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A well known method to solve the Polynomial Eigenvalue 
Problem (PEP) is via linearization. That is, transforming the 
PEP into a generalized linear eigenvalue problem with the 
same spectral information and solving such linear problem 
with some of the eigenvalue algorithms available in the 
literature. Linearizations of matrix polynomials are usually 
defined using unimodular transformations. In this paper we 
establish a connection between the standard definition of 
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linearization for matrix polynomials introduced by Gohberg, 
Lancaster and Rodman and the notion of polynomial system 
matrix introduced by Rosenbrock. This connection gives new 
techniques to show that a matrix pencil is a linearization of 
the corresponding matrix polynomial arising in a PEP.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Let F be an arbitrary field, and let F be the algebraic closure of F . F [λ] denotes the 
ring of polynomials with coefficients in F , and F(λ) the field of rational functions over 
F [λ]. The sets of p × m matrices with elements in F , F [λ] and F(λ) are denoted by 
Fp×m, F [λ]p×m and F(λ)p×m, respectively. The elements of F [λ]p×m are called matrix 
polynomials or polynomial matrices, and the elements of F(λ)p×m are called rational 
matrices.

A polynomial matrix P (λ) ∈ F [λ]p×m can always be written in the form

P (λ) = Pkλ
k + Pk−1λ

k−1 + · · · + P1λ + P0, (1)

where Pk, . . . , P1, P0 ∈ Fp×m with Pk �= 0. The scalar k is then called the degree of 
P (λ), and it is denoted by degP (λ). Polynomial matrices of degree 1 or 0, i.e., linear 
polynomial matrices, are called pencils.

The (finite) eigenvalues of a polynomial matrix P (λ) ∈ F [λ]p×m are defined as the 
scalars λ0 ∈ F such that

rankP (λ0) < max
μ∈F

rankP (μ).

The Polynomial Eigenvalue Problem (PEP) consists of finding the eigenvalues of P (λ). 
If P (λ) ∈ F [λ]m×m is regular (i.e., square with detP (λ) �≡ 0), the PEP is equivalent 
to the problem of finding scalars λ0 ∈ F such that there exist nonzero constant vectors 
x ∈ F

m×1 and y ∈ F
m×1 satisfying

P (λ0)x = 0 and yTP (λ0) = 0,

respectively. The vectors x are called right eigenvectors associated with λ0, and the 
vectors y are called left eigenvectors associated with λ0.

To solve the PEP and to develop a theory of regular polynomial matrices, Gohberg, 
Lancaster and Rodman [24] introduced in the eighties the notion of linearization of a 
matrix polynomial. Given a matrix polynomial P (λ) of degree k > 1, a linearization of 
P (λ) is a pencil L(λ) := λL1 +L0 such that there exist unimodular matrices (i.e., square 
polynomial matrices with nonzero constant determinant) U1(λ) and V1(λ) satisfying

U1(λ)L(λ)V1(λ) =
[
P (λ) 0

0 I

]
, (2)
s

http://creativecommons.org/licenses/by-nc-nd/4.0/
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where Is denotes the identity matrix of size an integer s ≥ 0. It is known that L(λ) has 
the same finite eigenvalues with the same partial multiplicities as P (λ). L(λ) is said to 
be a strong linearization of P (λ) if, in addition, there exist unimodular matrices U2(λ)
and V2(λ) satisfying

U2(λ) rev1 L(λ)V2(λ) =
[
rev� P (λ) 0

0 Is

]
, (3)

where rev1 L(λ) := λL0 + L1 and rev� P (λ) := λ�P (1/λ) for some � ≥ degP (λ) [23]. 
In this case, L(λ) has the same finite and infinite eigenvalues with the same partial 
multiplicities as P (λ). Here we remark that an equivalent definition of strong lineariza-
tion is obtained if the matrices U2(λ) and V2(λ) in (3) are required to be just rational 
matrices invertible at 0 (i.e., U2(0) and V2(0) are invertible) instead of unimodular (see 
[4, Section 3] or the proof of Proposition 3.3). In that case we say that rev1 L(λ) and 
diag(rev� P (λ), Is) are equivalent at 0.

In this paper the terms linearization and strong linearization of a matrix polynomial 
always refer to the Gohberg, Lancaster and Rodman’s definitions in (2) and (3), though 
other non-equivalent definitions of linearizations are available in the literature [18,19]. In 
the last two decades, definitions (2) and (3) have been very influential in many families 
of linearizations that have been developed with the goal of solving unstructured and 
structured PEPs (see, for instance, [3,5,7,10,11,15,25–28,30,36] among many other refer-
ences on this topic). In fact, in most of these references, the proofs that certain families 
of pencils are linearizations and strong linearizations of a polynomial matrix P (λ) are 
performed by finding explicitly the unimodular matrices U1(λ), V1(λ), U2(λ) and V2(λ)
in (2) and (3).5

However, already in the seventies Rosenbrock [31] introduced the notion of polynomial 
system matrix S(λ) of a rational matrix G(λ) ∈ F(λ)p×m. That is, a matrix polynomial 
of the form

S(λ) :=
[

A(λ) B(λ)
−C(λ) D(λ)

]
∈ F [λ](n+p)×(n+m) (4)

with A(λ) ∈ F [λ]n×n regular, such that its Schur complement with respect to A(λ) is 
G(λ), i.e.,

G(λ) = D(λ) + C(λ)A(λ)−1B(λ).

The rational matrix G(λ) is called the transfer function matrix of S(λ) and the matrix 
polynomial A(λ) is called the state matrix of S(λ). Although the state matrix A(λ) will 
appear in the (1, 1)-block of S(λ) in the theoretical results of this paper, we emphasize 

5 Nevertheless, we emphasize that a recent simple alternative to prove that a certain pencil is a (strong) 
linearization of a polynomial matrix is to prove that such a pencil is one of the (strong) block minimal 
bases pencils introduced in [15]. See [9].
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that in practice it can be at any place in S(λ). The important property is that G(λ) is 
the Schur complement of A(λ) in S(λ).

The importance of polynomial system matrices is related to the fact that under the 
minimality conditions described below, Rosenbrock showed that polynomial system ma-
trices contain the pole and zero information of their transfer function matrices [31]. Poles 
and zeros of rational matrices are defined through the notion of the Smith–McMillan 
form, that we state in what follows (see [29], or [31] for a more recent reference).

