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Abstract

A well known method to solve the Polynomial Eigenvalue Problem (PEP) is via lineariza-
tion. That is, transforming the PEP into a generalized linear eigenvalue problem with the
same spectral information. Linearizations of matrix polynomials are defined using uni-
modular transformations. In this paper we establish a connection between the standard
definition of linearization for matrix polynomials introduced by Gohberg, Lancaster and
Rodman and the notion of polynomial system matrix introduced by Rosenbrock. This
connection gives new techniques to show that a matrix pencil is a linearization of the
corresponding matrix polynomial arising in a PEP.
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1. Introduction

Let F be an arbitrary field, and let F be the algebraic closure of F. F[λ] denotes the
ring of polynomials with coefficients in F, and F(λ) the field of rational functions over
F[λ]. The sets of p×m matrices with elements in F, F[λ] and F(λ) are denoted by Fp×m,
F[λ]p×m and F(λ)p×m, respectively. The elements of F[λ]p×m are called matrix polynomials
or polynomial matrices, and the elements of F(λ)p×m are called rational matrices.
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A polynomial matrix P (λ) ∈ F[λ]p×m can always be written in the form

P (λ) = Pkλ
k + Pk−1λ

k−1 + · · ·+ P1λ+ P0, (1)

where Pk, . . . , P1, P0 ∈ Fp×m with Pk 6= 0. The scalar k is then called the degree of P (λ),
and it is denoted by degP (λ). Polynomial matrices of degree 1 or 0, i.e., linear polynomial
matrices, are called pencils.

The (finite) eigenvalues of a polynomial matrix P (λ) ∈ F[λ]p×m are defined as the
scalars λ0 ∈ F such that

rankP (λ0) < max
µ∈F

rankP (µ).

The Polynomial Eigenvalue Problem (PEP) consists of finding the eigenvalues of P (λ). If
P (λ) ∈ F[λ]m×m is regular (i.e., square with detP (λ) 6≡ 0), the PEP is equivalent to the

problem of finding scalars λ0 ∈ F such that there exist nonzero constant vectors x ∈ Fm×1

and y ∈ Fm×1 satisfying

P (λ0)x = 0 and yTP (λ0) = 0,

respectively. The vectors x are called right eigenvectors associated with λ0, and the vectors
y are called left eigenvectors associated with λ0.

To solve the PEP, in the eighties Gohberg, Lancaster and Rodman [13] introduced the
notion of linearization of a matrix polynomial. Given a matrix polynomial P (λ) of degree
k > 1, a linearization of P (λ) is a pencil L(λ) := λL1+L0 such that there exist unimodular
matrices (i.e., square polynomial matrices with nonzero constant determinant) U1(λ) and
V1(λ) satisfying

U1(λ)L(λ)V1(λ) =

[
P (λ) 0

0 Is

]
, (2)

where Is denotes the identity matrix of size an integer s ≥ 0. It is known that L(λ) has
the same finite eigenvalues with the same partial multiplicities as P (λ). L(λ) is said to be
a strong linearization of P (λ) if, in addition, there exist unimodular matrices U2(λ) and
V2(λ) satisfying

U2(λ) rev1 L(λ)V2(λ) =

[
rev` P (λ) 0

0 Is

]
, (3)

where rev1 L(λ) := λL0 +L1 and rev` P (λ) := λ`P (1/λ) for some ` ≥ degP (λ) [12]. Here
we remark that to have an equivalent definition of strong linearization, it is enough if the
matrices U2(λ) and V2(λ) in (3) are invertible at 0 (i.e., U2(0) and V2(0) are invertible)
instead of unimodular (see the proof of Proposition 3.3). In that case we say that rev1 L(λ)
and diag(rev` P (λ), Is) are equivalent at 0.

However, already in the seventies Rosenbrock [16] introduced the notion of polynomial
system matrix S(λ) of a rational matrix G(λ) ∈ F(λ)p×m. That is, a matrix polynomial
of the form

S(λ) :=

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ F[λ](n+p)×(n+m) (4)

with A(λ) ∈ F[λ]n×n regular, such that its Schur complement with respect to A(λ) is G(λ),
i.e,

G(λ) = D(λ) + C(λ)A(λ)−1B(λ).
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The rational matrix G(λ) is called the transfer function matrix of S(λ) and the matrix
polynomial A(λ) is called the state matrix of S(λ). Although the state matrix A(λ) will
appear in the (1, 1)-block of S(λ) in the theory, it can be at any place in S(λ). The
important property is that G(λ) is the Schur complement of A(λ) in S(λ).

Under minimality conditions, Rosenbrock showed that polynomial system matrices
contain the pole and zero information of their transfer function matrices [16]. Poles and
zeros of rational matrices are defined through the notion of the Smith–McMillan form,
that we state in what follows (see [15], or [16] for a more recent reference).

Definition 1.1 (Smith–McMillan form). For any rational matrix G(λ) ∈ F(λ)p×m there
exist unimodular matrices U1(λ) ∈ F[λ]p×p and U2(λ) ∈ F[λ]m×m such that

U1(λ)G(λ)U2(λ) =

 diag

(
ε1(λ)

ψ1(λ)
, . . . ,

εr(λ)

ψr(λ)

)
0

0 0(p−r)×(m−r)

 (5)

where r is the normal rank of G(λ) and, for i = 1, . . . , r,
εi(λ)

ψi(λ)
are nonzero irreducible

rational functions with εi(λ) and ψi(λ) monic polynomials (i.e., with leading coefficient
equal to 1) that satisfy the divisibility chains ε1(λ) | · · · | εr(λ) and ψr(λ) | · · · | ψ1(λ). The
diagonal matrix in (5) is called the Smith–McMillan form of G(λ).

