and that Gη−1 is a submatrix of Mη.
The singular values of Mη are the square roots of the eigenvalues of MηMT

η , i.e., the
square roots of the roots of the characteristic equation

det(λI − MηM
T
η ) = det

⎡
⎢⎢⎢⎢⎢⎣

(λ − 2) −1
−1 (λ − 2) −1

−1 . . .
. . .

. . . (λ − 2) −1
−1 (λ − 1)

⎤
⎥⎥⎥⎥⎥⎦

= 0.

With the change of variable λ = 2μ + 2, the equation above becomes

det

⎡
⎢⎢⎢⎢⎢⎣

2μ −1
−1 2μ −1

−1 . . .
. . .

. . . 2μ −1
−1 2μ + 1

⎤
⎥⎥⎥⎥⎥⎦

= Uη(μ) +Uη−1(μ) = 0, (B.9)

whereU�(μ) is the degree-� Chebyshev polynomial of the second kind [58]. The first
equality in (B.9) can be obtained directly from [48, eq. (11)] by applying the recurrence
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relation of the Chebyshev polynomials of the second kind.2 Alternatively this fact
can also be easily established from results found in [39]. Observe that Gershgorin
Circle Theorem [38, Theorem 7.2.1] implies that the eigenvalues of MηMT

η satisfy
0 ≤ λ ≤ 4. Therefore, the roots of (B.9) satisfy −1 ≤ μ ≤ 1. Moreover, we also
have that 1 and −1 are not roots of (B.9) since Uη(1) + Uη−1(1) = 2η + 1 �= 0 and
Uη(−1) + Uη−1(−1) = (−1)η �= 0. Thus, the roots of (B.9) satisfy −1 < μ < 1.
With the change of variable μ = cos θ , we get the equation

Uη(μ) +Uη−1(μ) = 1

sin θ
(sin(η + 1)θ + sin ηθ) = 2

cos θ
2

sin θ
sin

(2η + 1)θ

2
= 0,

whose roots are θ j = 2π j/(2η + 1), j = 1, . . . , η in the interval 0 < θ < π . We
finally obtain that the eigenvalues of MηMT

η are

λ j = 2 + 2 cos
2 jπ

2η + 1
, for j = 1, 2, . . . , η. (B.10)

The largest one is λ1, which implies

σmax(Wε,η) = σmax(Mη) =
√
2 + 2 cos

2π

2η + 1
= 2 cos

π

2η + 1
.

��

Finally, Lemma 5.4 follows from combining Lemmas B.1 and B.2, Proposition B.4
and an elementary trigonometric identity. Observe that σmin(T ) �= 0, which implies
that T has full row rank.

Appendix C. Proof of Theorem 5.14

Taking into account that Lε(λ) ⊗ In and �ε(λ)T ⊗ In are dual minimal bases with all
their row degrees equal, respectively, to 1 and ε, part (a) is an immediate consequence
of Theorem 5.12. Part (b) can also be seen as a consequence of Theorem 5.13 (except
the obvious equality C0(�ε(λ)T ⊗ In) = I(ε+1)n), although it can be deduced directly
because the matrices C0(�ε(λ)T ⊗ In) and C1(�ε(λ)T ⊗ In) are very simple.

In order to prove part (c), we first note that Cε−1(Lε(λ)⊗ In) = Cε−1(Lε(λ))⊗ In
and Cε(Lε(λ) ⊗ In) = Cε(Lε(λ)) ⊗ In . So, it suffices to look at Cε−1(Lε(λ)) and
Cε(Lε(λ)). We then point out that there exist diagonal sign scalings, S1, S2, S3, S4,
(and hence orthogonal matrices) which get rid of all negative signs in Cε−1(Lε(λ))

and Cε(Lε(λ)), and that with the notation at the beginning of Sect. 5.1 lead to:

2 The reader should take into account that in [48] the characteristic polynomial is defined as det(MηMT
η −

λI ) and the change of variable is slightly different.
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S1Cε−1(Lε(λ))S2 =: Ĉε−1(Lε(λ)) =

⎡
⎢⎢⎢⎣
Fε

Eε
. . .
. . . Fε

Eε

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ε block columns

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ε + 1 block rows,

and

S3Cε(Lε(λ))S4 =: Ĉε(Lε(λ)) =

⎡
⎢⎢⎢⎣
Fε

Eε
. . .
. . . Fε

Eε

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ε + 1 block columns

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ε + 2 block rows .