Definition 1.1 (Smith–McMillan form). For any rational matrix G(λ) ∈ F(λ)p×m there 
exist unimodular matrices U1(λ) ∈ F [λ]p×p and U2(λ) ∈ F [λ]m×m such that

U1(λ)G(λ)U2(λ) =

⎡⎣ diag
(
ε1(λ)
ψ1(λ) , . . . ,

εr(λ)
ψr(λ)

)
0

0 0(p−r)×(m−r)

⎤⎦ , (5)

where r is the normal rank of G(λ) and, for i = 1, . . . , r, εi(λ)
ψi(λ) are nonzero irreducible 

rational functions with εi(λ) and ψi(λ) monic polynomials (i.e., with leading coefficient 
equal to 1) that satisfy the divisibility chains ε1(λ) | · · · | εr(λ) and ψr(λ) | · · · | ψ1(λ). 
The diagonal matrix in (5) is called the Smith–McMillan form of G(λ).

The rational functions εi(λ)/ψi(λ) in (5) are called the invariant rational functions of 
G(λ) and the finite poles and zeros of G(λ) are the roots in F of the denominators and 
numerators of the invariant rational functions, respectively. In addition, for any λ0 ∈ F

each numerator εi(λ) can be factored as εi(λ) = (λ − λ0)αipi(λ) with pi(λ0) �= 0 and 
αi ≥ 0. The factors (λ −λ0)αi with αi �= 0 are called the zero elementary divisors at the 
finite zero λ0. Analogously, for any λ0 ∈ F each denominator ψi(λ) can be factored as 
ψi(λ) = (λ − λ0)βiqi(λ) with qi(λ0) �= 0 and βi ≥ 0. The factors (λ − λ0)βi with βi �= 0
are called the pole elementary divisors at the finite pole λ0. If G(λ) is a polynomial 
matrix then ψi(λ) = 1, for i = 1, . . . , r, and the diagonal matrix in (5) is just called the 
Smith form of G(λ). In this polynomial case, there are no finite poles, the finite zeros are 
usually called finite eigenvalues, and the zero elementary divisors at a finite eigenvalue 
are just called elementary divisors at that eigenvalue.

We now introduce the notion of minimality of a polynomial system matrix, in order 
to relate its zeros with the poles and zeros of its transfer function matrix. A polynomial 
system matrix S(λ) as in (4) is said to be minimal if

rank
[
A(λ0) B(λ0)

]
= rank

[
A(λ0)
−C(λ0)

]
= n (6)

for all λ0 ∈ F . Then, Rosenbrock proved the following result [31] about the recovery of 
the pole and zero information of a rational matrix from a minimal polynomial system 
matrix.
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Theorem 1.2. Let S(λ) as in (4) be a minimal polynomial system matrix, with state 
matrix A(λ), whose transfer function matrix is G(λ). Then the elementary divisors at 
the finite eigenvalues of A(λ) are the pole elementary divisors at the finite poles of G(λ), 
and the elementary divisors at the finite eigenvalues of S(λ) are the zero elementary 
divisors at the finite zeros of G(λ).

Theorem 1.2 is the foundation of the algorithms for solving numerically rational eigen-
value problems via “linearization”, i.e., by constructing linear minimal polynomial system 
matrices of a given rational matrix G(λ) and applying generalized eigenvalue algorithms 
to such system matrices. This approach is well known at least since the early eighties 
[34] and has also been used in the specific case in which G(λ) is a polynomial matrix 
[35]. However, in these references, as well as in others using that approach, no attempt 
was made for relating linear minimal Rosenbrock’s polynomial system matrices of a 
polynomial matrix to the definition of linearization given by Gohberg, Lancaster and 
Rodman.

In this context a key remark is that in the particular case of A(λ) in (4) being uni-
modular, G(λ) has no finite poles, i.e., G(λ) is a polynomial matrix, and condition (6)
is satisfied. In addition, we have the following unimodular equivalence:[

C(λ)A(λ)−1 Ip
A(λ)−1 0

]
︸ ︷︷ ︸

unimodular

[
A(λ) B(λ)
−C(λ) D(λ)

] [
−A(λ)−1B(λ) In

Im 0

]
︸ ︷︷ ︸

unimodular

=
[
G(λ)

In

]
. (7)

Therefore, if S(λ) is a pencil and A(λ) is unimodular then S(λ) is a linearization for the 
matrix polynomial G(λ) according to Gohberg, Lancaster and Rodman’s definition.

The purpose of this paper is to show that many of the linearizations for matrix poly-
nomials in the literature are actually linear polynomial system matrices with unimodular 
state matrices of the corresponding matrix polynomial. Moreover, this property estab-
lishes a new tool to determine if a pencil L(λ) is a linearization of a matrix polynomial. 
Namely, by computing the transfer function matrix of L(λ) (i.e., the Schur complement) 
with respect to any unimodular submatrix A(λ) that can be identified in the pencil. We 
aim to analyze a sufficiently large number of families of linearizations with this approach 
to convince the reader of its interest. However, we remark that it is not always possible 
to identify a unimodular submatrix A(λ) inside a linearization such that the Schur com-
plement with respect to A(λ) is the corresponding polynomial matrix. Thus, it is not 
always possible to use this approach in the study of linearizations. We also emphasize 
that we are not stating that the new tool is better than previous techniques. But some-
times it may be simpler because the unimodular submatrix can be easily identified and 
the computation of the corresponding transfer function matrix is straightforward.

This paper is organized as follows. In Section 2, we first revisit from the point of view 
of Rosenbrock’s system matrices the Frobenius companion form or the (first) companion 
form [23,24], that is one of the most classic linearizations. Section 3 includes some general 
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auxiliary results about polynomial system matrices of matrix polynomials. Moreover, we 
discuss in Section 3 how to recover easily the eigenvectors of a matrix polynomial from 
those of a linearization when it is viewed as a polynomial system matrix. Then, we 
consider in Section 4 the family of “comrade” linearizations [3,6,21], that are particular 
cases of the CORK linearizations [33] studied in Section 5. We also analyze the family 
of (extended) block Kronecker linearizations [15] in Sections 6 and 7, which includes, 
modulo permutations, all the families of Fiedler linearizations [9]. We present a note in 
Section 8 on how to use the Rosenbrock’s system matrix approach to linearizations of 
polynomial matrices to construct easily linearizations for rational matrices, a task that 
has not been always easy via other approaches. Finally, some conclusions and possible 
lines of future research are presented in Section 9.

2. Frobenius companion form

Given a matrix polynomial P (λ) ∈ F [λ]p×m written in terms of the monomial basis 
as in (1), the Frobenius companion form is the following pencil

C1(λ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λPk + Pk−1 Pk−2 · · · P1 P0
−Im λIm

. . . . . .
. . . λIm

−Im λIm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

One of the most basic results in the theory of matrix polynomials is that C1(λ) is a 
strong linearization of P (λ) [23]. The classical proofs of this result proceed by finding 
the four unimodular matrices that satisfy (2) and (3). We now show that C1(λ) can be 
seen as a polynomial system matrix of P (λ) with unimodular state matrix, which in turn 
implies that C1(λ) is a linearization of P (λ).