The rational functions εi(λ)/ψi(λ) in (5) are called the invariant rational functions
of G(λ) and the finite poles and zeros of G(λ) are the roots in F of the denominators
and numerators of the invariant rational functions, respectively. If G(λ) is a polynomial
matrix then ψi(λ) = 1, for i = 1, . . . , r, and the diagonal matrix in (5) is just called the
Smith form of G(λ). In addition, for any λ0 ∈ F each polynomial εi(λ) can be factored as
εi(λ) = (λ− λ0)αipi(λ) with pi(0) 6= 0 and αi ≥ 0. The factors (λ− λ0)αi with αi 6= 0 are
called the elementary divisors for the eigenvalue λ0.

We now introduce the notion of minimality of a polynomial system matrix, in order
to relate its zeros with the poles and zeros of its transfer function matrix. A polynomial
system matrix S(λ) as in (4) is said to be minimal if

rank
[
A(λ0) −B(λ0)

]
= rank

[
A(λ0)
C(λ0)

]
= n (6)

for all λ0 ∈ F. Then, Rosenbrock proved the following result [16], about the recovery
of the pole and zero information of a rational matrix from a minimal polynomial system
matrix.

Theorem 1.2. Let S(λ) as in (4) be a minimal polynomial system matrix, with state
matrix A(λ), whose transfer function matrix is G(λ). Then the finite eigenvalues of A(λ)
are the finite poles of G(λ), and the finite eigenvalues of S(λ) are the finite zeros of G(λ).

In the particular case of A(λ) in (4) being unimodular G(λ), has no finite poles, i.e.,
G(λ) is a polynomial matrix, and condition (6) is satisfied. In addition, we have the
following unimodular equivalence:[

C(λ)A−1(λ) Ip
A−1(λ) 0

]
︸ ︷︷ ︸

unimodular

[
A(λ) B(λ)
−C(λ) D(λ)

] [
−A−1(λ)B(λ) In

Im 0

]
︸ ︷︷ ︸

unimodular

=

[
G(λ)

In

]
. (7)
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Therefore, if S(λ) is a pencil and A(λ) is unimodular then S(λ) is a linearization for
the matrix polynomial G(λ).

The purpose of this paper is to show that many of the linearizations for matrix polyno-
mials in the literature are actually linear polynomial system matrices of the corresponding
matrix polynomial. Moreover, this property establishes new tools to determine if a pencil
L(λ) is a linearization of a matrix polynomial. Namely, by computing the transfer function
matrix of L(λ) (i.e., the Schur complement) with respect to a unimodular submatrix A(λ).

Before giving some auxiliary results in Section 3, we first study the Frobenius compan-
ion form or the (first) companion form [12, 13] in the next Section 2, that is one the most
classic linearizations. Then, we consider in Section 4 the family of “comrade” lineariza-
tions [11], that are particular cases of CORK linearizations [17] studied in Section 5. We
also analyze the family of (extended) block Kronecker linearizations [7] in Sections 6 and
7. Finally, we give a note in Section 8 on how to use these ideas to construct linearizations
for rational matrices.

2. Frobenius companion form

Given a matrix polynomial P (λ) written in terms of the monomial basis as in (1), the
Frobenius companion form is the following pencil

C1(λ) :=



λPk + Pk−1 Pk−2 · · · P1 P0

−Im λIm
. . .

. . .

. . . λIm
−Im λIm

 .

It is known that C1(λ) is a strong linearization of P (λ) [12]. We now show that C1(λ) can
be seen as a polynomial system matrix of P (λ) with unimodular state matrix, which in
turn implies that C1(λ) is a linearization of P (λ).

2.1. Frobenius companion form as a Rosenbrock’s system matrix

We consider the following partition:

C1(λ) =



λPk + Pk−1 Pk−2 · · · P1 P0

−Im λIm
. . .

. . .

. . . λIm
−Im λIm

 =:

[
−C(λ) D(λ)
A(λ) B(λ)

]
, (8)

as a Rosenbrock’s system matrix with state matrix A(λ). Then, A(λ) is clearly unimodular
and the transfer function matrix is

D(λ) + C(λ)A(λ)−1B(λ) = P0 −
[
λPk + Pk−1 Pk−2 · · · P1

]
A(λ)−1B(λ). (9)

To compute (9), we consider the polynomial vector containing the elements of the mono-
mial basis. Namely,

Λk−1(λ) :=
[
λk−1 λk−2 · · · λ 1

]T
.
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Then, observe that [
A(λ) B(λ)

]
(Λk−1(λ)⊗ Im)T = 0.

Therefore, A(λ)
[
λk−1 Im λk−2 Im · · · λIm

]T
+B(λ) = 0 and

A(λ)−1B(λ) = −
[
λk−1 Im λk−2 Im · · · λIm

]T
. (10)

Finally, by (9) and (10), we obtain that the transfer function matrix of (8) is P (λ).

