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STRUCTURED BACKWARD ERROR ANALYSIS OF

LINEARIZED STRUCTURED POLYNOMIAL

EIGENVALUE PROBLEMS

FROILÁN M. DOPICO, JAVIER PÉREZ, AND PAUL VAN DOOREN

Abstract. We start by introducing a new class of structured matrix polyno-
mials, namely, the class of MA-structured matrix polynomials, to provide a

common framework for many classes of structured matrix polynomials that are

important in applications: the classes of (skew-)symmetric, (anti-)palindromic,
and alternating matrix polynomials. Then, we introduce the families of MA-

structured strong block minimal bases pencils and of MA-structured block

Kronecker pencils, which are particular examples of block minimal bases pen-
cils recently introduced by Dopico, Lawrence, Pérez and Van Dooren, and show

that any MA-structured odd-degree matrix polynomial can be strongly lin-

earized via an MA-structured block Kronecker pencil. Finally, for the classes
of (skew-)symmetric, (anti-)palindromic, and alternating odd-degree matrix

polynomials, the MA-structured framework allows us to perform a global

and structured backward stability analysis of complete structured polynomial
eigenproblems, regular or singular, solved by applying to a MA-structured

block Kronecker pencil a structurally backward stable algorithm that computes
its complete eigenstructure, like the palindromic-QR algorithm or the struc-

tured versions of the staircase algorithm. This analysis allows us to identify

those MA-structured block Kronecker pencils that yield a computed complete
eigenstructure which is the exact one of a slightly perturbed structured ma-

trix polynomial. These pencils include (modulo permutations) the well-known

block-tridiagonal and block-antitridiagonal structure-preserving linearizations.
Our analysis incorporates structure to the recent (unstructured) backward er-

ror analysis performed for block Kronecker linearizations by Dopico, Lawrence,

Pérez and Van Dooren, and share with it its key features, namely, it is a rig-
orous analysis valid for finite perturbations, i.e., it is not a first order analysis,

it provides precise bounds, and it is valid simultaneously for a large class of

structure-preserving strong linearizations.

1. Introduction

Matrix polynomials with special algebraic structures occur in numerous applica-
tions in engineering, mechanics, control, linear systems theory, and computer-aided
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graphic design. Some of the most common of these algebraic structures that ap-
pear in applications are the (skew-)symmetric [36, 54], (anti-)palindromic [50, 53],
and alternating structures [50, 52]. Palindromic matrix polynomials appear, to
name a few applications, in the study of resonance phenomena of rail tracks under
high frequency excitation forces [38, 56, 75], in the numerical simulation of the
behavior of periodic surface acoustic wave filters [39, 76], in passivity tests of a
linear dynamical system [12], and in discrete-time linear-quadratic optimal control
problems [19]. Symmetric (or Hermitian) matrix polynomials arise in the classical
problem of vibration analysis [34, 35, 45, 71], and alternating matrix polynomials
find applications, for instance, in the study of corner singularities in anisotropic
elastic materials [6, 7, 58], in the study of gyroscopic systems [30, 45, 46], and in
continuous-time linear-quadratic optimal control problems [19]. Further details of
different applications of (structured and unstructured) matrix polynomials can be
found in the classical references [35, 43, 66], the modern surveys [8, Chapter 12]
and [59, 71], and the references therein, and in the reference [50].

Structured matrix polynomials present rich symmetries in their spectra, which
are discussed in detail, for example, in [24, 52, 53, 54]. These spectral symmetries
reflect specific physical properties, as they originate usually from the physical sym-
metries underlying problems arising from applications. Hence, the importance of
their preservation in computed solutions. However, general unstructured polyno-
mial eigensolvers may destroy these spectral symmetries due to rounding errors. As
a consequence, the development and investigation of polynomial eigensolvers that
are able to exploit and preserve the structure that the matrix polynomials might
possess, have been the focus of an intense research during the last decade (see, for
example [8, Chapters 1, 2, 3, and 12], and the references therein).

Square regular matrix polynomials are usually related to polynomial eigenvalue
problems (PEPs), while singular matrix polynomials are related to complete poly-
nomial eigenvalue problems (CPEs), since in the singular case the so called minimal
indices have to be considered in addition to the eigenvalues. When the spectral sym-
metries of structured matrix polynomials are taken into account (i.e., they have to
be preserved in the computed solution), those problems receive the names of struc-
tured polynomial eigenvalue problems (SPEPs) and structured complete polynomial
eigenvalue problems (SCPEs), respectively. The standard approach to solve a PEP
or a CPE (or a SPEP or a SCPE) associated with a matrix polynomial P (λ) is to
linearize P (λ) into a matrix pencil (i.e., a matrix polynomial of degree 1). Lineariza-
tion transforms the original polynomial eigenvalue problem into an equivalent gener-
alized eigenvalue problem, which can be solved by using mature and well-understood
generalized eigensolvers such as the QZ algorithm and the staircase algorithm
[61, 72, 73], or their structured counterparts [20, 44, 51, 67, 69]. For this reason,
one of the preferred approaches to develop structured numerical methods for solving
SPEPs and SCPEs associated with structured matrix polynomials starts by devising
structure-preserving linearizations [5, 13, 14, 16, 17, 18, 23, 31, 36, 37, 47, 50, 64, 65].

The theory of linearizing structured matrix polynomials in a structure preserv-
ing way is already well-understood [24, 52, 53, 54]. It is well-known that any odd-
degree structured matrix polynomial in the classes listed in the first paragraph of
this section can be linearized in a structure-preserving way, regardless of whether
the matrix polynomial is regular or singular. However, some even-degree struc-
tured matrix polynomials in these classes do not have any linearization with the
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same structure due to some spectral subtle obstructions [24, Section 7.2]. This phe-
nomenon suggests that for even-degree structured matrix polynomials linearizations
should sometimes be replaced by other low degree matrix polynomials in numerical
computations [42]. Due to this even-degree/odd-degree dichotomy for the existence
of classes of structure-preserving linearizations, we only consider in this work nu-
merical methods based on structure-preserving linearizations for solving SPEPs or
SCPEs associated with odd-degree matrix polynomials.

One interesting recent advance in the theory of linearizations of matrix poly-
nomials has been the introduction of the family of (strong) block minimal bases
pencils [28], since many of the linearizations that have appeared previously in the
literature are included in this family of pencils [15] and, in addition, allow a sim-
ple, concise, and unified theory [28]. A particular but very important subfamily
of strong block minimal bases pencils is the family of block Kronecker pencils [28].
Block Kronecker pencils include (modulo permutations) all Fiedler linearizations
[22, 28], but infinitely many more linearizations are also included in this family.
All the linearizations belonging to the family of block Kronecker pencils have the
following properties that are very desirable in numerical applications:

(i) they are strong linearizations, regardless whether the matrix polynomial is
regular or singular;

(ii) they are easily constructible from the coefficients of the matrix polynomials;
(iii) eigenvector of regular matrix polynomials are easily recovered from those

of the linearizations;
(iv) minimal bases of singular matrix polynomials are easily recovered from

those of the linearizations;
(v) there exists a simple shift relation between the minimal indices of singular

matrix polynomials and the minimal indices of the linearizations, and such
relation is robust under perturbations;

(vi) they guarantee global backward stability of polynomial eigenvalue problems
solved via block Kronecker linearizations.

Additionally, block Kronecker pencils have been generalized to allow one to con-
struct strong linearizations for matrix polynomials that are expressed in some non-
monomial polynomial bases [47, 65].

Another key advantage of the family of strong block minimal bases pencils is
that one can find easily in it structure-preserving strong linearizations for odd-
degree structured matrix polynomials in relevant structured classes [65, Section
5]. This observation has led to the introduction of the family of structured block
Kronecker pencils [31]. Linearizations based on structured block Kronecker pencils
share with block Kronecker linearizations properties (i)–(vi), listed above, together
with the property that they preserve a number of important structures that an
odd-degree matrix polynomial might possess.

Once a structured matrix polynomial P (λ) is linearized via a structure-preserving
strong linearization L(λ), a structured method (i.e., a method preserving the spec-
tral symmetries of the spectrum of the polynomial) can be applied to the pencil
L(λ) to solve the SPEP or SCPE associated with P (λ). There are many available
structure-preserving methods for computing the eigenstructure of certain struc-
tured matrix pencils. For example, for regular palindromic or anti-palindromic
matrix pencils we have a URV-like method [68], a Jacobi-like method [38], the
palindromic-QR algorithm [44, 69], doubling methods [48], or the QZ algorithm
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with the Laub trick [51]. For singular palindromic or anti-palindromic matrix pen-
cils there is a structured version of the GUPTRI algorithm (a structured staircase
form), that deflates the singular part of palindromic pencils [67]. All these meth-
ods can also be applied to alternating matrix pencils as well, since any alternating
pencil can be transformed into a palindromic or anti-palindromic pencil via a Cay-
ley transformation [50]. Methods for other structures can be found in [57, 60], for
example.

Some of the structured methods for structured pencils mentioned in the para-
graph above are structurally global backward stable1 [44, 67], and others behave in
practice in a structurally global backward stable way. This means that if the com-
plete eigenstructure of a structured matrix polynomial is computed as the complete
eigenstructure of a structure-preserving linearization of the matrix polynomial, then
the computed complete eigenstructure is the exact one of a nearby matrix pencil
with the same structure as the given matrix polynomial. However, it has been
an open problem to determine whether or not these methods compute the exact
complete eigenstructure of a structured nearby matrix polynomial. We only know
one reference where this problem is addressed in the case of skew-symmetric matrix
polynomials [29]. Nonetheless, the analysis in [29] is only valid for infinitesimal per-
turbations and it does not provide precise bounds. Only precise “local” structured
backward error analyses valid for each particular computed eigenvalue or eigen-
pair have been developed so far. See, for example, [3, 9, 10, 11], or [1, 2] for the
case of the structured linearizations in the vector spaces L1(P ), L2(P ) and DL(P ),
introduced in [49, 50] and [36].

The main goal of this work is to perform for the first time a rigorous struc-
tured global backward error analysis of SPEPs or SCPEs associated with odd-
degree structured matrix polynomials of certain important classes solved by ap-
plying a structured algorithm to a structured block Kronecker linearization. The
backward error analysis that we present here takes its inspiration from the (un-
structured) global backward error analysis of PEPs and CPEs solved via block
Kronecker linearizations carry out in [28, Section 5]. As a consequence, our error
analysis shares with the analysis in [28, Section 5] its novel properties with re-
spect to previous global backward error analyses: (1) it is valid for perturbations
with finite norms, (2) it delivers precise bounds, and (3) it is valid simultaneously
for a very large class of structure-preserving linearizations. As a corollary of our
results, we solve the open problem of proving that the famous block-tridiagonal
and block-antitridiagonal structure preserving strong linearizations presented in
[5, 23, 52, 53, 54] yield computed complete eigenstructures of structured matrix
polynomials that enjoy perfect structured backward stability from the polynomial
point of view.

The rest of the paper is organized as follows. In Section 2, we review some
basic concepts and results, and summarize the notation used through the paper.
In Section 3, we recall Möbius transformations of matrix polynomials and their
relation with structured matrix polynomials. The concept of MA-structured matrix
polynomial is also introduced in this section with the aim of providing a common
framework for the classes of (skew-)symmetric, (anti-)palindromic and alternating
matrix polynomials of odd degree. In Section 4, we recall the family of (strong)

1Structurally global backward stable algorithms are called strongly backward stable algorithms
in [44, 67].
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block minimal bases pencils, and state some of its most important properties. We
also introduce the new family of MA-structured strong block minimal bases pencils,
which is a subfamily of strong block minimal bases pencils. This family is used
to show that any odd-degree MA-structured matrix polynomial can be strongly
linearized in a structure-preserving way. In Section 5, we introduce the family
of MA-structured block Kronecker pencils, review the family of structured block
Kronecker pencils, and recall how structure-preserving strong linearizations for odd-
degree (skew-)symmetric, (anti-)palindromic or alternating matrix polynomials can
be easily constructed from structured block Kronecker pencils. Finally, in Section
6, we perform a rigorous structured and global backward error analysis of SPEPs
or SCPEs solved by means of structured block Kronecker pencils. Our conclusions
are presented in Section 7.

2. Basic concepts, auxiliary results and notation

Throughout the paper we use the following notation. By F we denote either
the field of complex numbers C or the field of real numbers R. We also consider
the involution a → a, that is, the identity map when F = R, or, when F = C,
the bijection that maps any complex number to its complex conjugate. By F(λ)
and F[λ] we denote, respectively, the field of rational functions and the ring of
polynomials with coefficients in F. The set of m × n matrices with entries in F[λ]
is denoted by F[λ]m×n. Usually, we refer to this set as the set of m × n matrix
polynomials, and any P (λ) ∈ F[λ]m×n is called an m× n matrix polynomial. Row
and column vector polynomials refer to matrix polynomials with m = 1 or n = 1,
respectively. The set of m×n matrices with entries in F(λ) is denoted by F(λ)m×n.
The algebraic closure of the field F is denoted by F.