2.1. Frobenius companion form as a Rosenbrock’s system matrix

We consider the following partition:

C1(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λPk + Pk−1 Pk−2 · · · P1 P0

−Im λIm
. . . . . .

. . . λIm
−Im λIm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=:

[
−C(λ) D(λ)
A(λ) B(λ)

]
, (8)

as a Rosenbrock’s system matrix with state matrix A(λ). Then, A(λ) is clearly unimod-
ular and the transfer function matrix is



JID:LAA AID:16418 /FLA [m1L; v1.338] P.7 (1-24)
F.M. Dopico et al. / Linear Algebra and its Applications ••• (••••) •••–••• 7
D(λ) + C(λ)A(λ)−1B(λ) = P0 − [λPk + Pk−1 Pk−2 · · · P1 ]A(λ)−1B(λ). (9)

To compute (9), we consider the polynomial vector containing the elements of the mono-
mial basis. Namely,

Λk−1(λ) :=
[
λk−1 λk−2 · · · λ 1

]T
. (10)

Then, observe that

[A(λ) B(λ)] (Λk−1(λ) ⊗ Im) = 0. (11)

Therefore, A(λ) 
[
λk−1 Im λk−2 Im · · · λIm

]T + B(λ) = 0 and

A(λ)−1B(λ) = −
[
λk−1 Im λk−2 Im · · · λIm

]T
. (12)

Finally, by (9) and (12), we obtain that the transfer function matrix of (8) is P (λ).

2.2. Reversal of the Frobenius companion form as a Rosenbrock’s system matrix

Now, we consider the reversal rev1 C1(λ) and the following partition:

rev1 C1(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Pk + λPk−1 λPk−2 · · · λP1 λP0

−λIm Im
. . . . . .

. . . Im
−λIm Im

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=:

[
Dr(λ) −Cr(λ)
Br(λ) Ar(λ)

]
. (13)

Then, we have that Ar(λ) is unimodular, and the transfer function matrix of rev1 C1(λ)
with the partition in (13) is

Dr(λ) + Cr(λ)Ar(λ)−1Br(λ) = Pk + λPk−1 − [λPk−2 · · · λP1 λP0 ]Ar(λ)−1Br(λ).

Taking into account that

[Br(λ) Ar(λ)] (revk−1 Λk−1(λ) ⊗ Im) = 0, (14)

we obtain that

Ar(λ)−1Br(λ) = −
[
λIm · · · λk−2 Im λk−1 Im

]T
.

Therefore, the transfer function matrix is

Dr(λ) + Cr(λ)Ar(λ)−1Br(λ) = Pk + λPk−1 + λ2Pk−2 + · · · + λkP0 = revk P (λ).
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It then follows that C1(λ) is a strong linearization of P (λ).
Notice that although the expression of the transfer function matrix involves A(λ)−1, 

we computed very easily the transfer functions of C1(λ) and of rev1 C1(λ) without com-
puting explicitly A(λ)−1. For that, we used the linear relation of the monomial basis in 
(11) and (14). We will see that similar linear relations arise in other linearizations that 
can also be viewed as linear polynomial system matrices with unimodular state matri-
ces A(λ), and it allows to compute their transfer function matrices without computing 
explicitly A(λ)−1.

3. Auxiliary results: polynomial system matrices of matrix polynomials

The discussion in the introduction around (7) is summarized for the particular case 
of linear system matrices in the following Proposition 3.1. The proof follows from (7).

Proposition 3.1. Let G(λ) ∈ F(λ)p×m and let

L(λ) =
[

A1λ + A0 B1λ + B0
−(C1λ + C0) D1λ + D0

]
∈ F [λ](n+p)×(n+m)

be a linear polynomial system matrix of G(λ), with state matrix A(λ) := A1λ + A0. 
If A(λ) is unimodular then G(λ) is a matrix polynomial and L(λ) is a linearization of 
G(λ).

In the next Proposition 3.2 we give a necessary and sufficient condition for the state 
matrix A(λ) of a polynomial system matrix to be unimodular. This result can be useful 
in problems where the transfer function matrix G(λ) is polynomial and computing G(λ)
is easier than proving that A(λ) is unimodular.

Proposition 3.2. Let G(λ) ∈ F(λ)p×m and let

S(λ) =
[

A(λ) B(λ)
−C(λ) D(λ)

]
∈ F [λ](n+p)×(n+m)

be a polynomial system matrix of G(λ), with state matrix A(λ). Then A(λ) is unimodular 
if and only if S(λ) is minimal and G(λ) is a matrix polynomial.

Proof. It is clear that if A(λ) is unimodular then G(λ) is a matrix polynomial and S(λ)
is minimal. That is, condition (6) holds. Conversely, if G(λ) is a matrix polynomial and 
S(λ) is minimal then A(λ) has no finite eigenvalues, since the finite eigenvalues of A(λ)
would be the finite poles of G(λ) by Theorem 1.2. But G(λ) has no finite poles since 
it is a matrix polynomial. Therefore, detA(λ) is constant, which implies that A(λ) is 
unimodular. �
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We could apply Proposition 3.1 to the reversal rev1 L(λ) to see that a linearization 
L(λ) is, in addition, a strong linearization. For that, we may need to select another 
submatrix of rev1 L(λ) as appropriate state matrix, with a different partition from the 
one considered in L(λ). However, selecting a unimodular submatrix in rev1 L(λ) such 
that the Schur complement with respect to it is rev� P (λ), for some � ≥ degP (λ), is 
not always possible. In that case, we can also try to apply the following Proposition 3.3, 
which requires milder conditions.

Proposition 3.3. Let L(λ) be a linearization of a polynomial matrix P (λ) ∈ F [λ]p×m. 
Assume that we can write

rev1 L(λ) =
[

Ã1λ + Ã0 B̃1λ + B̃0

−(C̃1λ + C̃0) D̃1λ + D̃0

]
∈ F [λ](n+p)×(n+m)

as a linear polynomial system matrix with state matrix Ã(λ) := Ã1λ + Ã0. If Ã(λ) is 
invertible at 0, i.e., if Ã0 is invertible, and the transfer function matrix of rev1 L(λ) is 
equivalent at 0 to rev� P (λ), for some � ≥ degP (λ), then L(λ) is a strong linearization 
of P (λ).

Proof. Since L(λ) is a linearization of P (λ), we know by [12, Theorem 4.1] that

(a) dimNr(P ) = dimNr(L) and dimN�(P ) = dimN�(L), where Nr(·) and N�(·) stand 
for right and left rational null spaces, respectively.