2.2. Reversal of the Frobenius companion form as a Rosenbrock’s system matrix

Now, we consider the reversal rev1C1(λ) and the following partition:

rev1C1(λ) =



Pk + λPk−1 λPk−2 · · · λP1 λP0

−λIm Im
. . .

. . .

. . . Im
−λIm Im

 =:

[
Dr(λ) −Cr(λ)
Br(λ) Ar(λ)

]
. (11)

Then, we have that Ar(λ) is unimodular, and the transfer function matrix of rev1C1(λ)
with the partition in (11) is

Dr(λ) + Cr(λ)Ar(λ)−1Br(λ) = Pk + λPk−1 −
[
λPk−2 · · · λP1 λP0

]
Ar(λ)−1Br(λ).

Taking into account that[
Br(λ) Ar(λ)

]
(revk−1 Λk−1(λ)⊗ Im)T = 0,

we obtain that

Ar(λ)−1Br(λ) = −
[
λIm · · · λk−2 Im λk−1 Im

]T
.

Therefore, the transfer function matrix is

Dr(λ) + Cr(λ)Ar(λ)−1Br(λ) = Pk + λPk−1 + λ2Pk−2 + · · ·+ λkP0 = revk P (λ).

It then follows that C1(λ) is a strong linearization of P (λ).
Notice that we computed the transfer function matrices of C1(λ) and rev1C1(λ) with-

out computing the inverse of the state matrix A(λ). In general, although the computation
of the transfer function matrix involves the inverse of A(λ), such computation is simple in
most of the cases if there is a linear relation satisfied by the considered polynomial basis
as in the example above. We will see more such examples in what follows.

3. Auxiliary results

The discussion in the introduction can be summarized in the following Proposition 3.1.
The proof follows from (7).
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Proposition 3.1. Let G(λ) ∈ F(λ)p×m and let

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+p)×(n+m)

be a linear polynomial system matrix of G(λ), with state matrix A(λ) := A1λ + A0. If
A(λ) is unimodular then G(λ) is a matrix polynomial and L(λ) is a linearization of G(λ).

In the next Proposition 3.2 we give a necessary and sufficient condition for the state
matrix A(λ) of a polynomial system matrix to be unimodular. This result can be useful
in problems where the transfer function matrix G(λ) is polynomial and computing G(λ)
is easier than showing that A(λ) is unimodular.

Proposition 3.2. Let G(λ) ∈ F(λ)p×m and let

S(λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ F[λ](n+p)×(n+m)

be a polynomial system matrix of G(λ), with state matrix A(λ). Then A(λ) is unimodular
if and only if S(λ) is minimal and G(λ) is a matrix polynomial.

Proof. It is clear that if A(λ) is unimodular then G(λ) is a matrix polynomial and S(λ)
is minimal. That is, condition (6) holds. Conversely, if G(λ) is a matrix polynomial and
S(λ) is minimal then A(λ) has no finite eigenvalues, since the finite eigenvalues of A(λ)
would be the finite poles of G(λ) by Theorem 1.2. But G(λ) has no finite poles since
it is a matrix polynomial. Therefore, detA(λ) is constant, which implies that A(λ) is
unimodular.

We could apply Proposition 3.1 to the reversal rev1 L(λ) to see that a linearization L(λ)
is, in addition, a strong linearization. However, we may need to select another submatrix of
the system pencil as appropriate state matrix and that is not always possible. In that case,
we can also try to apply the following Proposition 3.3, which requires milder conditions.

Proposition 3.3. Let L(λ) be a linearization of a polynomial matrix P (λ) ∈ F[λ]p×m.
Assume that we can write

rev1 L(λ) =

[
Ã1λ+ Ã0 B̃1λ+ B̃0

−(C̃1λ+ C̃0) D̃1λ+ D̃0

]
∈ F[λ](n+p)×(n+m)

as a linear polynomial system matrix with state matrix Ã(λ) := Ã1λ + Ã0. If Ã(λ) is
invertible at 0 and the transfer function matrix of rev1 L(λ) is equivalent at 0 to rev` P (λ),
for some ` ≥ degP (λ), then L(λ) is a strong linearization of P (λ).

Proof. Since L(λ) is a linearization of P (λ), by [14] we know that

(a) the elementary divisors for those λ0 6= 0 of rev1 L(λ) and rev` P (λ) are the same.

(b) In addition, dimNr(P ) = dimNr(L) and dimN`(P ) = dimN`(L).

Now, by assuming that Ã(λ) is invertible at 0 and that the transfer function matrix of
rev1 L(λ) is equivalent at 0 to rev` P (λ), we have by [9, Theorem 4.4] that

(c) the elementary divisors at 0 of rev1 L(λ) and rev` P (λ) are also the same.

Statements (a), (b) and (c) imply that rev1 L(λ) and diag(rev` P (λ), In) are unimodularly
equivalent [6, Theorem 4.1]. Thus, L(λ) is a strong linearization of P (λ).
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3.1. Recovery of eigenvectors

An advantage of considering linearizations of matrix polynomials as Rosenbrock’s sys-
tem matrices with unimodular state matrix is that the eigenvectors associated with an
eigenvalue λ0 can be recovered always in the same way. Given λ0 ∈ F and a polynomial
matrix P (λ) ∈ F(λ)p×m, we consider the following vector spaces over F:

Nr(P (λ0)) = {x ∈ Fm×1 : P (λ0)x = 0}, and

N`(P (λ0)) = {yT ∈ F1×p
: yTP (λ0) = 0},

which are called, respectively, the right and left nullspaces over F of P (λ0). If λ0 is an
eigenvalue of a regular P (λ), then Nr(P (λ0)) and N`(P (λ0)) are non trivial and contain,
respectively, the right and left eigenvectors of P (λ) associated with λ0.