A matrix polynomial P (λ) ∈ F[λ]m×n is said to have grade g if it is written as

(2.1) P (λ) = Pgλ
g + Pg−1λ

g−1 + · · ·+ P1λ+ P0, with Pg, . . . , P0 ∈ Fm×n,

where any of the coefficient matrices Pi, including the leading coefficient Pg, may be
the zero matrix. The degree of the matrix polynomial (2.1) is denoted by deg(P (λ)),
and it refers to the maximum integer d such that Pd is a nonzero matrix. Notice
that a polynomial of degree d can be considered as a polynomial of grade g ≥ d. In
this work, when the grade of a polynomial is not explicitly stated, we consider its
grade as the degree of the polynomial.

For any g ≥ deg(P (λ)), the g-reversal matrix polynomial of P (λ) is the matrix
polynomial

revgP (λ) := λgP (λ−1).

Notice that the g-reversal operation maps matrix polynomials of grade g to matrix
polynomials with the same grade. However, the degree of revgP (λ) may be different
than the degree of P (λ).

The normal rank of a matrix polynomial P (λ) ∈ F[λ]m×n is defined as the rank
of P (λ) over the field F(λ), and it is denoted by rank(P ). In other words, the normal
rank of P (λ) is the size of the largest non-identical zero minor of P (λ) (see [33],
for example). By rank(P (λ0)) we refer to the rank of the constant matrix P (λ0)
obtained by evaluating the matrix polynomial P (λ) at λ0. We say that P (λ0) has
full row (resp. column) rank if rank(P (λ0)) = m (resp. rank(P (λ0)) = n).

In this paper we use the following operations on a constant matrix A ∈ Fm×n:
AT denotes the transpose of A and is used both when F = R or F = C, A∗ denotes
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the conjugate transpose of A and is used only when F = C, A? denotes either the
transpose when F = R or the conjugate transpose when F = C and is used in order
to state concisely many results, and, finally, A is a matrix whose entries are the
conjugate of the entries of A. Thus, A = A when F = R. Based on these operations
on constant matrices, we introduce the following definitions for matrix polynomials.

Definition 2.1. Given a matrix polynomial P (λ) as in (2.1), we define P (λ)T :=
PTg λ

g + · · ·+ PT1 λ+ PT0 , P (λ)∗ := P ∗g λ
g + · · ·+ P ∗1 λ+ P ∗0 , P (λ)? := P ?g λ

g + · · ·+
P ?1 λ+P ?0 , and P (λ) = P gλ

g + · · ·+P 1λ+P0. Moreover, when the dependence on

λ is omitted, we use P , PT , P ∗, P ?, and P to denote P (λ), P (λ)T , P (λ)∗, P (λ)?,
and P (λ), respectively.

We focus in this work mainly on square matrix polynomials (that is, m = n)
with one of the following algebraic structures:

(i) ?-symmetric: P (λ)? = P (λ),
(ii) ?-skew-symmetric: P (λ)? = −P (λ),
(iii) ?-palindromic: P (λ)? = revgP (λ),
(iv) ?-anti-palindromic: P (λ)? = −revgP (λ),
(v) ?-even: P (λ)? = P (−λ),
(vi) ?-odd : P (λ)? = −P (−λ),

where g denotes the grade of P (λ). A matrix polynomial is said to be ?-alternating
if it is either ?-even or ?-odd. When F = C, a ?-(skew-)symmetric matrix poly-
nomial is usually called a (skew-)Hermitian matrix polynomial [4]. However, we
do not employ that terminology in this paper. Also, most of the times we drop
the “?-” in the notation, and just say (skew-)symmetric, (anti-)palindromic or al-
ternating matrix polynomials. Additionally, we denote by S (P ) ∈ {symmetric,
skew-symmetric, palindromic, anti-palindromic, even, odd} the structure that the
structured matrix polynomial P (λ) possesses.

An important distinction in the theory of matrix polynomials is between regular
and singular matrix polynomials. A matrix polynomial P (λ) is said to be regular if
it is square and the scalar polynomial detP (λ) is not identically equal to the zero
polynomial. Otherwise, the matrix polynomial P (λ) is said to be singular. The
complete eigenstructure of a regular matrix polynomial consists of its elementary
divisors (spectral structure), both finite and infinite, while for a singular matrix
polynomial it consists of its elementary divisors together with its right and left
minimal indices (spectral structure+singular structure). The singular structure of
matrix polynomials will be briefly reviewed later in the paper. For more detailed
definitions of the spectral structure of matrix polynomials, we refer the reader to
[24, Section 2].

An important feature of structured matrix polynomials are the special symme-
try properties of their spectral [36, 50, 52, 53, 54] and singular structures [21]. As
we mentioned in the introduction, the problem of computing the complete eigen-
structure of a structured matrix polynomial using an algorithm that preserves its
spectral and singular structure symmetries in the computed solution is called in
this work the structured polynomial eigenvalue problem (SPEP), for regular matrix
polynomials, or the structured complete polynomial eigenvalue problem (SCPE), for
singular matrix polynomials.
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Minimal bases and minimal indices play a relevant role in this work, so they are
reviewed in the following. When a matrix polynomial P (λ) ∈ F[λ]m×n is singular,
it has nontrivial left and/or right rational null spaces

N`(P ) := {y(λ)T ∈ F(λ)1×m such that y(λ)TP (λ) = 0},
Nr(P ) := {x(λ) ∈ F(λ)n×1 such that P (λ)x(λ) = 0}.

(2.2)

These two spaces are particular instances of a rational subspace [32]. Any rational
subspace V has always bases consisting entirely of vector polynomials. The order
of a vector polynomial basis of V is defined as the sum of the degrees of its vectors
[32, Definition 2]. The minimal bases of V are those polynomial bases of V with
least order [32, Definition 3]. Although minimal bases are not unique, the ordered
list of degrees of the vector polynomials in any minimal basis of V is always the
same [32, Remark 4, p. 497]. This list of degrees is called the list of minimal indices
of V. Then, the left (resp. right) minimal indices and bases of a matrix polynomial
P (λ) are defined as those of the rational subspace N`(P ) (resp. Nr(P )).

To work in practice with minimal bases the following definition will be useful,
where by the ith row degree of a matrix polynomial Q(λ) we denote the degree of
the ith row of Q(λ).

Definition 2.2. [25, Definition 2.3] Let Q(λ) ∈ F[λ]m×n be a matrix polynomial
with row degrees d1, d2, . . . , dm. The highest row degree coefficient matrix of Q(λ),
denoted by Qh, is the m×n constant matrix whose jth row is the coefficient of λdj

in the jth row of Q(λ), for j = 1, 2, . . . ,m. The matrix polynomial Q(λ) is called
row reduced if Qh has full row rank.

Theorem 2.3 is a useful characterization of minimal bases. This theorem can be
found in, for example, [32, Main Theorem-Part 2, p. 495]. However, for conve-
nience, we present here the version in less abstract terms in [26, Theorem 2.14].

Theorem 2.3. The rows of a matrix polynomial Q(λ) ∈ F[λ]m×n are a minimal

basis of the rational subspace they span if and only if Q(λ0) ∈ Fm×n has full row
rank for all λ0 ∈ F and Q(λ) is row reduced.

Remark 2.4. Since all of the minimal bases that appear in this work are arranged
as the rows of a matrix, with a slight abuse of notation, we say that an m × n
matrix polynomial (with m < n) is a minimal basis if its rows form a minimal basis
of the rational subspace they span.

Another fundamental concept in this paper is the concept of dual minimal bases,
which is introduced in Definition 2.5.

Definition 2.5. (see [43] or [25, Definition 2.10]) Two matrix polynomials K(λ) ∈
F[λ]m1×n and N(λ) ∈ F[λ]m2×n are called dual minimal bases if K(λ) and N(λ)
are both minimal bases and they satisfy m1 +m2 = n and K(λ)N(λ)T = 0.

Remark 2.6. Following the convention in [28], we will sometimes say “N(λ) is a
minimal basis dual to K(λ)”, or vice versa, to refer to matrix polynomials K(λ)
and N(λ) as those in Definition 2.5.

We illustrate in Example 2.7 the concept of dual minimal bases with a simple
example that plays a key role in this paper (this example can be also found in [28,
Example 2.6]). Here and throughout the paper we occasionally omit some, or all,
of the zero entries of a matrix.
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Example 2.7. Consider the following matrix polynomials:

(2.3) Lk(λ) :=


−1 λ

−1 λ
. . .

. . .

−1 λ

 ∈ F[λ]k×(k+1),

and

(2.4) Λk(λ)T :=
[
λk · · · λ 1

]
∈ F[λ]1×(k+1).

Using Theorem 2.3, it is easily checked that Lk(λ) and Λk(λ)T are both minimal
bases. Additionally, Lk(λ)Λk(λ) = 0 holds. Therefore, Lk(λ) and Λk(λ)T are dual
minimal bases. Also, from [28, Corollary 2.4] and basic properties of the Kronecker
product ⊗, we get that Lk(λ)⊗ In and Λk(λ)T ⊗ In are also dual minimal bases.

Notice the following property of the matrix polynomials Lk(λ)⊗In and Λk(λ)T⊗
In in Example 2.7. Both are minimal bases whose row degrees are all equal (equal
to 1 in the case of Lk(λ) ⊗ In, and equal to k in the case of Λk(λ)T ⊗ In). Those
are the minimal bases that we are interested in this work, and, sometimes, we will
refer to them as constant-row-degrees minimal bases.

In Lemma 2.8 we present a simple characterization of constant-row-degrees min-
imal bases. This result is an immediate corollary of Theorem 2.3, together with
the obvious fact that if the leading coefficient of a matrix polynomial has full row
rank, then its leading and highest row degree coefficients coincide, so its proof is
omitted.

Lemma 2.8. The matrix polynomial K(λ) =
∑`
i=0Kiλ

i of degree ` is a constant-

row-degrees minimal basis if and only if K(λ0) has full row rank for all λ0 ∈ F and
its leading coefficient K` has full row rank.

We now recall the definitions of unimodular matrix polynomials and (strong)
linearizations of matrix polynomials. A unimodular matrix polynomial U(λ) is a
matrix polynomial whose determinant detU(λ) is a nonzero constant. A matrix
pencil L(λ) is said to be a linearization of a matrix polynomial P (λ) of grade g if
for some s ≥ 0 there exist unimodular matrices U(λ) and V (λ) such that

U(λ)L(λ)V (λ) =

[
Is 0
0 P (λ)

]
.

In addition, a linearization L(λ) is called a strong linearization of P (λ) if rev1L(λ)
is a linearization of revgP (λ). We recall that the key property of any strong lin-
earization L(λ) of the matrix polynomial P (λ) is that P (λ) and L(λ) share the
same finite and infinite elementary divisors and the same number of left and right
minimal indices. However the minimal indices of L(λ) may take any value [24,
Theorem 4.11]. For this reason, in the case of singular matrix polynomials, the
identification of those strong linearizations with the additional property that their
minimal indices allow one to recover the minimal indices of the polynomial via some
simple rules has been the focus of an intense research [21, 22, 23, 24, 28].

Given two matrix polynomials P (λ) and Q(λ) with the same size, we say that
P (λ) and Q(λ) are strictly equivalent if Q(λ) = UP (λ)V , for some nonsingular
constant matrices U and V , and we say that P (λ) and Q(λ) are ?-congruent if
Q(λ) = XP (λ)X?, for some nonsingular constant matrix X. Clearly, ?-congruence
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is a particular case of strict equivalence. We recall that strict equivalence preserves
both the spectral and singular structures of matrix polynomials [24, Definition 3.1].

Another simple concept that plays an important role in this work is the concept
of coninvolutory matrix [41], which is introduced in Definition 2.9

Definition 2.9. A matrix A ∈ Fn×n is said to be coninvolutory if A ·A = In.

Coninvolutory matrices when F = R are just known as involutory matrices, and
any real n× n involutory matrix A satisfies A ·A = In. In this work, we will make
use of 2× 2 coninvolutory matrices. When F = R, there is a nice characterization
of 2× 2 involutory matrices. This is shown in Example 2.10.

Example 2.10. Any 2× 2 real involutory matrix is of the form[
±1 0
0 ±1

]
or

[
±
√

1− bc b

c ∓
√

1− bc

]
,

where b, c ∈ R satisfy bc ≤ 1.

The backward error analysis in Section 6 requires the use of norms of matrix
polynomials and their submultiplicative-like properties. Following [28], we choose
the simple norm in Definition 2.11.

Definition 2.11. Let P (λ) =
∑g
i=0 Piλ

i ∈ F[λ]m×n. Then the Frobenius norm of
P (λ) is

‖P (λ)‖F :=

√√√√ g∑
i=0

‖Pi‖2F .

Notice that the value of the norm ‖P (λ)‖F does not depend on the grade chosen
for P (λ). This property allows one to work with ‖P (λ)‖F without specifying the
grade of the matrix polynomial P (λ).