(b) L(λ) and P (λ) have exactly the same finite eigenvalues with the same elementary 
divisors.

Moreover, taking into account that Ã0 is invertible and that the transfer function matrix 
of rev1 L(λ) is equivalent at 0 to rev� P (λ), we have by [17, Theorem 3.5] that the 
elementary divisors at 0 of rev1 L(λ) and rev� P (λ) are the same or, equivalently, that

(c) L(λ) and P (λ) have exactly the same elementary divisors at infinity.

Statements (a), (b) and (c) imply by [12, Theorem 4.1] that L(λ) is a strong linearization 
of P (λ). �
3.1. Recovery of eigenvectors

An advantage of considering linearizations of matrix polynomials as Rosenbrock’s 
system matrices with unimodular state matrix is that the eigenvectors associated with 
an eigenvalue λ0 can be recovered always in the same way. Given λ0 ∈ F and a polynomial 
matrix P (λ) ∈ F [λ]p×m, we consider the following vector spaces over F :
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Nr(P (λ0)) = {x ∈ F
m×1 : P (λ0)x = 0}, and

N�(P (λ0)) = {yT ∈ F
1×p : yTP (λ0) = 0},

which are called, respectively, the right and left nullspaces over F of P (λ0). If λ0 is an 
eigenvalue of a regular P (λ), then Nr(P (λ0)) and N�(P (λ0)) are non trivial and contain, 
respectively, the right and left eigenvectors of P (λ) associated with λ0.

In the following Proposition 3.4 we state the relation between the right and left 
nullspaces of a polynomial system matrix with unimodular state matrix and those of 
its polynomial transfer function matrix P (λ). This is a particular case of the results 
from [16, Proposition 5.1] and [16, Proposition 5.2]. Then, in the particular case of P (λ)
being regular, Proposition 3.4 can be used to recover the right and left eigenvectors of 
P (λ) from those of a polynomial system matrix of it with unimodular state matrix.

Proposition 3.4. Let S(λ) be a polynomial system matrix as in Proposition 3.2 with A(λ)
unimodular, and let P (λ) ∈ F [λ]p×m be its transfer function matrix. Let λ0 ∈ F . Then, 
the following statements hold:

(a) The linear map

Er : Nr(P (λ0)) −→ Nr(S(λ0))

x �−→
[
−A(λ0)−1B(λ0)

Im

]
x

is a bijection between the right nullspaces over F of P (λ0) and S(λ0).
(b) The linear map

E� : N�(P (λ0)) −→ N�(S(λ0))

yT �−→ yT
[
C(λ0)A(λ0)−1 Ip

]
is a bijection between the left nullspaces over F of P (λ0) and S(λ0).

We can see that, in particular, right and left eigenvectors of a polynomial matrix 
P (λ) can be directly recovered from the last block of the right and left eigenvectors of 
its polynomial system matrix S(λ). In some cases, we can also recover the right or the 
left eigenvectors of P (λ) from other blocks of the right or the left eigenvectors of S(λ). 
This is illustrated for right eigenvectors in the following example.

Example 3.5. Recall the Frobenius companion form C1(λ) in Section 2 and the partition 
as a polynomial system matrix in (8). By (12), we have that, for any λ0 ∈ F ,

−A(λ0)−1B(λ0) =
[
λk−1

0 Im λk−2
0 Im · · · λ0Im

]T
.

Therefore, by Proposition 3.4, the linear map
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Fr : Nr(P (λ0)) −→ Nr(C1(λ0))

x �−→
[
λk−1

0 Im λk−2
0 Im · · · λ0Im Im

]T
x

is a bijection between the right nullspaces over F of P (λ0) and C1(λ0).

4. Comrade linearizations

Consider a polynomial matrix

P (λ) = Pkφk(λ) + Pk−1φk−1(λ) + · · · + P1φ1(λ) + P0φ0(λ) ∈ F [λ]p×m,

written in terms of a polynomial basis satisfying a three-term recurrence relation of the 
form:

αjφj+1(λ) = (λ− βj)φj(λ) − γjφj−1(λ) j ≥ 0

where αj , βj , γj ∈ F , αj �= 0, φ−1(λ) = 0, and φ0(λ) = 1. It is “well-known” that the 
following “comrade” companion matrix introduced in [6, Chapter 5]

Cφ(λ) =

⎡⎢⎢⎢⎢⎢⎢⎣

(λ− βk−1)
αk−1

Pk + Pk−1 Pk−2 − γk−1

αk−1
Pk Pk−3 · · · P1 P0

−αk−2I (λ− βk−2)I −γk−2I
−αk−3I (λ− βk−3)I −γk−3I

. . .
. . .

. . .
−α1I (λ− β1)I −γ1I

−α0I (λ− β0)I

⎤⎥⎥⎥⎥⎥⎥⎦
is a strong linearization of P (λ). Different proofs of this fact can be found in [3,16,21]. 
As we discuss in this section, this can also be proved via Rosenbrock’s system matrices.

4.1. Comrade linearizations as Rosenbrock’s system matrices

With the following partition:

Cφ(λ) =

⎡⎢⎢⎢⎢⎢⎢⎣

(λ− βk−1)
αk−1

Pk + Pk−1 Pk−2 − γk−1

αk−1
Pk Pk−3 · · · P1 P0

−αk−2I (λ− βk−2)I −γk−2I
−αk−3I (λ− βk−3)I −γk−3I

. . .
. . .

. . .
−α1I (λ− β1)I −γ1I

−α0I (λ− β0)I

⎤⎥⎥⎥⎥⎥⎥⎦
=:

[
−C(λ) D(λ)
A(λ) B(λ)

]
,

we get that Cφ(λ) is a linear polynomial system matrix with unimodular state ma-
trix A(λ) and transfer function matrix P (λ). Then Cφ(λ) is a linearization of P (λ) by 
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Proposition 3.1. Notice that comrade linearizations are constructed by considering the 
recurrence relation satisfied by the polynomial basis. They are particular cases of the 
more general notion of CORK linearizations, described in Section 5. The computation 
of the transfer function matrix of Cφ(λ) is a particular case of the computation in the 
proof of Theorem 5.1. Therefore, we omit the details here and just emphasize that such 
computation is based on the identity

[A(λ) B(λ)]

⎛⎜⎜⎝
⎡⎢⎢⎣
φk−1(λ)
φk−2(λ)

...
φ0(λ)

⎤⎥⎥⎦⊗ Im

⎞⎟⎟⎠ = 0 .