In the following Proposition 3.4 we state the relation between the right and left
nullspaces of a polynomial system matrix with unimodular state matrix and those of
its polynomial transfer function matrix P (λ). This is a particular case of the results from
[8, Proposition 5.1] and [8, Proposition 5.2]. Then, in the particular case of P (λ) being
regular, Proposition 3.4 can be used to recover the right and left eigenvectors of P (λ) from
those of a polynomial system matrix of it with unimodular state matrix.

Proposition 3.4. Let S(λ) be a polynomial system matrix as in Proposition 3.2 with A(λ)
unimodular, and let P (λ) ∈ F[λ]p×m be its transfer function matrix. Let λ0 ∈ F. Then,
the following statements hold:

(a) The linear map

Er : Nr(P (λ0)) −→ Nr(S(λ0))

x 7−→
[
−A(λ0)

−1B(λ0)
Im

]
x

is a bijection between the right nullspaces over F of P (λ0) and S(λ0).

(b) The linear map

E` : N`(P (λ0)) −→ N`(S(λ0))

yT 7−→ yT
[
C(λ0)A(λ0)

−1 Ip
]

is a bijection between the left nullspaces over F of P (λ0) and S(λ0).

We can see that, in particular, right and left eigenvectors of a polynomial matrix
P (λ) can be directly recovered from the last block of the right and left eigenvectors of its
polynomial system matrix S(λ). With extra information, we can also recover the right
and left eigenvectors of P (λ) from any block, as in the following example.

Example 3.5. Recall the Frobenius companion form C1(λ) in Section 2 and the partition
as a polynomial system matrix in (8). By (10), we have that, for any λ0 ∈ F,

−A(λ0)
−1B(λ0) =

[
λk−10 Im λk−20 Im · · · λ0Im

]T
.

Therefore, by Proposition 3.4, the linear map

Fr : Nr(P (λ0)) −→ Nr(C1(λ0))

x 7−→
[
λk−10 Im λk−20 Im · · · λ0Im Im

]T
x

is a bijection between the right nullspaces over F of P (λ0) and C1(λ0).



8

4. Comrade linearizations

Consider a polynomial matrix

P (λ) = Pkφk(λ) + Pk−1φk−1(λ) + · · ·+ P1φ1(λ) + P0φ0(λ) ∈ F[λ]p×m,

written in terms of a polynomial basis satisfying a three-term recurrence relation of he
form:

αjφj+1(λ) = (λ− βj)φj(λ)− γjφj−1(λ) j ≥ 0

where αj , βj , γj ∈ F, αj 6= 0, φ−1(λ) = 0, and φ0(λ) = 1. It is “well-known” that the fol-
lowing “comrade” companion matrix introduced in [3, Chapter 5] is a strong linearization
of P (λ) [1, 8, 11]:

Cφ(λ) =



(λ− βk−1)

αk−1
Pk + Pk−1 Pk−2 −

γk−1

αk−1
Pk Pk−3 · · · P1 P0

−αk−2I (λ− βk−2)I −γk−2I
−αk−3I (λ− βk−3)I −γk−3I

. . .
. . .

. . .

−α1I (λ− β1)I −γ1I
−α0I (λ− β0)I


.

This can be proved also via Rosenbrock’s system matrices.

4.1. Comrade linearizations as Rosenbrock’s system matrices

With the following partition:

Cφ(λ) =



(λ− βk−1)

αk−1
Pk + Pk−1 Pk−2 −

γk−1

αk−1
Pk Pk−3 · · · P1 P0

−αk−2I (λ− βk−2)I −γk−2I
−αk−3I (λ− βk−3)I −γk−3I

. . .
. . .

. . .

−α1I (λ− β1)I −γ1I
−α0I (λ− β0)I


=:

[
−C(λ) D(λ)
A(λ) B(λ)

]
,

we get that Cφ(λ) is a linear polynomial system matrix with unimodular state matrix A(λ)
and transfer function matrix P (λ). Then Cφ(λ) is a linearization of P (λ) by Proposition
3.1. Notice that comrade linearizations are constructed by considering the recurrence
relation satisfied by the polynomial basis. They are particular cases of the more general
notion of CORK linearizations, described in Section 5. How to compute the transfer
function matrix of Cφ(λ) is a particular case of the computation in the proof of Theorem
5.1.
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4.2. Reversal of comrade linearizations as Rosenbrock’s system matrices

To see that Cφ(λ) is a strong linearization, it is not possible to identify a unimodular
submatrix of rev1Cφ(λ) such that the transfer function matrix is revk P (λ). However, we
can use Proposition 3.3. For that, we consider the following partition:

rev1 Cφ(λ) =



(1− λβk−1)

αk−1
Pk + λPk−1 λPk−2 − λ

γk−1

αk−1
Pk λPk−3 · · · λP1 λP0

−λαk−2I (1− λβk−2)I −λγk−2I
−λαk−3I (1− λβk−3)I −λγk−3I

. . .
. . .