Clearly we can as well look at the singular values of the matrices Ĉε−1(Lε(λ))

and Ĉε(Lε(λ)) since they are orthogonally equivalent toCε−1(Lε(λ)) andCε(Lε(λ)),
respectively. We then show that there exist row and column permutations (and hence
orthogonal transformations) that put Ĉε−1(Lε(λ)) and Ĉε(Lε(λ)) in the following
block diagonal forms

P1Ĉε−1(Lε(λ))P2 = Mε ⊕ MT
ε ⊕ · · · ⊕ M1 ⊕ MT

1 , (C.1)

P3Ĉε(Lε(λ))P4 = Mε ⊕ MT
ε ⊕ · · · ⊕ M1 ⊕ MT

1 ⊕ GT
ε , (C.2)

whereMk andGk were defined in (B.6). Since a formal proof of (C.1) and (C.2) is long,
we simply sketch the main ideas. Notice that each of the matrices Ĉε−1(Lε(λ)) and
Ĉε(Lε(λ))have one or two1’s in each columnor row.Moreover, note that Ĉε−1(Lε(λ))

has exactly 2ε columnswith only one “1” and exactly 2ε rowswith only one “1”, while
Ĉε(Lε(λ)) has exactly 2(ε + 1) columns with only one “1” and exactly 2ε rows with
only one “1”. Then, starting from the leading column in Ĉε−1(Lε(λ)) with a single
“1”, one can then reconstruct a staircase Mε and starting from its trailing column with
a single “1”, one can reconstruct a staircase MT

ε . The corresponding index selection
in Matlab notation for these two submatrices is:

Mε = Ĉε−1(Lε(λ))(ε + 1 : ε + 1 : ε2 + ε, 1 : ε + 2 : ε2 + ε − 1),

MT
ε = Ĉε−1(Lε(λ))(1 : ε + 1 : ε2, 2 : ε + 2 : ε2 + ε).

After permuting these two blocks out of Ĉε−1(Lε(λ)) one continues in a similar way to
recover all other blocks Mk and MT

k , for k = ε − 1, . . . , 1. For the matrix Ĉε(Lε(λ)),
the procedure is similar, except that in the first step, one extracts

GT
ε = Ĉε(Lε(λ))(ε + 1 : ε + 1 : ε2 + ε, 1 : ε + 2 : ε2 + 2ε + 1)
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starting from the “1” in the leading column. The rest of the extraction is similar to the
one for the matrix Ĉε−1(Lε(λ)).

So the smallest singular values of Ĉε−1(Lε(λ)) and Ĉε(Lε(λ)) are those of the
diagonal blocks with the smallest singular values. This turns out to be Mε for both
matrices, since the smallest singular value of the full-row rank matrix GT

ε = [Mε|eε]
is larger than that of Mε [45, Corollary 3.1.3] and, according to (B.10), σmin(Mε) <

σmin(Mε−1) < · · · < σmin(M1). The smallest singular value of Mε is the square root
of the smallest eigenvalue given in (B.10):

σmin(Mε) =
√
2 + 2 cos

(
2επ

2ε + 1

)
= 2 sin

(
π

4ε + 2

)
.

The inequality 2 sin( π
4ε+2 ) ≥ 3

2ε+1 ≥ 3
2(ε+1) follows then from the inequality sin(x) ≥

3x/π for 0 ≤ x ≤ π/6 since we assumed ε ≥ 1.
The proof of part (d) follows from the equality C0(�ε(λ)T ⊗ In) = I(ε+1)n and

the fact that an obvious column permutation P allows us to prove that C1(�ε(λ)T ⊗
In) P = In ⊕ (Iεn ⊗ [1, 1]) ⊕ In . Therefore, the singular values of C1(�ε(λ)T ⊗ In)
are 1 (with multiplicity 2n) and

√
2 (with multiplicity εn).
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