4.2. Reversal of comrade linearizations as Rosenbrock’s system matrices

To see that Cφ(λ) is a strong linearization, it is not possible to identify a unimodular 
submatrix of rev1 Cφ(λ) such that the transfer function matrix is revk P (λ). However, 
we can use Proposition 3.3. For that, we consider the following partition:

rev1 Cφ(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − λβk−1)
αk−1

Pk + λPk−1 λPk−2 − λ
γk−1

αk−1
Pk λPk−3 · · · λP1 λP0

−λαk−2I (1 − λβk−2)I −λγk−2I

−λαk−3I (1 − λβk−3)I −λγk−3I

. . .
. . .

. . .
−λα1I (1 − λβ1)I −λγ1I

−λα0I (1 − λβ0)I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=:
[
D̃(λ) −C̃(λ)
B̃(λ) Ã(λ)

]
,

so that rev1 Cφ(λ) is a linear polynomial system matrix of 1
f(λ) revk P (λ), with f(λ) :=

λk−1φk−1(1/λ), and state matrix Ã(λ). In addition, Ã(λ) is invertible at 0 and f(0) �= 0
since degφk−1(λ) = k−1. The computation of the transfer function matrix of rev1 Cφ(λ)
is a particular case of the computation given in the proof of Theorem 5.2. Therefore, we 
omit the details here.

5. CORK linearizations

In this section we consider polynomial matrices P (λ) written as

P (λ) =
k−1∑
i=0

(Ai − λBi)pi(λ) ∈ F [λ]p×m, (15)

where pi(λ) are scalar polynomials with p0(λ) ≡ 1 and Ai, Bi ∈ Fp×m. Define the 
polynomial vector

p(λ) := [pk−1(λ) · · · p0(λ)]T ,
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and assume that the polynomials pi(λ) satisfy a linear relation

(X − λY )p(λ) = 0, (16)

where rank(X −λ0Y ) = k− 1 for all λ0 ∈ F , and X −λY has size (k− 1) × k. Then the 
matrix pencil

C(λ) =
[
Ak−1 − λBk−1 · · · A0 − λB0

(X − λY ) ⊗ Im

]
(17)

is called a CORK linearization of P (λ) [33]. CORK linearizations have played a funda-
mental role in the development of the Compact Rational Krylov (CORK) algorithm [33]
for solving numerically large scale PEPs that arise as approximations of other nonlinear 
eigenvalue problems coming from real-world applications. Such PEPs may have large 
degrees and the advantage of the CORK algorithm over previous methods are that its 
computational and memory costs are essentially independent of the degree of the PEP.

We show in the following subsection that the CORK linearization C(λ) can be seen 
as a linear polynomial system matrix of P (λ) with unimodular state matrix.

5.1. CORK linearizations as Rosenbrock’s system matrices

Theorem 5.1. Let P (λ) be a matrix polynomial as in (15) and consider the matrix pencil 
C(λ) in (17). Consider the following partition

C(λ) =
[
Ak−1 − λBk−1 · · · A1 − λB1 A0 − λB0

X1(λ) X2(λ)

]
,

where (X−λY ) ⊗Im =: [X1(λ) X2(λ) ] and X1(λ) has size (k−1)m × (k−1)m. Then, 
C(λ) is a linear polynomial system matrix with state matrix X1(λ) and transfer function 
matrix P (λ). In addition, X1(λ) is unimodular.

Proof. By (16), we have that [X1(λ) X2(λ) ] (p(λ) ⊗ Im) = 0 and, thus,

X1(λ)[pk−1(λ)Im · · · p1(λ)Im]T + X2(λ) = 0, (18)

taking into account that p0(λ) = 1. From (18) it follows that X1(λ) is regu-
lar. By contradiction, if X1(λ) is singular there exists a nonzero polynomial vector 
w(λ) such that w(λ)TX1(λ) = 0 and, therefore, w(λ)TX2(λ) = 0 by (18). Thus, 
w(λ)T [X1(λ) X2(λ) ] = 0. But this is a contradiction since [X1(λ) X2(λ) ] has full 
row normal rank. Then C(λ) is a linear polynomial system matrix with state matrix 
X1(λ) and its transfer function matrix is

A0 − λB0 − [Ak−1 − λBk−1 · · · A1 − λB1 ]X1(λ)−1X2(λ). (19)
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By (18), we have that

X1(λ)−1X2(λ) = −[pk−1(λ)Im · · · p1(λ)Im]T , (20)

and, by (19) and (20), we obtain that the transfer function matrix is

A0 − λB0 + [Ak−1 − λBk−1 · · · A1 − λB1 ]

⎡⎣pk−1(λ)Im
...

p1(λ)Im

⎤⎦ = P (λ).

In addition, the state matrix X1(λ) is unimodular. To see this, we consider the fol-
lowing pencil

X(λ) :=
[
X1(λ) X2(λ)
I(k−1)m 0

]
as a polynomial system matrix with state matrix X1(λ). Then we have that X(λ) is 
minimal, since rank(X − λ0Y ) = k − 1 for all λ0 ∈ F , and the transfer function matrix 
(i.e., −X1(λ)−1X2(λ)) is a polynomial matrix by (20). Then, by Proposition 3.2, X1(λ)
is unimodular. �

Theorem 5.1 together with Proposition 3.1 implies that C(λ) is a linearization of 
P (λ).

5.2. Reversal of CORK linearizations as Rosenbrock’s system matrices

By assuming extra conditions in (16), it follows from Proposition 3.3 and the next 
Theorem 5.2 that C(λ) is, in addition, a strong linearization by considering rev1 C(λ) as 
a Rosenbrock’s system matrix.

Theorem 5.2. Let P (λ) be a matrix polynomial as in (15) and consider the matrix pencil 
C(λ) in (17). Assume that the (k− 1) × k matrix Y in (17) satisfies rankY = k− 1 and 
that deg pk−1(λ) = k − 1. Consider the following partition for rev1 C(λ):

rev1 C(λ) =
[
λAk−1 −Bk−1 λAk−2 −Bk−2 · · · λA0 −B0

rev1 Y1(λ) rev1 Y2(λ)

]
.

Then rev1 C(λ) is a linear polynomial system matrix with state matrix rev1 Y2(λ) of 
size (k − 1)m × (k − 1)m and transfer function matrix 

1
q(λ) revk P (λ), where q(λ) :=

revk−1 pk−1(λ) and q(0) �= 0. In addition, rev1 Y2(λ) is invertible at 0.