As it is pointed out in [28], the norm ‖ · ‖F is not submultiplicative, that is,
‖P (λ)Q(λ)‖F ≤ ‖P (λ)‖F ‖Q(λ)‖F does not hold in general. However, Lemma
2.12 shows that the norm ‖ · ‖F satisfies some submultiplicative-like properties.

Lemma 2.12. [28, Lemma 2.16] Let P (λ) =
∑g
i=0 Piλ

i, let Q(λ) =
∑t
i=0Qiλ

i, and
let Λk(λ)T be the vector polynomial defined in (2.4). Then the following inequalities
hold:

(a) ‖P (λ)Q(λ)‖F ≤
√
g + 1 ·

√√√√ g∑
i=0

‖Pi‖22 · ‖Q(λ)‖F ,

(b) ‖P (λ)Q(λ)‖F ≤
√
t+ 1 · ‖P (λ)‖F ·

√√√√ t∑
i=0

‖Qi‖22 ,

(c) ‖P (λ)Q(λ)‖F ≤ min{
√
g + 1,

√
t+ 1} ‖P (λ)‖F ‖Q(λ)‖F ,

(d) ‖P (λ) (Λk(λ)⊗ Ip)‖F ≤ min{
√
g + 1,

√
k + 1} ‖P (λ)‖F ,

(e) ‖(Λk(λ)T ⊗ In)Q(λ)‖F ≤ min{
√
t+ 1,

√
k + 1} ‖Q(λ)‖F ,

where we assume that all the products are defined.

Finally, since in Section 6 we need to consider pairs of matrices (C,D) where C
and D may have different sizes, and, thus, (C,D) cannot be considered as a matrix
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pencil, we introduce the corresponding Frobenius norm as:

(2.5) ‖(C,D)‖F :=
√
‖C‖2F + ‖D‖2F .

3. Möbius transformations and structured odd-grade matrix
polynomials

The goal of this section is to introduce a unified framework for the most im-
portant classes of structured matrix polynomials of odd grade considered in the
literature, namely, (skew-)symmetric, (anti-)palindromic and alternating odd-grade
matrix polynomials. This requires to introduce the concepts of Möbius tranforma-
tion and MA-structured matrix polynomial.

3.1. Möbius transformations of matrix polynomials. Möbius transforma-
tions of matrix polynomials were formally introduced in [55] as a broader the-
ory for different transformations that had appeared previously in the literature
[4, 37, 49, 50, 52, 53], and since then, they play an increasingly important role as a
useful tool in the theory of matrix polynomials.

Definition 3.1. [55, Definition 3.4] Let A ∈ GL(2,F). The Möbius transformation
of B(λ) :=

∑g
i=0Biλ

i induced by A is defined by

MA[B](λ) :=

g∑
i=0

Bi(aλ+ b)i(cλ+ d)g−i, where A =

[
a b
c d

]
.

We recall that Möbius transformations are special cases of rational transforma-
tions of matrix polynomials [63]. Indeed, a Möbius transformation can be calculated
via the rational expression

(3.1) MA [B] (λ) = (cλ+ d)gB

(
aλ+ b

cλ+ d

)
, where A =

[
a b
c d

]
.

In Example 3.2, we illustrate the effect of Möbius transformation on matrix
pencils.

Example 3.2. Let L(λ) = λF + E and let A =
[
a b
c d

]
∈ GL(2,F). Then,

MA[L](λ) = λ(aF + cE) + bF + dE.

The g-reversal of a matrix polynomial operation is a well-known example of a
Möbius transformation of matrix polynomials. We show in Example 3.3 how to
formulate this operation as a Möbius transformation.

Example 3.3. Let P (λ) =
∑g
i=0 Piλ

i, and let R2 := [ 0 1
1 0 ] . Then, revgP (λ) =

MR2
[P ](λ).

Many important properties of Möbius transformations of matrix polynomials fol-
low easily from Definition 3.1 or its rational transformation formulation in (3.1). In
Proposition 3.4, we state without proofs those that will be relevant in this work. For
a thorough study of the properties of Möbius transformations of matrix polynomials
we refer the reader to [55].

Proposition 3.4. For any A,B ∈ GL(2,F) the following statements hold.

(a) MA[P +Q](λ) = MA[P ](λ)+MA[Q](λ), for any m×n matrix polynomials
P (λ) and Q(λ) both of grade g.
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(b) Let P (λ) and Q(λ) be two matrix polynomials of grades g1 and g2, respec-
tively. If P (λ)Q(λ) is defined, then MA[PQ](λ) = MA[P ](λ)MA[Q](λ),
where P (λ)Q(λ) is considered as a matrix polynomial of grade g1 + g2.

(c) If Q(λ) = P (λ)⊗ In, then MA[Q](λ) = MA[P ](λ)⊗ In.
(d) MA[PT ](λ) = MA[P ](λ)T .

(e) If F = C, then MA[P ](λ) = MA[P ](λ) and MA[P ](λ)∗ = MA[P ∗](λ).
(f) Möbius transformations act block-wise, i.e., [MA[P ](λ)]µκ = MA[Pµκ](λ),

for any row and column index sets µ and κ, and where [P (λ)]µκ has to be
considered as a matrix polynomial with a grade equal to the grade of P (λ).

(g) MB [MA[P ]] (λ) = MAB [P ](λ).

Möbius transformations play well with the constant-row-degrees dual minimal
bases that will be involved in the construction of the strong block minimal bases
pencils in Section 4 (see Definition 4.1). More precisely, we have Theorem 3.5.
Some of the results in Theorem 3.5 can be obtained from [55, part (f) of Theo-
rem 7.4], where the effect of Möbius transformations on minimal bases is studied.
Nonetheless, for the sake of completeness, we provide a proof of Theorem 3.5 here.

Theorem 3.5. Let A ∈ GL(2,F). Then, the following statements hold.

(a) If K(λ) =
∑`
i=0Kiλ

i is a minimal basis with all its row degrees equal to `,
then MA[K](λ) is also a minimal basis with all its row degrees equal to `.

(b) If K(λ) and N(λ) are a pair of dual minimal bases with all the row degrees
of K(λ) equal to ` and all the row degrees of N(λ) equal to t, then MA[K](λ)
and MA[N ](λ) are also a pair of dual minimal bases with all the row degrees
of MA[K](λ) equal to ` and all the row degrees of MA[N ](λ) equal to t.

Proof. Proof of part (a). In the proof we use the notation K̂(λ) =
∑`
i=0 K̂iλ

i :=

MA[K](λ), and denote the entries of A as A =
[
a b
c d

]
. We first show that K̂(λ0)

has full row rank for all λ0 ∈ F. The proof proceeds by contradiction. Assume

that K̂(λ0) is rank deficient for some λ0, that is, there exists a vector x 6= 0 such

that x?K̂(λ0) = x?
∑`
i=0Ki(aλ0 + b)i(cλ0 + d)`−i = 0. We have to distinguish two

cases. First, assume that cλ0 + d 6= 0. In this situation we get x?K̂(λ0) = (cλ0 +
d)`x?K ((aλ0 + b)/(cλ0 + d)) = 0 which implies x?K ((aλ0 + b)/(cλ0 + d)) = 0,
contradicting thatK(µ0) has full row rank for all µ0. Assume, now, that cλ0+d = 0.

Notice that the nonsingularity of A implies aλ0 + b 6= 0. Then, we get x?K̂(λ0) =
(aλ0 + b)`x?K`, which implies x?K` = 0, contradicting that K` has full row rank.

Therefore, K̂(λ0) has full row rank for all λ0.

Next, we show that K̂` has full row rank. Notice that the leading coefficient of

K̂(λ) can be computed as K̂` = rev` [MA[K]] (0) = MAR2 [K](0) =
∑`
i=0Kia

ic`−i,
where R2 = [ 0 1

1 0 ] (recall Example 3.3). The proof proceeds by contradiction. As-

sume that K̂` has not full row rank, that is, there exists a vector x 6= 0 such that

x?K̂` = x?
∑`
i=0Kia

ic`−i = 0. Again, we have to distinguish two cases. First,

assume that c 6= 0. Then, we get x?K̂` = c`x?K(a/c), which implies x?K(a/c) = 0,
contradicting that K(µ0) has full row rank for all µ0. Assume now that c = 0.
Notice that the nonsingularity of A implies, in this situation, a 6= 0. In this case,

we get x?K̂` = a`x?K` = 0 which implies x?K` = 0, contradicting that K` has full

row rank. Therefore, K̂` has full row rank.
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Since MA[K](λ0) has full row rank for any λ0 ∈ F, and its leading matrix coef-
ficient has full row rank, by Lemma 2.8, we conclude that MA[K](λ) is a minimal
basis with all its row degrees equal to `.

Proof of part (b). From part (a) we get that MA[K](λ) and MA[N ](λ) are
minimal bases with all the row degrees of MA[K](λ) equal to ` and all the row
degrees of MA[N ](λ) equal to t. Then, from K(λ)N(λ)T = 0 together with prop-
erties (b) and (d) in Proposition 3.4, we get MA[K](λ)MA[N ](λ)T = 0. Therefore,
MA[K](λ) and MA[N ](λ) are constant-row-degrees dual minimal bases. �

3.2. MA-structured matrix polynomials. Möbius transformations of matrix
polynomials can be used to introduce a new class of structured matrix polynomials
that generalizes most of the classes that have been considered in the literature for
odd-grade matrix polynomials. This is done in the following definition, where we
introduce the concept of MA-structured matrix polynomial.

Definition 3.6. Let P (λ) =
∑g
i=0 Piλ

i ∈ F[λ]n×n and let A ∈ GL(2,F). Then,
the matrix polynomial P (λ) is said to be MA-structured if MA [P ] (λ) = P (λ)?.

We illustrate in Example 3.7 the concept of MA-structured matrix polynomials
in the simplest case, that is, for matrix pencils.

Example 3.7. Let L(λ) = λF + E, and let A =
[
a b
c d

]
∈ GL(2,F). If

F ? = aF + cE and E? = bF + dE,

then L(λ) is an MA-structured matrix pencil, and vice versa.

Remark 3.8. The classes of (skew-)symmetric, (anti-)palindromic, and alternating
structured odd-grade matrix polynomials are particular examples of MA-structured
matrix polynomials. In Table 1 we summarize the values of the entries of the matrix
A for these structures.

Table 1. The classical structured matrix polynomials of odd
degree as MA-structured matrix polynomials: entries of the
matrix A = [a b; c d] for the classes of (skew-)symmetric,
(anti-)palindromic, and alternating matrix polynomials.

Structure a b c d

Symmetric 1 0 0 1

Skew-symmetric -1 0 0 -1

Palindromic 0 1 1 0

Anti-palindromic 0 -1 -1 0

Alternating (even) -1 0 0 1

Alternating (odd) 1 0 0 -1

A key feature of the MA-structure introduced in Definition 3.6 is that it is
preserved under ?-congruence, as it is stated in the following proposition. The
proof of this result is straightforward, so it is omitted.

Proposition 3.9. Let P (λ) ∈ F[λ]n×n, let A ∈ GL(2,F), and let X ∈ Fn×n be a
constant nonsingular matrix. Then, the matrix polynomial P (λ) is MA-structured
if and only if the matrix polynomial X?P (λ)X is MA-structured.
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We establish in Theorem 3.10 relationships between right and left minimal indices
and bases of singular MA-structured matrix polynomials. In particular, we show
that the sets of right and left minimal indices of a singular MA-structured matrix
polynomial are equal. This theorem is a generalization of [21, Theorems 3.4, 3.5 and
3.6] for MA-structured matrix polynomials. In the proof of Theorem 3.10, we will
use the following notation. For any set of polynomial vectors B = {x1(λ), . . . , xp(λ)}
and any A ∈ GL(2,F), we denote by MA[B] the set {MA[x1](λ), . . . ,MA[xp](λ)},
where each Möbius transformation MA[xi](λ) is taken with respect to the degree
of xi(λ), and by B the set {x1(λ), . . . , xp(λ)}.

Theorem 3.10. Let A ∈ GL(2,F) and let P (λ) ∈ F[λ]n×n be a singular MA-
structured matrix polynomial. Then, the sets of right and left minimal indices of
P (λ) are equal. Furthermore, if {x1(λ), . . . , xp(λ)} is a minimal basis for Nr(P ),
then {MA[x1](λ), . . . ,MA[xp](λ)} is a minimal basis for N`(P ) (modulo transposi-
tion).

Proof. Recall that left minimal indices and bases of P (λ) can be computed as right
minimal indices and bases of P (λ)T . Then, notice that the MA structure of P (λ)
implies P (λ)T = MA[P ](λ), that is, the left minimal indices of P (λ) are equal to

the right minimal indices of MA[P ](λ), and any left minimal basis of P (λ) can be

obtained as a right minimal basis of MA[P ](λ). Clearly, the right minimal indices

of P (λ) and P (λ) coincide, and if B is a right minimal basis for Nr(P ), then B is
a right minimal basis for Nr(P ). Finally, from [55, Theorem 7.5] together with the
previous argument, we obtain that the sets of right minimal indices of P (λ), P (λ)
and MA[P ](λ) are equal, and that if B is a minimal basis for Nr(P ), then B is a

basis for the right null space of P (λ), and, therefore, MA[B] is a basis for the right

null space of MA[P ](λ). �

Notice that the matrices in Table 1 are coninvolutory (recall Definition 2.9).
For this class of matrices, we consider in the following two sections the problem
of linearizing an MA-structured matrix polynomial of odd degree in a structure-
preserving way. To achieve this task, we need to introduce the concept of MA-
structured strong block minimal bases pencil, which is an important example of
the recently introduced class of strong block minimal bases pencils [28].