. . .

−λα1I (1− λβ1)I −λγ1I
−λα0I (1− λβ0)I


=:

[
D̃(λ) −C̃(λ)

B̃(λ) Ã(λ)

]
,

so that rev1Cφ(λ) is a linear polynomial system matrix of
1

f(λ)
revk P (λ), with f(λ) :=

λk−1φk−1(1/λ), and state matrix Ã(λ). In addition, Ã(λ) is invertible at 0 and f(0) 6= 0
since deg φk−1(λ) = k − 1. How to compute the transfer function matrix of rev1Cφ(λ) is
a particular case of the computation given in the proof of Theorem 5.2.

5. CORK linearizations

In this section we consider polynomial matrices P (λ) written as

P (λ) =
k−1∑
i=0

(Ai − λBi)pi(λ) ∈ F[λ]p×m, (12)

where pi(λ) are scalar polynomials with p0(λ) ≡ 1 and Ai, Bi ∈ Fp×m. Define the
polynomial vector

p(λ) := [pk−1(λ) · · · p0(λ)]T ,

and assume that the polynomials pi(λ) satisfy a linear relation

(X − λY )p(λ) = 0, (13)

where rank(X − λ0Y ) = k − 1 for all λ0 ∈ F, and X − λY has size (k − 1)× k. Then the
matrix pencil

C(λ) =

[
Ak−1 − λBk−1 · · · A0 − λB0

(X − λY )⊗ Im

]
(14)

is called a CORK linearization of P (λ) [17]. We show in the following result that C(λ)
can be seen as a linear polynomial system matrix of P (λ) with unimodular state matrix.
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5.1. CORK linearizations as Rosenbrock’s system matrices

Theorem 5.1. Let P (λ) be a matrix polynomial as in (12) and consider the matrix pencil
C(λ) in (14). Consider the following partition

C(λ) =

[
Ak−1 − λBk−1 · · · A1 − λB1 A0 − λB0

X1(λ) X2(λ)

]
,

where (X − λY )⊗ Im =:
[
X1(λ) X2(λ)

]
and X1(λ) has size (k − 1)m× (k − 1)m. Then,

C(λ) is a linear polynomial system matrix with state matrix X1(λ) and transfer function
matrix P (λ). In addition, X1(λ) is unimodular.

Proof. By (13), we have that
[
X1(λ) X2(λ)

]
(p(λ)⊗ Im) = 0 and, thus,

X1(λ)[pk−1(λ)Im · · · p1(λ)Im]T +X2(λ) = 0, (15)

taking into account that p0(λ) = 1. From (15) follows that X1(λ) is regular. By con-
tradiction, if X1(λ) is singular there exists a nonzero polynomial vector w(λ) such that
w(λ)TX1(λ) = 0 and, therefore, w(λ)TX2(λ) = 0 by (15). Thus, w(λ)T

[
X1(λ) X2(λ)

]
=

0. But this is a contradiction since
[
X1(λ) X2(λ)

]
has full row normal rank. Then C(λ)

is a linear polynomial system matrix with state matrix X1(λ) and its transfer function
matrix is

A0 − λB0 −
[
Ak−1 − λBk−1 · · · A1 − λB1

]
X1(λ)−1X2(λ). (16)

By (15), we have that

X1(λ)−1X2(λ) = −[pk−1(λ)Im · · · p1(λ)Im]T , (17)

and, by (16) and (17), we obtain that the transfer function matrix is

A0 − λB0 +
[
Ak−1 − λBk−1 · · · A1 + λB1

] pk−1(λ)Im
...

p1(λ)Im

 = P (λ).

In addition, the state matrix X1(λ) is unimodular. To see this, we consider the follow-
ing pencil

X(λ) :=

[
X1(λ) X2(λ)
I(k−1)m 0

]
as a polynomial system matrix with state matrix X1(λ). Then we have that X(λ) is
minimal, since rank(X − λ0Y ) = k − 1 for all λ0 ∈ F, and the transfer function matrix
(i.e., −X1(λ)−1X2(λ)) is a polynomial matrix by (17). Then, by Proposition 3.2, X1(λ)
is unimodular.

Theorem 5.1 together with Proposition 3.1 implies that C(λ) is a linearization of P (λ).
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5.2. Reversal of CORK linearizations as Rosenbrock’s system matrices

By assuming extra conditions in (13), it follows from Proposition 3.3 and the next
Theorem 5.2 that C(λ) is, in addition, a strong linearization by considering rev1C(λ) as
a Rosenbrock’s system matrix.

Theorem 5.2. Let P (λ) be a matrix polynomial as in (12) and consider the matrix pencil
C(λ) in (14). Assume that Y in (14) is invertible and that deg pk−1(λ) = k− 1. Consider
the following partition for rev1C(λ):

rev1C(λ) =

[
λAk−1 −Bk−1 λAk−2 −Bk−2 · · · λA0 −B0

rev1 Y1(λ) rev1 Y2(λ)

]
.

Then rev1C(λ) is a linear polynomial system matrix with state matrix rev1 Y2(λ) of

size (k − 1)m × (k − 1)m and transfer function matrix
1

q(λ)
revk P (λ), where q(λ) :=

revk−1 pk−1(λ) and q(0) 6= 0. In addition, rev1 Y2(λ) is invertible at 0.