Proof. First, taking into account that [Y1(λ) Y2(λ) ] (p(λ) ⊗ Im) = 0, we have that 
[ rev1 Y1(λ) rev1 Y2(λ) ] (λk−1p(1/λ) ⊗ Im) = 0 and, thus,
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q(λ) rev1 Y1(λ) + rev1 Y2(λ)[λk−1pk−2(1/λ)Im · · · λk−1p0(1/λ)Im]T = 0, (21)

where q(λ) := revk−1 pk−1(λ) = λk−1pk−1(1/λ). From (21), and the fact that the ma-
trix [ rev1 Y1(0) rev1 Y2(0)] has full row rank since Y has full row rank, it follows 
that rev1 Y2(λ) is invertible at 0, i.e., that rev1 Y2(0) is invertible. By contradiction, if 
rev1 Y2(0) is not invertible, there exists a constant vector w such that wT rev1 Y2(0) = 0
and, by (21), wT rev1 Y1(0) = 0 since q(0) �= 0. Therefore, wT [ rev1 Y1(0) rev1 Y2(0)] =
0 and this is a contradiction since [ rev1 Y1(0) rev1 Y2(0)] has full row rank.

We now compute the transfer function matrix of rev1 C(λ) as a linear polynomial 
system matrix with state matrix rev1 Y2(λ). That is,

T (λ) := λAk−1 −Bk−1 − [λAk−2 −Bk−2 · · · λA0 −B0 ] (rev1 Y2(λ))−1 rev1 Y1(λ).
(22)

By (21), we know that

(rev1 Y2(λ))−1 rev1 Y1(λ) = − 1
pk−1(1/λ) [pk−2(1/λ)Im · · · p0(1/λ)Im]T . (23)

Combining (22) and (23), we obtain

T (λ) := λAk−1 −Bk−1 + 1
pk−1(1/λ) [λAk−2 −Bk−2 · · · λA0 −B0 ]

⎡⎣pk−2(1/λ)Im
...

p0(1/λ)Im

⎤⎦ .

(24)
Multiplying T (λ) by q(λ) we obtain

q(λ)T (λ) =
k−1∑
i=0

(λAi −Bi)(λk−1pi(1/λ)) = revk P (λ). �

6. Block Kronecker linearizations

In this section, we consider the block Kronecker pencils introduced in [15] and show 
that they can also be seen as Rosenbrock’s system matrices with unimodular state ma-
trix. Block Kronecker pencils are a wide family of pencils that contains, among many 
other pencils, the Frobenius companion form and, modulo permutations, the Fiedler pen-
cils originally introduced in [22] for scalar polynomials and extended in [5,11] to matrix 
polynomials. They also include, modulo permutations, the generalized Fiedler pencils 
introduced in [5]. These inclusions were studied in [9]. Block Kronecker pencils are par-
ticular cases of a much wider class of pencils that are called strong block minimal bases 
pencils [15]. Block Kronecker pencils have excellent properties. For instance, they can be 
used for solving numerically PEPs in a structurally backward stable manner [15].
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Definition 6.1. Let λM1 + M0 be an arbitrary pencil. Any pencil of the form

CK(λ) =
[
λM1 + M0 Lη(λ)T ⊗ Ip
Lε(λ) ⊗ Im 0

]
,

is called a block Kronecker pencil, where

Lk(λ) :=

⎡⎢⎢⎣
−1 λ

−1 λ
. . . . . .

−1 λ

⎤⎥⎥⎦ ∈ F [λ]k×(k+1).

The one-block row and one-block column cases are included, i.e., the second block row 
or the second block column can be empty.

It was proved in [15, Theorem 4.2] that any block Kronecker pencil is a strong lin-
earization of the polynomial matrix

P (λ) := (Λη(λ)T ⊗ Ip)(λM1 + M0)(Λε(λ) ⊗ Im) ∈ F [λ]p×m, (25)

where Λk(λ) was defined in (10). The proof in [15] is a corollary of the theory of strong 
block minimal bases pencils. We will see in this section that another proof easily follows 
from the approach via Rosenbrock’s system matrices.

6.1. Block Kronecker linearizations as Rosenbrock’s system matrices

Observe that we can write

Lε(λ) ⊗ Im =

⎡⎢⎢⎢⎢⎣
−Im λIm

−Im λIm
. . . . . .

−Im λIm

⎤⎥⎥⎥⎥⎦ =:
[
Aε,m(λ) Bε,m(λ)

]
, (26)

and Aε,m(λ) is unimodular. Analogously,

Lη(λ) ⊗ Ip =

⎡⎢⎢⎢⎢⎣
−Ip λIp

−Ip λIp
. . . . . .

−Ip λIp

⎤⎥⎥⎥⎥⎦ =:
[
Aη,p(λ) Bη,p(λ)

]
, (27)

and Aη,p(λ) is unimodular. Then, CK(λ) can be partitioned as:
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CK(λ) =

⎡⎢⎣ M11(λ) M12(λ) Aη,p(λ)T

M21(λ) M22(λ) Bη,p(λ)T

Aε,m(λ) Bε,m(λ) 0

⎤⎥⎦ ,

and we set

A(λ) :=
[
M11(λ) Aη,p(λ)T
Aε,m(λ) 0

]
, B(λ) :=

[
M12(λ)
Bε,m(λ)

]
, (28)

C(λ) := −
[
M21(λ) Bη,p(λ)T

]
, and D(λ) := M22(λ). (29)

Notice that A(λ) is unimodular for any M11(λ). With the partition above, we prove in 
Theorem 6.2 that CK(λ) is a linear polynomial system matrix with unimodular state 
matrix A(λ) and whose transfer function matrix is the matrix polynomial P (λ) in (25).

Theorem 6.2. Let CK(λ) be a block Kronecker pencil as in Definition 6.1. Then, the 
following statements hold:

(a) The submatrix A(λ) of CK(λ) as in (28) is unimodular.
(b) The Schur complement of A(λ) in CK(λ) is the polynomial matrix P (λ) in (25).
(c) CK(λ) is a linearization of P (λ).

Proof. Statement (c) follows from (a) and (b) and Proposition 3.1. Since (a) is obvious, 
it only remains to prove (b). First, we write

A(λ)−1 :=
[

0 Aε,m(λ)−1

Aη,p(λ)−T −Aη,p(λ)−TM11(λ)Aε,m(λ)−1

]
=

[
Iεm 0
0 Aη,p(λ)−T

] [
0 Iεm
Iηp −M11(λ)

] [
Iηp 0
0 Aε,m(λ)−1

]
.

Now, observe that [Aε,m(λ) Bε,m(λ)] (Λε(λ) ⊗ Im) = 0 and, thus,

Aε,m(λ)(λΛε−1(λ) ⊗ Im) + Bε,m(λ) = 0.

Therefore,

Aε,m(λ)−1Bε,m(λ) = −(λΛε−1(λ) ⊗ Im).

Analogously,

Bη,p(λ)TAη,p(λ)−T = −(λΛη−1(λ)T ⊗ Ip).