4. Strong block minimal bases pencils and MA-structured strong
block minimal bases pencils

In this section, we start reviewing the family of strong block minimal bases
pencils introduced in [28] and, then, introduce the subfamily of MA-structured
strong block minimal bases pencils.

Definition 4.1. [28, Definition 3.1] A matrix pencil

(4.1) L(λ) =

[
M(λ) K2(λ)T

K1(λ) 0

]
is called a block minimal bases pencil if K1(λ) and K2(λ) are both minimal bases.
If, in addition, the row degrees of K1(λ) are all equal to 1, the row degrees of K2(λ)
are all equal to 1, the row degrees of a minimal basis dual to K1(λ) are all equal,
and the row degrees of a minimal basis dual to K2(λ) are all equal, then L(λ) is
called a strong block minimal bases pencil.
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Any (strong) block minimal bases pencil is a (strong) linearization of a certain
matrix polynomial that can be expressed in terms of the pencil M(λ) and any dual
minimal bases of K1(λ) and K2(λ). Moreover, the minimal indices of the strong
block minimal bases pencil and the minimal indices of the matrix polynomial for
which the pencil is a strong linearization are related by uniform shifts.

Theorem 4.2. [28, Theorems 3.3 and 3.6] Let K1(λ) and N1(λ) be a pair of dual
minimal bases, and let K2(λ) and N2(λ) be another pair of dual minimal bases.
Consider the matrix polynomial

(4.2) Q(λ) := N2(λ)M(λ)N1(λ)T ,

and the block minimal bases pencil L(λ) in (4.1). Then:

(a) L(λ) is a linearization of Q(λ).
(b) If L(λ) is a strong block minimal bases pencil, then L(λ) is a strong lin-

earization of Q(λ), considered as a polynomial with grade 1 + deg(N1(λ)) +
deg(N2(λ)).

(c1) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of Q(λ), then

ε1 + deg(N1(λ)) ≤ ε2 + deg(N1(λ)) ≤ · · · ≤ εp + deg(N1(λ))

are the right minimal indices of L(λ), when L(λ) is a strong block minimal
bases pencil.

(c2) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq are the left minimal indices of Q(λ), then

η1 + deg(N2(λ)) ≤ η2 + deg(N2(λ)) ≤ · · · ≤ ηq + deg(N2(λ))

are the left minimal indices of L(λ), when L(λ) is a strong block minimal
bases pencil.

For any A ∈ GL(2,F), part-(b) in Theorem 3.5 suggests that we may take
K2(λ) = MA[K1](λ) and N2(λ) = MA[N1](λ) as the second pair of dual minimal
bases in Definition 4.1 and Theorem 4.2. This motivates the concept of an MA-
structured strong block minimal bases pencil, which is introduced in the following
definition.

Definition 4.3. Let K(λ), N(λ) be a pair of dual minimal bases, with all the row
degrees of K(λ) equal to 1 and with all the row degrees of N(λ) equal, and let
A ∈ GL(2,F) be a coninvolutory matrix. Then, an MA-structured matrix pencil
of the form
(4.3)

L(λ) =

[
M(λ) MA[K](λ)?

K(λ) 0

]
=

[
M(λ) MA[K](λ)T

K(λ) 0

]
with MA[M ](λ) = M(λ)?,

is called a MA-structured strong block minimal bases pencil.

Remark 4.4. Notice that any MA-structured strong block minimal bases pencil
L(λ) as in (4.3) is, indeed, MA-structured, that is, MA[L](λ) = L(λ)? holds as a
consequence of A being coninvolutory.

An immediate corollary of Theorem 4.2 is that any MA-structured strong block
minimal bases pencil is always a strong linearization of a certain odd-grade MA-
structured matrix polynomial. Furthermore, the minimal indices of this polynomial
and the pencil are related by a uniform shift. These results are stated and proved
in the following theorem. We only focus on right minimal indices, since the set
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of right minimal indices and the set of left minimal indices of an MA-structured
matrix polynomial are equal (recall Theorem 3.10).

Theorem 4.5. Let K(λ), N(λ) be a pair of dual minimal bases, with all the row
degrees of K(λ) equal to 1 and with all the row degrees of N(λ) equal, let A ∈
GL(2,F) be a coninvolutory matrix, and let L(λ) be an MA-structured strong block
minimal bases pencil as in (4.3). Then, the pencil L(λ) is a strong linearization of
the MA-structured matrix polynomial

(4.4) Q(λ) := MA[N ](λ)M(λ)N(λ)T ,

of grade 2 deg(N(λ))+1. Moreover, if 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal
indices of Q(λ), then

ε1 + deg(N(λ)) ≤ ε2 + deg(N(λ)) ≤ · · · ≤ εp + deg(N(λ))

are the right minimal indices of L(λ).

Proof. Notice that K(λ)N(λ)T = 0 implies K(λ)N(λ)T = 0. Since the operation
P (λ) → P (λ) applied to K(λ) and N(λ) does not change neither the rank of the
polynomial at any λ0 ∈ F, nor the degree of any of its entries, we have that K(λ)
and N(λ) are a pair of dual minimal bases with all the row degrees of K(λ) equal to
1, and all the row degrees of N(λ) equal to deg(N(λ)). Then, from Theorem 3.5, we
obtain that MA[K](λ) and MA[N ](λ) are also a pair of dual minimal bases with all

the row degrees of MA[K](λ) equal to 1, and all the row degrees of MA[N ](λ) equal
to deg(N(λ)). Therefore, the pencil L(λ) is a strong block minimal bases pencil.
From Theorem 4.2, we immediately obtain that L(λ) is a strong linearization of
Q(λ) and that the minimal indices of L(λ) are those of Q(λ) shifted by deg(N(λ)).

We still have to show that Q(λ) is an MA-structured matrix polynomial. Com-
puting the Möbius transformation of Q(λ) associated with the matrix A and using
that the matrix A is coninvolutory, together with parts (b), (d), (e) and (g) in
Proposition 3.4, we get

MA[Q](λ) =MA

[
MA[N ]MNT

]
(λ)

=MA

[
MA[N ]

]
(λ) MA[M ](λ) MA[NT ](λ)

=N(λ)M(λ)?MA[N ](λ)T =
(
N(λ)T

)?
M(λ)?MA[N ](λ)? = Q(λ)?.

Thus, the matrix polynomial Q(λ) is MA-structured. �

Theorem 4.5 shows that given an MA-structured strong block minimal bases
pencil, this pencil is a strong linearization of a certain odd-grade MA-structured
matrix polynomial. We consider in Theorem 4.6 the inverse problem, that is, given
an odd-grade MA-structured matrix polynomial Q(λ), we show how to construct an
MA-structured strong linearization for Q(λ). Theorem 4.6 relies on the availability

of a solution M̂(λ) of (4.4), which needs not be MA-structured, whenQ(λ) areN(λ)
are fixed. The availability of such solution is not a theoretical restriction because
this equation is always consistent, with infinitely many solutions, as a consequence
of the properties of the minimal basis N(λ), a result that has been proved in [27] in a
much more general setting. In addition, for some particular minimal basis N(λ) and
coninvolutory matrices A that are important in applications such infinitely many
solutions can be easily found, as happens, for instance, in the case of Theorem 5.4.
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Theorem 4.6. Let K(λ), N(λ) be a pair of dual minimal bases, with all the row
degrees of K(λ) equal to 1 and with all the row degrees of N(λ) equal, let A ∈
GL(2,F) be a coninvolutory matrix. Let Q(λ) be a given MA-structured matrix

polynomial with grade equal to 2 deg(N(λ)) + 1. If M̂(λ) is any solution of the
polynomial equation (4.4) (not necessarily MA-structured), then the pencil

M(λ) :=
1

2

(
M̂(λ) + MA[M̂ ](λ)?

)
is an MA-structured solution of (4.4), and the MA-structured strong block minimal
bases pencil

L(λ) :=

[
M(λ) MA[K](λ)?

K(λ) 0

]
=

[
1
2

(
M̂(λ) + MA[M̂ ](λ)?

)
MA[K](λ)?

K(λ) 0

]
is an MA-structured strong linearization of Q(λ).

Proof. By using that Q(λ) is an MA-structured matrix polynomial, that A is con-

involutory, and that M̂(λ) is a solution of (4.4), together with parts (b), (d), (e)
and (g) in Proposition 3.4, we have

Q(λ) = (MA[Q](λ))
?

=
(
MA

[
MA[N ]M̂NT

]
(λ)
)?

=
(
N(λ)MA[M̂ ](λ)MA[N ](λ)T

)?
=
((
N(λ)T

)?
MA[M̂ ](λ)MA[N ](λ)?

)?
=MA[N ](λ) MA[M̂ ](λ)?N(λ)T .

Thus, the matrix pencil MA[M̂ ](λ)? is also a solution of (4.4). Moreover, since
any affine combination of solutions of (4.4) is also a solution, the MA-structured

matrix pencil (M̂(λ) + MA[M̂ ](λ)?)/2 satisfies (4.4). Therefore, by Theorem 4.5,
the MA-structured pencil L(λ) is a strong linearization of the matrix polynomial
Q(λ). �

Despite its consistency, the polynomial equation (4.4) might be very difficult to
solve for an arbitrary minimal basis N(λ) and an arbitrary coninvolutory matrix A.
However, for some choices of N(λ), when the matrix A is any of those in Table 1,
this problem turns out to be particularly simple. This is the subject of the following
section.

5. MA-structured block Kronecker pencils and
structure-preserving strong linearizations

We focus in this section on the problem of constructing explicitly structure-
preserving strong linearizations for (skew-)symmetric, (anti-)
palindromic, and alternating matrix polynomials from some subfamilies of MA-
structured strong block minimal bases pencils. This problem has been addressed
in [31] with a lot of detail for (skew-)symmetric matrix polynomials.

We start by introducing the family of MA-structured block Kronecker pencils,
which are particular but important examples of MA-structured strong block mini-
mal bases pencils.
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Definition 5.1. Let Lk(λ) ∈ F[λ]k×(k+1) be the matrix pencil in (2.3), and let
A ∈ GL(2,F) be a coninvolutory matrix. Then, a pencil of the form

(5.1) L(λ) =

[
M(λ) MA[Lk](λ)? ⊗ In

Lk(λ)⊗ In 0

]
with MA[M ](λ) = M(λ)?,

is called a MA-structured block Kronecker pencil. Moreover, the partition of L(λ)
into 2× 2 blocks in (5.1) is called the natural partition of an MA-structured block
Kronecker pencil.

Remark 5.2. The name MA-structured block Kronecker pencil is motivated, first,
by the fact that one of the building blocks of L(λ) is the Kronecker product of
a singular block of the Kronecker canonical form of pencils with the identity (as
for block Kronecker pencils in [28]), and that the pencil L(λ) is an MA-structured
pencil, i.e. , MA[L](λ) = L(λ)?.

As an immediate corollary of Theorem 4.5, we obtain that any MA-structured
block Kronecker pencil L(λ) is a strong linearization of an MA-structured matrix
polynomial, and that the minimal indices of this polynomial and L(λ) are related
by a uniform shift.

Theorem 5.3. Let L(λ) be an MA-structured block Kronecker pencil as in (5.1).
Then, the pencil L(λ) is a strong linearization of the MA-structured matrix poly-
nomial

(5.2) P (λ) := (MA[Λk](λ)? ⊗ In)M(λ) (Λk(λ)⊗ In) ,

of grade 2k + 1, where Λk(λ) is the vector polynomial defined in (2.4). Moreover,
the left minimal indices of L(λ) are those of P (λ) increased by k, and the right
minimal indices of L(λ) are those of P (λ) increased also by k.

Following the terminology introduced in [31], when the matrix A is any of those
listed in Table 1, the corresponding MA-structured block Kronecker pencil (5.1) is
called (skew-)symmetric, (anti-)palindromic, or alternating block Kronecker pencil,
depending on the case, or, for simplicity, just a structured block Kronecker pencil.
We list in Table 2 the minimal bases MA[Lk](λ) and the conditions on the pencil
M(λ) for structured block Kronecker pencils.

Table 2. The minimal bases MA[Lk](λ)⊗ In and the conditions
on M(λ) = λM1 +M0 for structured block Kronecker pencils.

structure condition on M(λ) = λM1 +M0 MA[Lk](λ)

Symmetric λM1 +M0 with M?
0 = M0 and M?

1 = M1 Lk(λ)

Skew-symmetric λM1 +M0 with M?
0 = −M0 and M?