Proof. First, taking into account that
[
Y1(λ) Y2(λ)

]
(p(λ) ⊗ Im) = 0, we have that[

rev1 Y1(λ) rev1 Y2(λ)
]

(λk−1p(1/λ)⊗ Im) = 0 and, thus,

q(λ) rev1 Y1(λ) + rev1 Y2(λ)[λk−1pk−2(1/λ)Im · · · λk−1p0(1/λ)Im]T = 0, (18)

where q(λ) := revk−1 pk−1(λ) = λk−1pk−1(1/λ). From (18), and the fact that the matrix[
rev1 Y1(0) rev1 Y2(0)

]
has full row rank since Y is invertible, follows that rev1 Y2(λ) is

invertible at 0, i.e., that rev1 Y2(0) is invertible. By contradiction, if rev1 Y2(0) is not
invertible, there exists a constant vector w such that wT rev1 Y2(0) = 0 and, by (18),
wT rev1 Y1(0) = 0 since q(0) 6= 0. Therefore, wT

[
rev1 Y1(0) rev1 Y2(0)

]
= 0 and this is a

contradiction since
[
rev1 Y1(0) rev1 Y2(0)

]
has full row rank.

We now compute the transfer function matrix of rev1C(λ) as a linear polynomial
system matrix with state matrix rev1 Y2(λ). That is,

T (λ) := λAk−1−Bk−1−
[
λAk−2 −Bk−2 · · · λA0 −B0

]
(rev1 Y2(λ))−1 rev1 Y1(λ). (19)

By (18), we know that

(rev1 Y2(λ))−1 rev1 Y1(λ) = − 1

pk−1(1/λ)
[pk−2(1/λ)Im · · · p0(1/λ)Im]T = 0. (20)

Combining (19) and (20), we obtain

T (λ) := λAk−1 −Bk−1 +
1

pk−1(1/λ)

[
λAk−2 −Bk−2 · · · λA0 −B0

] pk−2(1/λ)Im
...

p0(1/λ)Im

 .
(21)

Multiplying T (λ) by q(λ) we obtain

q(λ)T (λ) =

k−1∑
i=0

(λAi −Bi)(λk−1pi(1/λ)) = revk P (λ).
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6. Block Kronecker linearizations

In this section, we consider the block Kronecker pencils introduced in [7] and show
that they can also be seen as Rosenbrock’s system matrices with unimodular state matrix.

Definition 6.1. Let λM1 +M0 be an arbitrary pencil. Any pencil of the form

CK(λ) =

[
λM1 +M0 Lη(λ)T ⊗ Ip
Lε(λ)⊗ Im 0

]
,

is called a block Kronecker pencil, where

Lk(λ) :=


−1 λ

−1 λ
. . .

. . .

−1 λ

 ∈ F[λ]k×(k+1).

They are a linearization of the polynomial matrix

P (λ) := (Λη(λ)T ⊗ Ip)(λM1 +M0)(Λε(λ)⊗ Im).

The one-block row and one-block column cases are included, i.e., the second block row or
the second block column can be empty.

6.1. Block Kronecker linearizations as Rosenbrock’s system matrices

Observe that we can write

Lε(λ)⊗ Im =


−Im λIm

−Im λIm
. . .

. . .

−Im λIm

 =:
[
Aε,m(λ) Bε,m(λ)

]
, (22)

and Aε,m(λ) is unimodular. Analogously,

Lη(λ)⊗ Ip =


−Ip λIp

−Ip λIp
. . .

. . .

−Ip λIp

 =:
[
Aη,p(λ) Bη,p(λ)

]
, (23)

and Aη,p(λ) is unimodular. Then, CK(λ) can be partitioned as:

CK(λ) =

 M11(λ) M12(λ) Aη,p(λ)T

M21(λ) M22(λ) Bη,p(λ)T

Aε,m(λ) Bε,m(λ) 0

 ,
and we set
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A(λ) :=

[
M11(λ) Aη,p(λ)T

Aε,m(λ) 0

]
, B(λ) :=

[
M12(λ)
Bε,m

]
, (24)

C(λ) := −
[
M21(λ) Bη,p(λ)T

]
, and D(λ) := M22(λ). (25)

Notice that A(λ) is unimodular for any M11(λ). With the partition above, we have that
CK(λ) is a linear polynomial system matrix with unimodular state matrix A(λ), and the
transfer function matrix is the matrix polynomial P (λ) in Theorem 6.2.

Theorem 6.2. Let CK(λ) be a block Kronecker pencil as in Definition 6.1. Then, the
following statements hold:

(a) The submatrix A(λ) of CK(λ) as in (24) is unimodular.

(b) The Schur complement of A(λ) in CK(λ) is the polynomial matrix

P (λ) := (Λη(λ)T ⊗ Ip)(λM1 +M0)(Λε(λ)⊗ Im) ∈ F[λ]p×m,

where
Λk(λ)T :=

[
λk λk−1 · · · λ 1

]
∈ F[λ]1×(k+1).

(c) CK(λ) is a linearization of P (λ).

Proof. Statement (c) follows from (a) and (b), and we only remain to prove (b). First, we
write

A(λ)−1 :=

[
0 Aε,m(λ)−1

Aη,p(λ)−T −Aη,p(λ)−TM11(λ)Aε,m(λ)−1

]
=

[
Iε,m 0

0 Aη,p(λ)−T

] [
0 Iεm
Iηp −M11(λ)

] [
Iηp 0
0 Aε,m(λ)−1

]
.