Thus, the transfer function matrix of CK(λ) with A(λ) as state matrix is, taking into 
account (28) and (29),
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D(λ) + C(λ)A(λ)−1B(λ)

= M22(λ) −
[
M21(λ) Bη,p(λ)T

] [Iε,m 0
0 Aη,p(λ)−T

] [
0 Iεm
Iηp −M11(λ)

] [
Iηp 0
0 Aε,m(λ)−1

] [
M12(λ)
Bε,m(λ)

]
= M22(λ) −

[
M21(λ) −(λΛη−1(λ)T ⊗ Ip)

] [ 0 Iεm
Iηp −M11(λ)

] [
M12(λ)

−(λΛε−1(λ) ⊗ Im)

]
= M22(λ) + (λΛη−1(λ)T ⊗ Ip)M12(λ) + M21(λ)(λΛε−1(λ) ⊗ Im)

+ (λΛη−1(λ)T ⊗ Ip)M11(λ)(λΛε−1(λ) ⊗ Im)

= (Λη(λ)T ⊗ Ip)
[
M11(λ) M12(λ)
M21(λ) M22(λ)

]
(Λε(λ) ⊗ Im) = P (λ). �

6.2. Reversal of block Kronecker linearizations as Rosenbrock’s system matrices

We can consider the following partition for rev1 CK(λ):

rev1 CK(λ) =

⎡⎢⎣ M̂11(λ) M̂12(λ) B̂η,p(λ)T

M̂21(λ) M̂22(λ) Âη,p(λ)T

B̂ε,m(λ) Âε,m(λ) 0

⎤⎥⎦ :=
[
Dr(λ) −Cr(λ)
Br(λ) Ar(λ)

]
, (30)

as a linear polynomial system matrix with state matrix Ar(λ), where

rev1 Lε(λ) ⊗ Im =

⎡⎢⎢⎢⎢⎣
−λIm Im

−λIm Im
. . . . . .

−λIm Im

⎤⎥⎥⎥⎥⎦ =:
[
B̂ε,m(λ) Âε,m(λ)

]
, (31)

and

rev1 Lη(λ) ⊗ Ip =

⎡⎢⎢⎢⎢⎣
−λIp Ip

−λIp Ip
. . . . . .

−λIp Ip

⎤⎥⎥⎥⎥⎦ =:
[
B̂η,p(λ) Âη,p(λ)

]
. (32)

Then, we have the following result, whose proof is completely analogous to that of 
Theorem 6.2 and, so, is omitted.

Theorem 6.3. Let CK(λ) be a block Kronecker pencil as in Definition 6.1 and P (λ) be 
the polynomial matrix in (25). Then, the following statements hold:

(a) The submatrix Ar(λ) of rev1 CK(λ) as in (30) is unimodular.
(b) The Schur complement of Ar(λ) in rev1 CK(λ) is revη+ε+1 P (λ).
(c) CK(λ) is a strong linearization of P (λ).
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7. Extended block Kronecker linearizations

In this section we consider a more general version of the notion of block Kronecker 
linearization [9].

Definition 7.1. Let λM1 + M0 be an arbitrary pencil and Y ∈ Fεm×εm and Z ∈ Fηp×ηp

be arbitrary constant matrices. Then any pencil of the form

CEK(λ) =
[

λM1 + M0 (Z(Lη(λ) ⊗ Ip))T

Y (Lε(λ) ⊗ Im) 0

]

is called an extended block Kronecker pencil. The one-block row and one-block column 
cases are also included, i.e., the second block row or the second block column can be 
empty. Note that if Z = Iηp and Y = Iεm then CEK(λ) is just a block Kronecker pencil.

Extended block Kronecker pencils were introduced in [9, Section 3.3] because though 
the family of block Kronecker pencils contains, modulo permutations, Fiedler pencils 
[5,11,22] and generalized Fiedler pencils [5], it is not large enough to include the other 
families of Fiedler-like pencils (Fiedler pencils with repetition [36] and generalized Fiedler 
pencils with repetition [8]). It was proved in [9] that all the Fiedler-like linearizations 
available in the literature are included modulo permutations in the family of extended 
block Kronecker pencils (which in turn is included in the much wider family of strong 
block minimal bases pencils [15]). The proofs of these results require to choose highly 
structured matrices Y and Z in CEK(λ) depending on the coefficients of the polynomial 
matrix to be linearized. The details can be found in [9].

Note that CEK(λ) in Definition 7.1 can be written as

CEK(λ) = diag(I, Y )CK(λ) diag(I, ZT ),

where CK(λ) is a block Kronecker pencil as in Definition 6.1. Thus, if Y and Z are 
nonsigular, then we get immediately that CEK(λ) is a strong linearization of exactly the 
same matrix polynomial P (λ) in (25) as CK(λ). Our purpose in this section is to prove 
that we can also write CEK(λ) as a polynomial system matrix with unimodular state 
matrix and transfer function matrix (25).

7.1. Extended block Kronecker linearizations as Rosenbrock’s system matrices

Recall (26) and (27), and observe that

Y (Lε(λ) ⊗ Im) =
[
Y Aε,m(λ) Y Bε,m(λ)

]
,

and Y Aε,m(λ) is unimodular if Y is invertible. Analogously,
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Z(Lη(λ) ⊗ Ip) =
[
ZAη,p(λ) ZBη,p(λ)

]
,

and ZAη,p(λ) is unimodular if Z is invertible. Then, CEK(λ) can be partitioned as:

CEK(λ) =

⎡⎢⎣ M11(λ) M12(λ) Aη,p(λ)TZT

M21(λ) M22(λ) Bη,p(λ)TZT

Y Aε,m(λ) Y Bε,m(λ) 0

⎤⎥⎦ ,

and we set

Ã(λ) :=
[

M11(λ) Aη,p(λ)TZT

Y Aε,m(λ) 0

]
, B̃(λ) :=

[
M12(λ)

Y Bε,m(λ)

]
, (33)

C̃(λ) := −
[
M21(λ) Bη,p(λ)TZT

]
, and D̃(λ) := M22(λ). (34)

Notice that Ã(λ) is unimodular if Y and Z are invertible, for any M11(λ). With the 
partition above, we prove in Theorem 7.2 that CEK(λ) is a linear polynomial system 
matrix with unimodular state matrix Ã(λ) and whose transfer function matrix is P (λ)
in (25).

Theorem 7.2. Let CEK(λ) be an extended block Kronecker pencil as in Definition 7.1. 
Assume that Y and Z are invertible. Then, the following statements hold:

(a) The submatrix Ã(λ) of CEK(λ) as in (33) is unimodular.
(b) The Schur complement of Ã(λ) in CEK(λ) is the polynomial matrix P (λ) in (25).
(c) CEK(λ) is a linearization of P (λ).