1 = −M1 −Lk(λ)

Palindromic λM1 +M?
1 revLk(λ)

Anti-palindromic λM1 −M?
1 −revLk(λ)

Alternating (even) λM1 +M0 with M?
0 = M0 and M?

1 = −M1 Lk(−λ)

Alternating (odd) λM1 +M0 with M?
0 = −M0 and M?

1 = M1 −Lk(−λ)

We know from Theorem 4.6 that one can always construct a structure-preserving
strong linearization of any MA-structured matrix polynomial with odd grade g via
an MA-structured block Kronecker pencil as in (5.1) with k = (g − 1)/2. Fur-
thermore, for the (skew-)symmetric, (anti-)palindromic or alternating structures,
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this construction turns out to be rather simple. In Theorem 5.4, we show what
conditions on M(λ) are needed for a structured block Kronecker pencil to be a
structure-preserving strong linearization of a given odd-grade structured matrix
polynomial.

Theorem 5.4. Let P (λ) =
∑g
i=0 Piλ

i ∈ F[λ]n×n be an odd-grade structured ma-
trix polynomial, let S (P ) be the structure of P (λ), and let A be one of the ma-
trices in Table 1, depending on S (P ). Additionally, let M(λ) = λM1 + M0 ∈
F[λ](k+1)n×(k+1)n, with k = (g − 1)/2, be a matrix pencil, and let us partition the
matrices M0 and M1 into (k + 1)× (k + 1) blocks each of size n× n and let us de-
note these blocks by [M1]ij , [M0]ij ∈ Fn×n for i, j = 1, 2, . . . , k + 1. If the following
condition holds, for ` = 0, 1, . . . , g,

(5.3) P` =
∑

i+j=g+2−`

[M1]ij +
∑

i+j=g+1−`

[M0]ij ,

when S (P ) ∈ {symmetric, skew-symmetric}, or

(5.4) P` =
∑

i−j=`−k−1

[M1]ij +
∑

i−j=`−k

[M0]ij ,

when S (P ) ∈ {palindromic, anti-palindromic}, or

(5.5) P` =
∑

i+j=g+2−`

(−1)k−i+1[M1]ij +
∑

i+j=g+1−`

(−1)k−i+1[M0]ij ,

when S (P ) ∈ {even, odd}, then the matrix pencil

L(λ) =

[
1
2 (M(λ) + MA[M ](λ)?) MA[Lk](λ)? ⊗ In

Lk(λ)⊗ In 0

]
is an MA-structured block Kronecker pencil such that:

(i) L(λ) is a strong linearization of P (λ),
(ii) L(λ) and P (λ) share the same structure, i.e., S (P ) = S (L), and

(iii) the left minimal indices of L(λ) are those of P (λ) increased by k, and the
right minimal indices of L(λ) are those of P (λ) increased by k.

Proof. Clearly, the structured block Kronecker pencil L(λ) and the matrix polyno-
mial P (λ) share the same structure, that is, part (ii) holds. To prove parts (i) and
(iii), we just need to check that (5.2) holds for (M(λ) + MA[M ](λ)?)/2 (up to a
sign), since the desired results would follow from Theorem 5.3, together with the
fact that any strong linearization of −P (λ) is also a strong linearization of P (λ),
and the sets of right and left minimal indices of P (λ) and −P (λ) are the same.

Several cases have to be distinguished. For brevity, we focus only on the case
S (P ) ∈ {symmetric, skew-symmetric}. The proofs for the other cases are very
similar, so we invite the reader to complete the proof. First, assume that S (P ) ∈
{symmetric}. Then, we have MA[Λk](λ) ⊗ In = Λk(λ) ⊗ In and MA[M ](λ)? =
M(λ)?, so, in this case, the structured block Kronecker pencil L(λ) is a strong lin-
earization of Q1(λ) := (Λk(λ)T ⊗ In)(M(λ) +M(λ)?)(Λk(λ)⊗ In)/2. A direct mul-
tiplication, some basic manipulations and the condition (5.3) yield P (λ) = Q1(λ).
Therefore, the result is true in this case. Now, assume S (P ) ∈ {skew-symmetric}.
In this case, we have MA[Λk](λ) ⊗ In = (−1)kΛk(λ) ⊗ In and MA[M ](λ)? =
−M(λ)?. Therefore, L(λ) is a strong linearization of Q2(λ) := (−1)k(Λk(λ)T ⊗
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In)(M(λ) −M(λ)?)(Λk(λ) ⊗ In)/2. It is not difficult to check that the condition
(5.3) implies that Q2(λ) = (−1)kP (λ). Thus, the result is also true in this case. �

We illustrate Theorem 5.4 in Examples 5.5, 5.6 and 5.7, where we construct
structure-preserving strong linearizations for grade-7 symmetric, palindromic and
even matrix polynomials, respectively.

Example 5.5. Let P (λ) =
∑7
i=0 Piλ

i ∈ F[λ]n×n be a symmetric grade-7 matrix
polynomial, and consider the following matrix pencil

M1(λ) :=


λP7 0 0 0

λP6 + P5 P4 P3 0
0 0 P2 0
0 0 P1 P0

 .
It is easy to check that the pencil M1(λ) satisfies (5.3) with g = 7. In this case, we
have A = [ 1 0

0 1 ], so the pencil (M1(λ) + MA[M1](λ)?)/2 is given by

1

2
(M1(λ) +M1(λ)?) =


λP7 (λP6 + P5)/2 0 0

(λP6 + P5)/2 P4 P3/2 0
0 P3/2 P2 P1/2
0 0 P1/2 P0

 ,
which is a symmetric pencil. We conclude, by Theorem 5.4, that the symmetric
block Kronecker pencil

λP7 (λP6 + P5)/2 0 0 −In 0 0
(λP6 + P5)/2 P4 P3/2 0 λIn −In 0

0 P3/2 P2 P1/2 0 λIn −In
0 0 P1/2 P0 0 0 λIn
−In λIn 0 0 0 0 0

0 −In λIn 0 0 0 0
0 0 −In λIn 0 0 0


is a symmetric strong linearization of P (λ).

Example 5.6. Let P (λ) =
∑7
i=0 Piλ

i ∈ F[λ]n×n be a palindromic grade-7 matrix
polynomial, and consider the following matrix pencil

M2(λ) :=


0 0 P1 P0

0 P3 P2 0
λP6 λP5 + P4 0 0
λP7 0 0 0

 .
It is easy to check that the pencil M2(λ) satisfies (5.4) with g = 7. For the palin-
dromic structure we have A = [ 0 1

1 0 ], so the pencil (M2(λ)+MA[M2](λ)?)/2 is given
by

1

2
(M2(λ) + rev1M2(λ)?) =


0 0 P1 P0

0 (λP4 + P3)/2 λP3/2 + P2 0
λP6 λP5 + P4/2 0 0
λP7 0 0 0

 ,
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which is a palindromic pencil. Then, from Theorem 5.4, we obtain that the palin-
dromic block Kronecker pencil

0 0 P1 P0 −λIn 0 0
0 (λP4 + P3)/2 λP3/2 + P2 0 In −λIn 0
λP6 λP5 + P4/2 0 0 0 In −λIn
λP7 0 0 0 0 0 In
−In λIn 0 0 0 0 0

0 −In λIn 0 0 0 0
0 0 −In λIn 0 0 0


is a palindromic strong linearization of P (λ).

Example 5.7. Let P (λ) =
∑7
i=0 Piλ

i ∈ F[λ]n×n be an even grade-7 matrix poly-
nomial, and consider the following matrix pencil

M3(λ) :=


−λP7 0 0 0
λP6 λP5 + P4 P3 0

0 0 −P2 0
0 0 0 λP1 + P0

 .
It is easy to check that the pencil M3(λ) satisfies (5.5) with g = 7. For even-
structured matrix polynomials, we have A =

[−1 0
0 1

]
, so the pencil (M3(λ) +

MA[M3](λ)?)/2 is given by

1

2
(M3(λ) +M3(−λ)?) =


−λP7 −λP6/2 0 0
λP6/2 λP5 + P4 P3/2 0

0 −P3/2 −P2 0
0 0 0 λP1 + P0

 ,
which is an even pencil. We conclude, by Theorem 5.4, that the even block Kro-
necker pencil

−λP7 −λP6/2 0 0 −In 0 0
λP6/2 λP5 + P4 P3/2 0 −λIn −In 0

0 −P3/2 −P2 0 0 −λIn −In
0 0 0 λP1 + P0 0 0 −λIn
−In λIn 0 0 0 0 0

0 −In λIn 0 0 0 0
0 0 −In λIn 0 0 0


is an even strong linearization of P (λ).

We now focus on the famous block-tridiagonal and block-antitridiagonal structure-
preserving linearizations introduced in [5, 52, 53, 54]. We show in Example 5.8, for
a small-grade case, that (modulo permutations) they are structured block Kro-
necker pencils. The extension of this result to any odd-grade matrix polynomial is
straightforward.
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Example 5.8. Let
∑5
i=0 Piλ

i ∈ F[λ]n×n be a grade-5 structured matrix polyno-
mial, and let σ ∈ {−1, 1}. Consider, first, the block-tridiagonal pencil

L1(λ) =


λP5 + P4 −σIn 0 0 0
−In 0 λIn 0 0

0 σλIn λP3 + P2 −σIn 0
0 0 −In 0 λIn
0 0 0 σλIn λP1 + P0

 .
This pencil is a strong linearization of P (λ) that for σ = 1 is symmetric when
P (λ) is, or for σ = −1 is skew-symmetric when P (λ) is [5]. Then, consider the
block-antitridiagonal pencil

L2(λ) =


0 0 0 −σλIn λP1 + P0

0 0 −In 0 λIn
0 −σλIn λP3 + P2 σIn 0
−In 0 λIn 0 0

λP5 + P4 σIn 0 0 0

 .
The above pencil is a strong linearization of P (λ) that for σ = 1 is palindromic
when P (λ) is, or for σ = −1 is anti-palindromic when P (λ) is [53]. Finally, consider
the block-tridiagonal pencil

L3(λ) =


λP5 + P4 −σIn 0 0 0
−In 0 λIn 0 0

0 −σλIn −λP3 − P2 −σIn 0
0 0 −In 0 λIn
0 0 0 −σλIn λP1 + P0

 .
This pencil is a strong linearization of P (λ) that for σ = 1 is even when P (λ) is,
or for σ = −1 is odd when P (λ) is [52]. Moreover, it is not difficult to show that
there exist permutation matrices Π1,Π2,Π3 such that

Π1L1(λ)Π?
1 =


λP5 + P4 0 0 −σIn 0

0 λP3 + P2 0 σλIn −σIn
0 0 λP1 + P0 0 σλIn
−In λIn 0 0 0

0 −In λIn 0 0

 ,

Π2L2(λ)]Π?
2 =


0 0 λP1 + P0 −σλIn 0
0 λP3 + P2 0 σIn −σλIn

λP5 + P4 0 0 0 σIn
−In λIn 0 0 0

0 −In λIn 0 0

 , and

Π3L3(λ)Π?
3 =


λP5 + P4 0 0 −σIn 0

0 −λP3 − P2 0 −σλIn −σIn
0 0 λP1 + P0 0 −σλIn
−In λIn 0 0 0

0 −In λIn 0 0

 .
In other words, the block-tridiagonal and block-antitridiagonal structure-preserving
linearizations are (up to a permutation) structured block Kronecker pencils.
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The next section is devoted to the backward error analysis when the structured
complete polynomial eigenvalue problem is solved via a structure-preserving lin-
earization obtained from a structured block Kronecker pencil, and a structurally
global backward stable generalized eigensolver.

6. Global and structured backward error analysis

As we mentioned in the introduction, the structured complete polynomial eigen-
value problem consists of computing all the eigenvalues, finite and infinite, and all
the minimal indices, left and right, of a structured matrix polynomial P (λ) using
an algorithm that preserves the spectral symmetries of P (λ) in a floating point
arithmetic environment. For example, for palindromic or alternating matrix poly-
nomials, the structured version of the staircase algorithm for pencils developed in
[67] can be applied to any structure-preserving strong linearization of the matrix
polynomial whose minimal indices are related to those of P (λ) via simple rules.
When the palindromic matrix polynomial is regular, the problem consists just of
computing finite and infinite eigenvalues. In this case, the preferred method is the
palindromic-QR algorithm [44, 69].

Some of the structure-preserving generalized eigensolvers, such as the structured
version of the staircase algorithm mentioned above and the palindromic-QR algo-
rithm, are structurally backward stable. This means, that if they are applied to any
structure-preserving strong linearization L(λ) of a structured matrix polynomial
P (λ) in a computer with unit round-off u, then the computed complete eigenstruc-
ture of L(λ) is the exact complete eigenstructure of a matrix pencil L(λ) + ∆L(λ)
such that

(6.1)
‖∆L(λ)‖F
‖L(λ)‖F

= O(u) and S (∆L) = S (L),

which for the structures considered in this work, that is, (skew-)symmetric, (anti-)
palindromic and alternating, is equivalent to S (L+∆L) = S (L). However, it is not
obvious whether or not (6.1) guarantees that the computed complete eigenstructure
of P (λ) is the exact complete eigenstructure of a nearby matrix polynomial P (λ) +
∆P (λ) of the same grade as P (λ) such that

(6.2)
‖∆P (λ)‖F
‖P (λ)‖F

= O(u) and S (∆P ) = S (P ) (= S (L)) .