Now, observe that
[
Aε,m(λ) Bε,m(λ)

]
(Λε(λ)⊗ Im) = 0 and, thus,

Aε,m(λ)(λΛε−1(λ)⊗ Im) +Bε,m(λ) = 0.

Therefore,
Aε,m(λ)−1Bε,m(λ) = −(λΛε−1(λ)⊗ Im).

Analogously,
Bη,p(λ)TAη,p(λ)−T = −(λΛη−1(λ)T ⊗ Ip).

Thus, the transfer function matrix is

D(λ) + C(λ)A(λ)−1B(λ) =

M22(λ)−
[
M21(λ) Bη,p(λ)T

] [Iε,m 0
0 Aη,p(λ)−T

] [
0 Iεm
Iηp −M11(λ)

] [
Iηp 0
0 Aε,m(λ)−1

] [
M12(λ)
Bε,m

]
=

M22(λ)−
[
M21(λ) −(λΛη−1(λ)T ⊗ Ip)

] [ 0 Iεm
Iηp −M11(λ)

] [
M12(λ)

−(λΛε−1(λ)⊗ Im)

]
=

M22(λ) + (λΛη−1(λ)T ⊗ Ip)M12(λ) +M21(λ)(λΛε−1(λ)⊗ Im) + (λΛη−1(λ)T ⊗ Ip)M11(λ)(λΛε−1(λ)⊗ Im) =

(Λη(λ)T ⊗ Ip)
[
M11(λ) M12(λ)
M21(λ) M22(λ)

]
(Λε(λ)⊗ Im) = P (λ).
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6.2. Reversal of block Kronecker linearizations as Rosenbrock’s system matrices

We can consider the following partition for rev1CK(λ) :

rev1CK(λ) =

 M̂11(λ) M̂12(λ) B̂η,p(λ)T

M̂21(λ) M̂22(λ) Âη,p(λ)T

B̂ε,m(λ) Âε,m(λ) 0

 :=

[
Dr(λ) −Cr(λ)
Br(λ) Ar(λ)

]
, (26)

as a linear polynomial system matrix with state matrix Ar(λ), where

rev1 Lε(λ)⊗ Im =


−λIm Im

−λIm Im
. . .

. . .

−λIm Im

 =:
[
B̂ε,m(λ) Âε,m(λ)

]
, (27)

and

rev1 Lη(λ)⊗ Ip =


−λIp Ip

−λIp Ip
. . .

. . .

−λIp Ip

 =:
[
B̂η,p(λ) Âη,p(λ)

]
. (28)

Then, we have the following result.

Theorem 6.3. Let CK(λ) be a block Kronecker pencil as in Definition 6.1. Then, the
following statements hold:

(a) The submatrix Ar(λ) of rev1CK(λ) as in (26) is unimodular.

(b) The Schur complement of Ar(λ) in rev1CK(λ) is revη+ε+1 P (λ).

(c) CK(λ) is a strong linearization of P (λ).

7. Extended block Kronecker linearizations

In this section we consider a more general version of the notion of block Kronecker
linearization.

Definition 7.1. Let λM1 + M0 be an arbitrary pencil and Y ∈ Fεm×εm and Z ∈ Fηp×ηp
be arbitrary constant matrices. Then any pencil of the form

CEK(λ) =

[
λM1 +M0 (Z(Lη(λ)⊗ Ip))T

Y (Lε(λ)⊗ Im) 0

]
,

is called an extended block Kronecker pencil. The one-block row and one-block column
cases are also included, i.e., the second block row or the second block column can be empty.
Note that if Z = Iηp and Y = Iεm then CEK(λ) is just a block Kronecker pencil.

We can also write CEK(λ) as a polynomial system matrix with unimodular state
matrix.
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7.1. Extended block Kronecker linearizations as Rosenbrock’s system matrices

Recall (22) and (23), and observe that

Y (Lε(λ)⊗ Im) =
[
Y Aε,m(λ) Y Bε,m(λ)

]
,

and Y Aε,m(λ) is unimodular if Y is invertible. Analogously,

Z(Lη(λ)⊗ Ip) =
[
ZAη,p(λ) ZBη,p(λ)

]
,

and ZAη,p(λ) is unimodular if Z is invertible. Then, CEK(λ) can be partitioned as:

CEK(λ) =

 M11(λ) M12(λ) Aη,p(λ)TZT

M21(λ) M22(λ) Bη,p(λ)TZT

Y Aε,m(λ) Y Bε,m(λ) 0

 ,
and we set

Ã(λ) :=

[
M11(λ) Aη,p(λ)TZT

Y Aε,m(λ) 0

]
, B̃(λ) :=

[
M12(λ)
Y Bε,m

]
, (29)

C̃(λ) := −
[
M21(λ) Bη,p(λ)TZT

]
, and D̃(λ) := M22(λ). (30)

Notice that Ã(λ) is unimodular if Y and Z are invertible, for any M11(λ). With the par-
tition above, we have that CEK(λ) is a linear polynomial system matrix with unimodular
state matrix Ã(λ), and the transfer function matrix is P (λ) in Theorem 7.2.