Proof. Statement (c) follows from (a) and (b) and Proposition 3.1. Since (a) is obvious, 
it only remains to prove (b). For that, we write the matrices in (33) as follows:

Ã(λ) =
[
Iηp 0
0 Y

]
A(λ)

[
Iεm 0
0 ZT

]
, B̃(λ) =

[
Iηp 0
0 Y

]
B(λ),

C̃(λ) = C(λ)
[
Iεm 0
0 ZT

]
, and D̃(λ) = D(λ),

where A(λ), B(λ), C(λ) and D(λ) are as in (28) and (29). Then, the transfer function 
matrix of CEK(λ) with Ã(λ) as state matrix is:

D̃(λ) + C̃(λ)Ã(λ)−1B̃(λ)

= D(λ) + C(λ)
[
Iεm 0
0 ZT

] [
Iεm 0
0 Z−T

]
A(λ)−1

[
Iηp 0
0 Y −1

] [
Iηp 0
0 Y

]
B(λ)

= D(λ) + C(λ)A(λ)−1B(λ) = P (λ),

as in the proof of Theorem 6.2. �
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7.2. Reversal of extended block Kronecker linearizations as Rosenbrock’s system 
matrices

We can consider the following partition for rev1 CEK(λ):

rev1 CEK(λ) =

⎡⎢⎣ M̂11(λ) M̂12(λ) B̂η,p(λ)TZT

M̂21(λ) M̂22(λ) Âη,p(λ)TZT

Y B̂ε,m(λ) Y Âε,m(λ) 0

⎤⎥⎦ :=
[
D̃r(λ) −C̃r(λ)
B̃r(λ) Ãr(λ)

]
, (35)

as a linear polynomial system matrix with state matrix Ãr(λ), where

Y (rev1 Lε(λ) ⊗ Im) =
[
Y B̂ε,m(λ) Y Âε,m(λ)

]
,

and

Z(rev1 Lη(λ) ⊗ Ip) =
[
ZB̂η,p(λ) ZÂη,p(λ)

]
,

by using the notation in (31) and (32), respectively. Then, we have the following result, 
whose proof is omitted since it easily follows from Theorem 6.3.

Theorem 7.3. Let CEK(λ) be an extended block Kronecker pencil as in Definition 7.1 and 
P (λ) be the polynomial matrix in (25). Assume that Y and Z are invertible. Then, the 
following statements hold:

(a) The submatrix Ãr(λ) of rev1 CEK(λ) as in (35) is unimodular.
(b) The Schur complement of Ãr(λ) in rev1 CEK(λ) is revη+ε+1 P (λ).
(c) CEK(λ) is a strong linearization of P (λ).

8. A note on the construction of linearizations for rational matrices from linear system 
matrices of their polynomial parts

By the division algorithm for polynomials, any scalar rational function r(λ) can be 
uniquely written as r(λ) = p(λ) + rsp(λ), where p(λ) is a polynomial and rsp(λ) is a 
strictly proper rational function. That is, the degree of the denominator of rsp(λ) is 
strictly larger than the degree of its numerator. Therefore, any rational matrix R(λ) can 
be expressed uniquely as

R(λ) = P (λ) + Rsp(λ), (36)

where P (λ) is a polynomial matrix and Rsp(λ) is a strictly proper rational matrix. That 
is, the entries of Rsp(λ) are strictly proper rational functions.
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Recently, several papers have investigated the problem of constructing a linearization 
of a rational matrix R(λ) from a linearization of P (λ) and a minimal state-space re-
alization of Rsp(λ) [31]. See, for instance, [1,2,4,16,32] among other references on this 
topic. Often, the development of such constructions has required considerable theoretical 
work, since it was not obvious how to merge the linearization of P (λ) with the minimal 
state-space realization of Rsp(λ). In contrast, if one considers linearizations of P (λ) that 
are Rosenbrock’s system matrices with unimodular state matrices and transfer function 
matrices equal to P (λ), the construction is very easy. For this purpose, we consider on 
the one hand a linear Rosenbrock’s system matrix

L(λ) =
[

A(λ) B(λ)
−C(λ) D(λ)

]
,

with unimodular state matrix A(λ), and transfer function matrix equal to P (λ). That 
is,

P (λ) = D(λ) + C(λ)A(λ)−1B(λ).

On the other hand, we consider a minimal state-space realization

Rsp(λ) = Cs(λIs −As)−1Bs

of the strictly proper part Rsp(λ). Then, we construct the following pencil:

L(λ) =

⎡⎢⎣ (λIs −As) 0 Bs

0 A(λ) B(λ)
−Cs −C(λ) D(λ)

⎤⎥⎦ .

We obtain that L(λ) is a linear minimal polynomial system matrix of R(λ) in (36), 
with state matrix 

[
(λIs−As) 0

0 A(λ)

]
. Thus, by Theorem 1.2, L(λ) contains the information 

about finite poles and zeros of R(λ), and is a linearization of R(λ) in the sense of [4, 
Definition 3.2]. More information about different definitions of linearizations of rational 
matrices and how to construct linear polynomial system matrices that also preserve the 
pole and zero information at infinity, i.e., the pole and zero information at 0 of R(1/λ), 
can be found, for instance, in [4,17–19].

9. Conclusions and lines of future research

The main message of this paper in that in the analysis of a pencil L(λ) that may be 
a linearization of a matrix polynomial, it is worth looking for a unimodular submatrix 
A(λ) of L(λ) and viewing L(λ) as a Rosenbrock’s system matrix with state matrix 
A(λ). In the first place, this allows to identify a matrix polynomial P (λ) for which 
L(λ) is a linearization just by computing the Schur complement of A(λ) in L(λ). Other 
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advantages of this approach are that it may yield simplified alternative proofs that certain 
well known linearizations are indeed linearizations, it gives rise to simple recovery rules 
for eigenvectors and to simple constructions of linearizations of rational matrices whose 
polynomial part is P (λ). This approach applied to the reversal of L(λ) can also be used to 
prove that L(λ) is a strong linearization of P (λ), though it usually requires to identify a 
different submatrix in rev1 L(λ). One possible line of future research in this context is to 
apply the Rosenbrock’s system matrix approach in the study of �-ifications of polynomial 
matrices [12–14,20]. Another connected problem that deserves to be investigated is that 
it may be possible to identify in a pencil several unimodular submatrices, possibly with 
different sizes (think, for instance, in the Frobenius companion form), which will give rise 
to several different matrix polynomials with the same eigenvalue information. Finally, 
we emphasize that this paper has connected two very important historical tools in the 
theory of rational and polynomial matrices: Rosenbrock’s system matrices and Gohberg, 
Lancaster and Rodman’s linearizations and strong linearizations.
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