The goal of this section is to study this question for the family of structured block
Kronecker pencils, and its answer can be found in Theorem 6.13 and Corollary 6.15.
Before proceeding, we remark that our structured backward error analysis follows
closely the unstructured analysis in the recent work [28, Section 5]. However, there
are some very important differences in our analysis that we will highlight. Also,
to help the reader to follow the argument that leads to Theorem 6.13, we start by
sketching the main ideas and the three steps in which the backward error analysis
is split.

Initial data. A structured ((skew-)symmetric, (anti-)palindromic or alternating)
matrix polynomial P (λ) =

∑g
i=0 Piλ

i ∈ F[λ]n×n and a structured block Kronecker
pencil L(λ) as in (5.1), where A is one of the matrices in Table 1 and it is chosen
to guarantee S (P ) = S (L), such that

(6.3) P (λ) = (MA[Λk](λ)? ⊗ In)M(λ) (Λk(λ)⊗ In) , with 2k + 1 = g,
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are given. A perturbation ∆L(λ) of the pencil L(λ) with S (∆L) = S (L) is also
given. We will partition the perturbed pencil L(λ)+∆L(λ) into blocks conformable
to those of the natural partition of L(λ), that is,
(6.4)

L(λ) + ∆L(λ) =

[
λM1 +M0 + ∆L11(λ) MA[Lk](λ)? ⊗ In + MA[∆L21](λ)?

Lk(λ)⊗ In + ∆L21(λ) ∆L22(λ)

]
,

where the relation between the blocks (1, 2) and (2, 1) of the pencil ∆L(λ) is forced
by MA[∆L](λ) = ∆L(λ)?, and λM1 +M0 := M(λ).

First step. We establish a bound on ‖∆L(λ)‖F that allows us to construct an
?-congruence transformation that puts the (2,2)-block of the perturbed pencil back
to zero, preserving simultaneously the structure of the pencil (recall Proposition
3.9): [

I(k+1)n 0
X Ikn

]
(L(λ) + ∆L(λ))

[
I(k+1)n X?

0 Ikn

]
=

[
λM1 +M0 + ∆L11(λ) MA[Lk](λ)? ⊗ In + MA[∆L̃21](λ)?

Lk(λ)⊗ In + ∆L̃21(λ) 0

]
=:L(λ) + ∆L̃(λ).

(6.5)

The construction in (6.5) is equivalent to solving a nonlinear system of ?-Sylvester-
like equations whose unknown is the matrix X. Further, we obtain detailed bounds

on ‖X‖F and ‖∆L̃21(λ)‖F in terms of ‖∆L(λ)‖F . It is important to remark that

the pencils L(λ) + ∆L(λ) and L(λ) + ∆L̃(λ) have the same complete eigenstruc-
ture, since ?-congruence transformations are strict equivalence transformations. We
emphasize that the key reason to use an ?-congruence transformation, instead of
the strict equivalence transformation in [28, Section 5], is that the structure of the

pencil is preserved under ?-congruence, that is, S (∆L̃) = S (∆L).

Second step. By using the main results in [28, Section 5.2], we obtain bounds on

‖∆L̃21(λ)‖F that guarantee that L(λ)+∆L̃(λ) in (6.5) is an MA-structured strong
block minimal bases pencil. As the second step in the analysis in [28, Section 5],

this requires two sub-steps: (i) to prove that K(λ) = Lk(λ) ⊗ In + ∆L̃21(λ) is a
minimal basis with all its row degrees equal to 1, and (ii) to show that there exists
a minimal basis

N(λ) = Λk(λ)T ⊗ In + ∆Rk(λ)T

dual to K(λ) with all its row degrees equal to k. Notice that the sub-steps (i)
and (ii), together with Theorem 3.5, imply that MA[K](λ) and MA[N ](λ) are dual
minimal bases with all its row degrees equal, respectively, to 1 and k.

Third step. The results in the first and second steps, together with Theorem 4.5,
imply that the MA-structured pencil L(λ)+∆L(λ) in (6.4) is a strong linearization
of the MA-structured matrix polynomial

P (λ) + ∆P (λ)

(6.6)

:= (MA[Λk](λ)? ⊗ In + MA[∆Rk](λ)?) (M(λ) + ∆L11(λ)) (Λk(λ)⊗ In + ∆Rk(λ)) ,

and that the right and left minimal indices of L(λ) + ∆L(λ) are those of P (λ) +
∆P (λ) shifted by k. Then, combining the bounds obtained in the first and second
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steps, we obtain a bound on ‖∆P (λ)‖F /‖P (λ)‖F in terms of ‖∆L(λ)‖F /‖L(λ)‖F .
Finally, the consequences of this bound are discussed.

In the following three subsections we develop in detail the three steps that we
have outlined above. One final remark before continuing is that, since the matrices
in Table 1 are all real, we will use without saying it explicitly that A = A (except
in Theorem 6.2, which is true for any coninvolutory matrix).

6.1. First step: solving a system of quadratic ?-Sylvester-like matrix
equations for constructing the ?-congruence. Here and thereafter, we use a
notation similar to the notation introduced in [28, Section 5.1] for the (2,1)-block of
a structured block Kronecker pencil (5.1), this is, Lk(λ)⊗In =: λFk⊗In−Ek⊗In =:
λFkn − Ekn, where

(6.7) Ekn =
[
Ik 0k×1

]
⊗ In , and Fkn =

[
0k×1 Ik

]
⊗ In .

In addition, the natural blocks of the perturbation ∆L(λ) in (6.4) are denoted by
(6.8)

∆L(λ) =:

[
λ∆B11 + ∆A11 λ(a∆B21 + c∆A21)? + (b∆B21 + d∆A21)?

λ∆B21 + ∆A21 λ∆B22 + ∆A22

]
,

where recall that A =
[
a b
c d

]
is the matrix defining the Möbius transformation MA,

and we introduce the following two matrices

(6.9) F̂kn := Fkn + ∆B21, and Êkn := −Ekn + ∆A21.

We start with the simple Lemma 6.1, where we show that the construction of the
?-congruence in (6.5) is equivalent to solve a system of nonlinear ?-Sylvester-like
equations. The proof is a direct algebraic manipulation and is omitted.

Lemma 6.1. There exists a constant matrix X ∈ Fkn×(k+1)n satisfying (6.5) if
and only if

(6.10)
[
X Ikn

]
(L(λ) + ∆L(λ))

[
X?

Ikn

]
= 0 .

Moreover, with the notation introduced in (6.7), (6.8) and (6.9), the equation (6.10)
is equivalent to the following system of quadratic ?-Sylvester-like matrix equations

(6.11)

{
X(bF̂kn + dÊkn)? + ÊknX

? = −∆A22 − fM0+∆A11
(X)

X(aF̂kn + cÊkn)? + F̂knX
? = −∆B22 − fM1+∆B11

(X)
,

for the unknown matrix X, where fM (X) is the following quadratic matrix function

(6.12) fM (X) := XMX?.

Our goal is to establish conditions on ‖∆L(λ)‖F that guarantee the existence of
a solution X to (6.11) with ‖X‖F . ‖∆L(λ)‖F . Such a solution will be obtained
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in Theorem 6.7 via the following fixed point iteration:

Solve for X0 the system of linear ?-Sylvester equations:{
X0(bF̂kn + dÊkn)? + ÊknX

?
0 = −∆A22

X0(aF̂kn + cÊkn)? + F̂knX
?
0 = −∆B22

.(6.13)

For i ≥ 1, solve for Xi the system of linear ?-Sylvester equations:{
Xi(bF̂kn + dÊkn)? + ÊknX

?
i = −∆A22 − fM0+∆A11(Xi−1)

Xi(aF̂kn + cÊkn)? + F̂knX
?
i = −∆B22 − fM1+∆B11(Xi−1)

.(6.14)

This fixed point iteration idea, whose origin can be traced back to the work by
Stewart [70], is similar to the one for proving [28, Theorem 5.8]. However, we
emphasize that the corresponding matrix equations are rather different.

Notice that at every step of the fixed point iteration (6.13)-(6.14) we have to
solve a system of linear ?-Sylvester equations. To help us to solve those equations
we present Theorem 6.2, where we relate the solution of a kind of systems of ?-
Sylvester equations with the solution of certain systems of Sylvester equations.

Theorem 6.2. Let E,F ∈ Fm×n, let A =
[
a b
c d

]
∈ GL(2,F) be a coninvolutory

matrix, and let C(λ) = λC1 + C0 ∈ F[λ]m×m be an MA-structured pencil. Let
T(A,E,F )(X) be the linear operator

T(A,E,F ) : Fm×n −→ F2m×m

X −→
[
T0(X)
T1(X)

]
:=

[
X(bF + dE)? + EX?

X(aF + cE)? + FX?

]
,

and let S(A,E,F )(Y,Z) be the following bilinear operator

S(A,E,F ) : Fm×n × Fm×n −→ F2m×m

(Y,Z) −→
[
S0(Y, Z)
S1(Y, Z)

]
:=

[
Y (bF + dE)? + EZ?

Y (aF + cE)? + FZ?

]
.

If the pair of matrices (Y0, Z0) is a solution of the system of Sylvester equations

S(A,E,F )(Y, Z) =
[
C0

C1

]
, then X0 = (Y0 + Z0)/2 is a solution of the system of ?-

Sylvester equations T(A,E,F )(X) =
[
C0

C1

]
.

Proof. Assume that there exist matrices Y0, Z0 ∈ Fm×n satisfying the linear system
of matrix equations S(A,E,F )(Y,Z) =

[
C0

C1

]
, i.e.,

Y0(bF + dE)? + EZ?0 = C0,(6.15)

Y0(aF + cE)? + FZ?0 = C1.(6.16)

Applying the (·)? operator on both sides of (6.15) and (6.16), and using that the
pencil λC1 +C0 is MA-structured, we obtain that the pair of matrices (Y0, Z0) also
satisfies

Z0E
? + (bF + dE)Y ?0 = bC1 + dC0,(6.17)

Z0F
? + (aF + cE)Y ?0 = aC1 + cC0.(6.18)

Let X0 = (Y0 + Z0)/2. To prove the desired result, we have to check that X0

satisfies the equations T0(X0) = C0 and T1(X0) = C1. For the first equation, using
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(6.15), we obtain

T0(X0) =
(Y0 + Z0)

2
(bF+dE)?+E

(Y0 + Z0)?

2
=

1

2

(
C0 + bZ0F

? + dZ0E
? + EY ?0

)
.

Then, from (6.18) we get bZ0F
? = abC1 +cbC0−abFY ?0 −cbEY ?0 , and, from (6.17),

we get dZ0E
? = bdC1 + ddC0 − bdFY ?0 − ddEY ?0 . Substituting these expressions

for bZ0F
? and dZ0E

? in the above equation, we obtain

T0(X0) =
1

2

(
C0 + bZ0F

? + dZ0E
? + EY ?0

)
= C0,

where we have used ab + bd = 0 and cb + dd = 1, which follows from AA =
I2. Therefore, the matrix X0 satisfies the first matrix equation T0(X0) = C0.
Proceeding in a similar way, it is not difficult to show that

T1(X0) =
(Y0 + Z0)

2
(aF + cE)? + F

(Y0 + Z0)?

2
= C1.

Thus, we conclude that T(A,E,F )(X0) =
[
C0

C1

]
, as we wanted to prove. �

To apply Theorem 6.2 for obtaining solutions of the systems of ?-Sylvester equa-
tions (6.13) and (6.14) solving, instead, a linear system of Sylvester equations,
their right-hand-sides need to be the trailing and leading coefficients of an MA-
structured pencil. It is clear that this is the case for the right-hand-side of (6.13),
since λ∆B22 + ∆A22 is by assumption the (2, 2) block of an MA-structured pencil.
In Lemma 6.3, we show that this is also true for the right-hand-side of (6.14).

Lemma 6.3. Let A ∈ GL(2,F) and X ∈ Fkn×(k+1)n. If the pencils λM1 +
M0, λ∆B11 + ∆A11 ∈ F[λ](k+1)n×(k+1)n, and λ∆B22 + ∆A22 ∈ F[λ]kn×kn are MA-
structured pencils, then the pencil λ(∆B22 +X(M1 + ∆B11)X?) + ∆A22 +X(M0 +
∆A11)X? is also MA-structured.

Proof. Let us introduce the notation C1 := ∆B22 + X(M1 + ∆B11)X? and C0 :=
∆A22 + X(M0 + ∆A11)X?. The proof is immediate from the fact that the pencil[
λ(M1+∆B11)+M0+∆A11 0

0 λ∆B22+∆A22

]
is MA-structured, and the fact that the pencil

λC1 + C0 is the (2,2) block of[
I(k+1)n 0
X Ikn

] [
λ(M1 + ∆B11) +M0 + ∆A11 0

0 λ∆B22 + ∆A22

] [
I(k+1)n X?