Theorem 7.2. Let CEK(λ) be an extended Block Kronecker pencil as in Definition 7.1.
Assume that Y and Z are invertible. Then, the following statements hold:

(a) The submatrix Ã(λ) of CEK(λ) as in (29) is unimodular.

(b) The Schur complement of Ã(λ) in CEK(λ) is the polynomial matrix

P (λ) := (Λη(λ)T ⊗ Ip)(λM1 +M0)(Λε(λ)⊗ Im) ∈ F[λ]p×m.

(c) CEK(λ) is a linearization of P (λ).

Proof. Statement (c) follows from (a) and (b), and we only remain to prove (b). For that,
we write the matrices in (29) as follows:

Ã(λ) :=

[
Iηp 0
0 Y

]
A(λ)

[
Iεm 0
0 ZT

]
, B̃(λ) :=

[
Iηp 0
0 Y

]
B(λ),

C̃(λ) := C(λ)

[
Iεm 0
0 ZT

]
, and D̃(λ) := D(λ),

where A(λ), B(λ), C(λ) and D(λ) are as in (24) and (25). Then, the transfer function
matrix of CEK(λ) is:

D̃(λ) + C̃(λ)Ã(λ)−1B̃(λ) =

D(λ) + C(λ)

[
Iεm 0
0 ZT

] [
Iεm 0
0 Z−T

]
A(λ)−1

[
Iηp 0
0 Y −1

] [
Iηp 0
0 Y

]
B(λ) =

D(λ) + C(λ)A(λ)−1B(λ) = P (λ),

as in the proof of Theorem 6.2.
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7.2. Reversal of extended block Kronecker linearizations as Rosenbrock’s system matrices

We can consider the following partition for rev1CEK(λ) :

rev1CEK(λ) =

 M̂11(λ) M̂12(λ) B̂η,p(λ)TZT

M̂21(λ) M̂22(λ) Âη,p(λ)TZT

Y B̂ε,m(λ) Y Âε,m(λ) 0

 :=

[
D̃r(λ) −C̃r(λ)

B̃r(λ) Ãr(λ)

]
, (31)

as a linear polynomial system matrix with state matrix Ãr(λ), where

Y (rev1 Lε(λ)⊗ Im) =
[
Y B̂ε,m(λ) Y Âε,m(λ)

]
,

and

Z(rev1 Lη(λ)⊗ Ip) =
[
ZB̂η,p(λ) ZÂη,p(λ)

]
,

by using the notation in (27) and (28), respectively. Then, we have the following result.

Theorem 7.3. Let CEK(λ) be an extended block Kronecker pencil as in Definition 7.1.
Assume that Y and Z are invertible. Then, the following statements hold:

(a) The submatrix Ãr(λ) of rev1CEK(λ) as in (31) is unimodular.

(b) The Schur complement of Ãr(λ) in rev1CEK(λ) is revη+ε+1 P (λ), where

P (λ) := (Λη(λ)T ⊗ Ip)(λM1 +M0)(Λε(λ)⊗ Im) ∈ F[λ]p×m.

(c) CEK(λ) is a strong linearization of P (λ).

Remark 7.4. Modulo permutations, extended block Kronecker linearizations include:
Fiedler pencils (FP), Fiedler pencils with repetitions (FPR), generalized Fiedler pencils
(GFP), generalized Fiedler pencils with repetitions (GFPR) [5] and all the pencils in the
canonical basis of DL(P ) since they are FPR [4].

8. A note on construction of linearizations for rational matrices from linear
system matrices of their polynomial parts

By the division algorithm for polynomials, any rational function r(λ) can be uniquely
written as r(λ) = p(λ) + rsp(λ), where p(λ) is a polynomial and rsp(λ) is a strictly proper
rational function. That is, limλ→∞ rsp(λ) = 0. Therefore, any rational matrix R(λ) can
be expressed uniquely as

R(λ) = P (λ) +Rsp(λ),

where P (λ) is a polynomial matrix and Rsp(λ) is a strictly proper rational matrix. That
is, the entries of Rsp(λ) are strictly proper rational functions. If we consider a linearization
of P (λ) that is a Rosenbrock’s system matrix

L(λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
,
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with A(λ) unimodular, and a minimal state-space realization

Rsp(λ) = Cs(λIs −As)−1Bs

of the strictly proper part Rsp(λ). Then, we obtain that

L(λ) =

 (λIs −As) 0 Bs
0 A(λ) B(λ)

−Cs −C(λ) D(λ)


is a linear minimal polynomial system matrix of R(λ) and, thus, L(λ) contains the in-
formation about finite poles and zeros of R(λ) by Theorem 1.2. Therefore, L(λ) is a
linearization of R(λ). More information about linearizations of rational matrices and how
to construct linear polynomial system matrices that also preserve the pole and zero in-
formation at infinity, i.e., the pole and zero information at 0 of R(1/λ) can be found, for
instance, in [2, 9, 10].
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polynomials, Linear Algebra Appl. 470 (2015) 120–184.

[15] B. McMillan, Introduction to formal realizability theory II, Bell System Tech. J. 31
(1952) 541–600.

[16] H. H. Rosenbrock, State-space and Multivariable Theory, Thomas Nelson and Sons,
London, 1970.

[17] R. Van Beeumen, K. Meerbergen, W. Michiels, Compact rational Krylov methods for
nonlinear eigenvalue problems, SIAM J Matrix Anal Appl. 36(2) (2015) 820–838.