0 Ikn

]
,

which is also MA-structured by Proposition 3.9. �

Theorem 6.2, together with Lemma 6.3, allows us to replace the fixed point
iteration (6.13)-(6.14) for getting a solution of (6.11) with the new iteration

Solve for (Y0, Z0) the system of Sylvester equations:{
Y0(bF̂kn + dÊkn)? + ÊknZ

?
0 = −∆A22

Y0(aF̂kn + cÊkn)? + F̂knZ
?
0 = −∆B22

,(6.19)

and set X0 := (Y0 + Z0)/2.

For i ≥ 1, solve for (Yi, Zi) the system of Sylvester equations:{
Yi(bF̂kn + dÊkn)? + ÊknZ

?
i = −∆A22 − fM0+∆A11(Xi−1)

Yi(aF̂kn + cÊkn)? + F̂knZ
?
i = −∆B22 − fM1+∆B11

(Xi−1)
,(6.20)

and set Xi := (Yi + Zi)/2.
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Observe that the linear systems of Sylvester equations (6.19)–(6.20) are under-
determined since the number of entries of the pair (Yi, Zi), i.e., the number of scalar
unknowns, is 2k(k+ 1)n2 while the number of scalar equations is 2k2n2. Of course,
this does not imply that the systems are consistent, so the next step is to obtain
conditions on the norm of the perturbation pencil ‖∆L(λ)‖F that guarantee that
the operator S(A,Êkn,F̂kn)(Y, Z) introduced in Theorem 6.2 is surjective. With this

aim in mind, let us notice that a system of Sylvester matrix equations of the form{
Y (b(Fkn + ∆B21) + d(−Ekn + ∆A21))? + (−Ekn + ∆A21)Z? = C0

Y (a(Fkn + ∆B21) + c(−Ekn + ∆A21))? + (Fkn + ∆B21)Z? = C1,
(6.21)

can be written, using the Kronecker product ⊗ and the vec(·) operation, as the
underdetermined standard linear system (TA + ∆TA)x = b given by


[

(bFkn − dEkn)⊗ Ikn −Ikn ⊗ Ekn
(aFkn − cEkn)⊗ Ikn Ikn ⊗ Fkn

]
︸ ︷︷ ︸

=:TA

+

(6.22)

[
(b∆B21 + d∆A21)⊗ Ikn Ikn ⊗∆A21

(a∆B21 + c∆A21)⊗ Ikn Ikn ⊗∆B21

]
︸ ︷︷ ︸

=:∆TA


[

vec(Y )
vec(Z?)

]
︸ ︷︷ ︸

=:x

=

[
vec(C0)
vec(C1)

]
︸ ︷︷ ︸

=:b

,

where we have also used that all the entries of the matrices Ekn and Fkn are real.
Then, the bilinear operator S(A,Êkn,F̂kn)(Y, Z) is surjective if and only if the matrix

TA + ∆TA has full row rank.
In Lemma 6.4 we show that the matrix TA has full row rank. Additionally, we

also provide a formula for its minimal singular value. The proof of Lemma 6.4 is
rather long, so it is postponed to Appendix A.

Lemma 6.4. Let A ∈ GL(2,F) be any of the matrices in Table 1. Then, the
matrix TA in (6.22) has full row rank, and its minimal singular value is given by

σmin(TA) = 2 sin(π/(4k)) ≥ 2
√

2/g, where g = 2k + 1.

Lemma 6.4 implies that if ‖∆TA‖2 is small enough, then TA + ∆TA has also
full row rank and the linear system (6.22) is consistent for any right-hand-side,
or, equivalently, the bilinear operator S(A,Êkn,F̂kn)(Y, Z) is surjective. In Lemma

6.5, we bound the norm of the minimum 2-norm solution of (6.22) or, equiv-
alently, of the minimum Frobenius norm solution of the equation (6.21), since
‖[vec(Y )T , vec(Z?)T ]T ‖2 = ‖(Y,Z)‖F (recall the definition of the Frobenius norm
of a pair of matrices in (2.5)). We omit the proof of Lemma 6.5, since it is identical
to the proof of [28, Lemma 6.6].

Lemma 6.5. Let (TA + ∆TA)x = b be the underdetermined linear system (6.22),
and let us assume that σmin(TA) > ‖∆TA‖2. Then (TA + ∆TA)x = b is consistent
and its minimum norm solution (Y0, Z0) satisfies

(6.23) ‖(Y0, Z0)‖F ≤
1

δ
‖(C0, C1)‖F ,

where δ := σmin(TA)− ‖∆TA‖2.
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Since the quantity σmin(TA)−‖∆TA‖2 plays an important role in the rest of our
analysis, we obtain in Lemma 6.6 a tractable lower bound on it. The proof of this
lemma is almost identical to the one for [28, Lemma 5.7], so it is omitted.

Lemma 6.6. Let TA and ∆TA be the matrices in (6.22) with A ∈ GL(2,F) any of
the matrices in Table 1, let ∆L(λ) be the pencil in (6.8). If ‖∆L(λ)‖F < 1/g, then

σmin(TA)− ‖∆TA‖2 ≥ 2(
√

2− 1)/g > 0 ,

where g = 2k + 1.

Finally, we show in Theorem 6.7 and its corollary Theorem 6.8 that the fixed
point iteration (6.13)–(6.14) or, equivalently, the iteration (6.19)–(6.20) by choosing
minimum norm solutions (Yi, Zi) at each step converges to a solution X of the
system of quadratic ?-Sylvester-like matrix equations (6.11) such that ‖X‖F .
‖∆L(λ)‖F , whenever ‖∆L(λ)‖F is properly upper bounded. The proof of Theorem
6.7 follows closely those by Stewart [70, Theorem 5.1] and Dopico, Lawrence, Pérez
and Van Dooren [28, Theorem 5.8].

Theorem 6.7. There exists a solution X of the quadratic system of ?-Sylvester-like
matrix equations (6.11) satisfying

(6.24) ‖X‖F ≤ 2
θ

δ
,

whenever

(6.25) δ > 0 and
θω

δ2
<

1

4
,

where δ = σmin(TA)−‖∆TA‖2, θ := ‖(∆A22,∆B22)‖F , and ω := ‖(M0+∆A11,M1+
∆B11)‖F .

Proof. Lemma 6.5 and the hypothesis δ > 0 guarantee that the linear system of
matrix equations (6.21) is consistent for any right-hand side. Let the minimum
norm solution of (6.19) be denoted by (Y0, Z0), and set X0 := (Y0 + Z0)/2. From
Theorem 6.2 and Lemma 6.5 we get that the matrix X0 is a solution of the matrix
equation (6.13) such that

‖X0‖F ≤ ‖(Y0, Z0)‖F ≤
1

δ
‖(∆A22,∆B22)‖F =

θ

δ
=: ρ0.

Then, let us define a sequence {Xi}∞i=0 of matrices as follows: for i > 0, the matrix
Xi is defined as Xi := (Yi + Zi)/2, where the pair of matrices (Yi, Zi) denotes the
minimum Frobenius norm solution of the underdetermined system (6.20). Clearly,
we have ‖Xi‖F ≤ ‖(Yi, Zi)‖F . Moreover, vectorizing (6.20) and using the matrix
TA + ∆TA defined in (6.22), we get
(6.26)[

vec(Yi)
vec(Z?i )

]
=

[
vec(Y0)
vec(Z?0 )

]
− (TA + ∆TA)†

[
vec(Xi−1(M0 + ∆A11)X?

i−1)
vec(Xi−1(M1 + ∆B11)X?

i−1)

]
.

We claim that the sequence {Xi}∞i=0 converges to a solution X of (6.11) satisfying
(6.24). To prove this, we first show that the sequence {‖Xi‖F }∞i=0 is a bounded
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sequence. If ‖Xi−1‖F ≤ ‖(Yi−1, Zi−1)‖F ≤ ρi−1, then we have from (6.26) that

‖Xi‖F ≤‖(Yi, Zi)‖F ≤ ‖(Y0, Z0)‖F
+ ‖(TA + ∆TA)†‖2‖‖(Yi−1, Zi−1)‖2F ‖(M0 + ∆A11,M1 + ∆B11)‖F

≤ρ0 + ρ2
i−1ωδ

−1 =: ρi .

The quantity ρi in the equation above may be written as ρi = ρ0(1 + κi), where κi
satisfies the recursion

(6.27)

{
κ1 = ρ0ωδ

−1 = θωδ−2,
κi+1 = κ1(1 + κi)

2 .

As it is shown in the proofs of [28, Theorem 5.8] and [70, Theorem 5.1], if κ1 < 1/4,
then limi→∞ κi = κ, where κ is given by

κ = lim
i→∞

κi =
2κ1

1− 2κ1 +
√

1− 4κ1
< 1,

and κi < κ for all i ≥ 1. Thus, the norms of the elements of the sequence {Xi}∞i=0

are bounded as

(6.28) ‖Xi‖F ≤ ρ := lim
i→∞

ρi = ρ0(1 + κ) .

We now show that the sequence {Xi}∞i=0 converges provided that 2δ−1ωρ < 1,
which is guaranteed by (6.25). To this purpose, let Si := (Yi − Yi−1, Zi − Zi−1).
Then, notice that (6.26) implies

‖Si‖F

≤ ‖(TA + ∆TA)†‖2
∥∥∥∥[vec

(
Xi−1(M0 + ∆A11)X?

i−1 −Xi−2(M0 + ∆A11)X?
i−2

)
vec
(
Xi−1(M1 + ∆B11)X?

i−1 −Xi−2(M1 + ∆B11)X?
i−2

)]∥∥∥∥
2

≤ δ−1

∥∥∥∥[vec
(
(Xi−1 −Xi−2)(M0 + ∆A11)X?

i−1

)
vec
(
(Xi−1 −Xi−2)(M1 + ∆B11)X?

i−1

)
+vec (Xi−2(M0 + ∆A11)(Xi−1 −Xi−2)?)
+vec (Xi−2(M1 + ∆B11)(Xi−1 −Xi−2)?)

]∥∥∥∥
2

≤ 2δ−1ωρ‖Xi−1 −Xi−2‖F ≤ 2δ−1ωρ‖Si−1‖F .

Since 2δ−1ωρ < 1, we get that {(Yi, Zi)}∞i=0 is a Cauchy sequence and, therefore,
it has a limit (Y, Z) := limi→∞(Yi, Zi). Thus, the matrix X := (Y + Z)/2 =
limi→∞(Yi + Zi)/2 = limi→∞Xi exists. Finally, we show that the matrix X is a
solution of (6.11) satisfying (6.24). First, since the sequence {(Yi, Zi)}∞i=0 satisfies
(6.26) and, so, (6.20), we have that the sequence {Xi = (Yi + Zi)/2}∞i=0 satisfies
(6.14) as a consequence of Theorem 6.2 and Lemma 6.3. Then, by taking limits in
both sides of (6.14), we get that X is a solution of (6.11). We conclude the proof
just noticing that (6.28) implies ‖X‖F ≤ ρ0(1 + κ) < 2ρ0 = 2δ−1θ. �

We complete the first step of the structured backward error analysis with Theo-
rem 6.8. Its proof follows from Lemma 6.6, Theorem 6.7 and norm inequalities, and
it is identical to its unstructured counterpart [28, Theorem 5.9], so it is omitted.

Theorem 6.8. Let L(λ) be an MA-structured block Kronecker pencil as in (5.1),
where A is any of the matrices in Table 1, let g = 2k + 1, and let ∆L(λ) be any
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pencil with the same size and structure as L(λ) such that

(6.29) ‖∆L(λ)‖F <
(
√

2− 1)2

g2

1

1 + ‖λM1 +M0‖F
.

Then, there exists a matrix X ∈ Fkn×(k+1)n that satisfies

(6.30) ‖X‖F ≤
g√

2− 1
‖∆L(λ)‖F ,

and the equality (6.5) with

(6.31) ‖∆L̃21(λ)‖F ≤ ‖∆L(λ)‖F
(

1 +
g√

2− 1
(‖λM1 +M0‖F + ‖∆L(λ)‖F )

)
.

6.2. Second step: proving that L(λ) + ∆L̃(λ) in (6.5) is an MA-structured
strong block minimal bases pencil. The aim of this section is to obtain bounds

on ‖∆L̃(λ)‖F that ensure the pencil (6.5) is an MA-structured strong block minimal
bases pencil. To prove this, we rely heavily on some important minimal bases
perturbations results in [28, Section 5.2]. In particular, we will use [28, Theorem
5.17], which is stated below for completeness.

Theorem 6.9. Let Lk(λ) and Λk(λ)T be the pencil and the row vector polynomial

defined in (2.3) and (2.4), respectively, and let ∆L̃21(λ) be any pencil of size kn×
(k + 1)n such that

(6.32) ‖∆L̃21(λ)‖F <
1

2(k + 1)3/2
.

Then, there exists a matrix polynomial ∆Rk(λ)T with size n× (k + 1)n and grade
k such that

(a) Lk(λ)⊗ In+ ∆L̃21(λ) and Λk(λ)T ⊗ In+ ∆Rk(λ)T are dual minimal bases,
with all the row degrees of the former equal to 1 and with all the row degrees
of the latter equal to k, and

(b) ‖∆Rk(λ)‖F ≤
√

2(k + 1) ‖∆L̃21(λ)‖F <
1√
2

.

By using Theorem 6.9, together with Theorem 3.5, and the definition of MA-
structured strong block minimal bases pencils in Definition 4.3, we prove the final
result of this section.

Theorem 6.10. Let A ∈ GL(2,F) be any of the matrices listed in Table 1, let

L(λ) + ∆L̃(λ) be the pencil in (6.5), and let g = 2k + 1. If

‖∆L̃21(λ)‖F <
1

2 g3/2
,

then L(λ) + ∆L̃(λ) is an MA-structured strong block minimal bases pencil. More-
over, there exists a matrix polynomial ∆Rk(λ)T of grade k such that Λk(λ)T ⊗ In+

∆Rk(λ)T is a minimal basis dual to Lk(λ)⊗ In + ∆L̃21(λ) with all its row degrees
equal to k, and

(6.33) ‖∆Rk(λ)‖F = ‖MA[∆Rk](λ)‖F ≤
√

2g ‖∆L̃21(λ)‖F <
1√
2
.
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Proof. The hypothesis ‖∆L̃21(λ)‖F < 1/(2g3/2) implies ‖∆L̃21(λ)‖F < 1/(2(k +

1)3/2). Thus, by Theorem 6.9, the matrix pencil Lk(λ)⊗In+∆L̃21(λ) is a minimal
basis with all its row degrees equal to 1, and there exists a matrix polynomial
∆Rk(λ) such that Λk(λ)T ⊗ In + ∆Rk(λ)T is a dual minimal basis of Lk(λ)⊗ In +

∆L̃21(λ) with all its row degrees equal to k. Therefore, by Definition 4.3, the pencil

L(λ) + ∆L̃(λ) in (6.5) is an MA-structured strong block minimal bases pencil. To
finish the proof, we only need to prove the upper bound (6.33). Indeed, the upper
bound for ‖∆Rk(λ)‖F follows from part-(b) in Theorem 6.9. Moreover, since A
is any of the matrices in Table 1, it is easily checked that ‖MA[∆Rk](λ)‖F =
‖∆Rk(λ)‖F , and the result is established. �

Remark 6.11. Note that the bound in Theorem 6.10 is pessimistic and that “g” can
be replaced in that result by “k+1”. However, the current version of Theorem 6.10
allows as to reuse significant parts of the analysis developed in [28] and, so, to make
the analysis in the next section shorter. Since the replacement “g” by “k+ 1” only
improves some bounds by small factors, we have preferred to simplify the analysis.

6.3. Third step: Mapping structured perturbations to a structured block
Kronecker pencil onto the structured matrix polynomial. Combining the
results in Sections 6.1 and 6.2, in this section we finish the structured backward
error analysis of structured odd-grade polynomial eigenvalue problems solved us-
ing structured block Kronecker pencils. The main result is Theorem 6.13, whose
consequences are, then, discussed in Corollary 6.15 and Remark 6.16.

In order to simplify the proof of Theorem 6.13, we present first the following
lemma.

Lemma 6.12. Let P (λ) and P (λ)+∆P (λ) be the matrix polynomials in (6.3) and
(6.6), respectively, where A is one of the matrices in Table 1, and write M(λ) =

λM1 +M0. If the matrix polynomial ∆Rk(λ) satisfies ‖∆Rk(λ)‖F < 1/
√

2, then

‖∆P (λ)‖F ≤
√
g (5‖∆L11(λ)‖F + 4‖λM1 +M0‖F ‖∆Rk(λ)‖F ) ,

where g = 2k + 1.

Proof. First, following the notation introduced in the proof of [28, Lemma 5.19], for
brevity, we use the notation Λkn := Λk(λ)⊗In and Λ?kn := Λk(λ)?⊗In, and omit the
dependence on λ of some matrix polynomials. Then, note that, since A is one of the
matrices in Table 1, we have ‖Λkn‖F = ‖MA[Λkn]‖F and ‖∆Rk‖F = ‖MA[∆Rk]‖F .
From (6.3) and (6.6), we get that

∆P (λ) =MA[∆Rk]?(λM1 +M0)Λkn + MA[Λkn]?∆L11Λkn + MA[∆Rk]?∆L11Λkn

+ MA[Λkn]?(λM1 +M0)∆Rk + MA[∆Rk]?(λM1 +M0)∆Rk

+ MA[Λkn]?∆L11∆Rk + MA[∆Rk]?∆L11∆Rk .(6.34)

The result follows from bounding the Frobenius norm of each of the terms in the
right-hand side of (6.34), using Lemma 2.12, together with ‖∆Rk‖F < 1/

√
2 and

‖MA[∆Rk]‖F < 1/
√

2 in those terms that are not linear in ∆L11, ∆Rk, and
MA[∆Rk] for bounding them with linear terms. In particular, note that Lemma
2.12 implies that for any matrix polynomial Z(λ) of grade t and any A in Table 1
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we have

‖MA[Λkn]?Z(λ)‖F = ‖MA[ΛTknMA−1 [Z]]‖F ≤min{
√
k + 1,

√
t+ 1}‖MA−1 [Z]‖F

≤min{
√
k + 1,

√
t+ 1}‖Z‖F .

With this observation, bounding all the terms of the right-hand-side of (6.34) is
elementary but rather long, so we invite the reader to complete the proof. �

Finally, we are at the position of stating and proving the main result of this
section, namely, the perturbation of structured block Kronecker pencils result in
Theorem 6.13.

Theorem 6.13. Let P (λ) =
∑g
i=0 Piλ

i ∈ F[λ]n×n be a structured ((skew)-symmetric,
(anti)-palindromic, or alternating) matrix polynomial and let L(λ) be a structured
block Kronecker pencil as in (5.1), where the matrix A is one of the matrices in
Table 1 and it is chosen to guarantee that S (P ) = S (L), with g = 2k + 1 and
such that P (λ) = (MA[Λk](λ)? ⊗ In)(λM1 +M0)(Λk(λ)⊗ In), where λM1 +M0 is
the (1, 1)-block in the natural partition of L(λ) and Λk(λ) is the vector polynomial
in (2.4). If ∆L(λ) is any pencil with the same size and structure as L(λ) and such
that

(6.35) ‖∆L(λ)‖F < (
√

2− 1)2 1

g5/2

1

1 + ‖λM1 +M0‖F
,

then L(λ) + ∆L(λ) is a strong linearization of a matrix polynomial P (λ) + ∆P (λ)
with grade g and such that

‖∆P (λ)‖F
‖P (λ)‖F

≤ 14 g5/2 ‖L(λ)‖F
‖P (λ)‖F

(1 + ‖λM1 +M0‖F + ‖λM1 +M0‖2F )
‖∆L(λ)‖F
‖L(λ)‖F

,

and S (∆P ) = S (P ). In addition, the right minimal indices of L(λ) + ∆L(λ) are
those of P (λ) + ∆P (λ) shifted by k, and the left minimal indices of L(λ) + ∆L(λ)
are those of P (λ) + ∆P (λ) shifted also by k.

Proof. Notice that the condition (6.35) implies (6.29), so we can apply Theorem 6.8

to prove that the pencil L(λ) + ∆L(λ) is ?-congruent to the pencil L(λ) + ∆L̃(λ)
in (6.5). Since ?-congruences are strict equivalences, both pencils have the same

complete eigenstructures. By using (6.31) together with g‖∆L(λ)‖F <
√

2 − 1,
which is implied by (6.35), we get the following upper bound

‖∆L̃21(λ)‖F ≤ ‖∆L(λ)‖F
(

2 +
g√

2− 1
‖λM1 +M0‖F

)
(6.36)

≤ (
√

2− 1)
1

g3/2
<

1

2g3/2
.

The above upper bound allows us to apply Theorem 6.10 to the pencil L(λ)+∆L̃(λ).

Thus, the pencil L(λ) + ∆L̃(λ) is an MA-structured strong block minimal bases
pencil, which, by Theorem 4.5, is a strong linearization of the matrix polynomial
P (λ) + ∆P (λ) in (6.6) with S (∆P ) = S (P ). Furthermore, Theorem 4.5 also

implies that the right and left minimal indices of L(λ) + ∆L̃(λ) and, since they are
strictly equivalent, the ones of L(λ) + ∆L(λ), are those of P (λ) + ∆P (λ) shifted by
k. It only remains to obtain the upper bound for ‖∆P (λ)‖F /‖P (λ)‖F . But this
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follows from combining Theorem 6.10 with (6.36) to obtain

‖∆Rk(λ)‖F = ‖MA[∆Rk](λ)‖F ≤
√

2√
2− 1

g2 ‖∆L(λ)‖F (1 + ‖λM1 +M0‖F ) ,

and, then, combining the above upper bound with Lemma 6.12. �

Recall that our main goal is to study whether solving a SPEP or a SCPE applying
a structurally backward stable algorithm (like the palindromic-QR or the structured
staircase algorithm) to a structured block Kronecker pencil is structurally global
backward stable from the point of view of the polynomial or not. In view of Theorem
6.13, the structured backward stability is guaranteed when the constant

(6.37) CP,L := 14 g5/2 ‖L(λ)‖F
‖P (λ)‖F

(1 + ‖λM1 +M0‖F + ‖λM1 +M0‖2F )

is a moderate number. To help us to study the size of (6.37), we present Lemma
6.14. Although Lemma 6.14 is similar to [28, Lemma 5.23], we reprove it in a
simpler way that is more adequate in our structured setting.

Lemma 6.14. Let P (λ) =
∑g
i=0 Piλ

i ∈ F[λ]n×n be a structured matrix polynomial
and let L(λ) be a structured block Kronecker pencil as in (5.1), where the matrix A
is one of the matrices in Table 1 and it is chosen to guarantee that S (P ) = S (L),
with g = 2k+ 1 and such that P (λ) = (MA[Λk](λ)?⊗ In)(λM1 +M0)(Λk(λ)⊗ In).
Then:

(a)
‖L(λ)‖F
‖P (λ)‖F

=

√(
‖λM1 +M0‖F
‖P (λ)‖F

)2

+
4nk

‖P (λ)‖2F
≥ 1√

2 (k + 1)
.

(b) ‖λM1 +M0‖F ≥ ‖P (λ)‖F /
√

2 (k + 1).

Proof. The equality in part (a) follows directly from the structure of L(λ) in
(5.1). On the other hand Lemma 2.12 and the related property ‖(MA[Λk](λ)? ⊗
In)Z(λ)‖F ≤ min{

√
k + 1,

√
t+ 1}‖Z(λ)‖F for any matrix polynomial Z(λ) of

grade t, that we have already used in the proof of Lemma 6.12, yield ‖P (λ)‖F ≤√
k + 1‖(λM1 + M0)(Λk(λ) ⊗ In)‖F ≤

√
2(k + 1)‖λM1 + M0‖F . This proves (b),

which implies the inequality in (a). �

The consequences of Theorem 6.13 and Lemma 6.14 are the same as the conse-
quences of [28, Lemma 5.23] and [28, Theorems 5.21 and 5.22] in the backward error
analysis in [28]. If ‖P (λ)‖F � 1, then CP,L is huge, since 4kn/‖P (λ)‖2F is huge.
Moreover, from (6.37) and part-(b) in Lemma 6.14, we see that if ‖P (λ)‖F � 1,
then CP,L is also huge, since ‖λM1 + M0‖F is huge and ‖L(λ)‖F /‖P (λ)‖F ≥
1/
√

2 (k + 1). Therefore, it is necessary to scale P (λ) in advance in such a way
that ‖P (λ)‖F = 1 to have a chance CP,L moderate. However, even in this case,
CP,L is large if ‖λM1 + M0‖F is large. Therefore, to guarantee that CP,L is a
moderate number, in addition to scale P (λ), one has to consider only structured
block Kronecker pencils with ‖λM1 +M0‖F ≈ ‖P (λ)‖F .

As a consequence of the discussion in the previous paragraph, we finally state the
informal Corollary 6.15, which establishes sufficient conditions for the structurally
backward stability of the solution of SPEPs and SCPEs via structured block Kro-
necker pencils. As it was done in its unstructured version [28, Corollary 5.24], for
the sake of clarity and simplicity any nonessential numerical constant is omitted.
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Corollary 6.15. Let P (λ) =
∑g
i=0 Piλ

i ∈ F[λ]n×n be a structured matrix poly-
nomial with ‖P (λ)‖F = 1. Let L(λ) be a structured block Kronecker pencil as
in (5.1), where the matrix A is one of the matrices in Table 1 and it is cho-
sen to guarantee that S (P ) = S (L), with g = 2k + 1 and such that P (λ) =
(MA[Λk](λ)? ⊗ In)(λM1 +M0)(Λk(λ)⊗ In), where λM1 +M0 is the (1,1) block of
L(λ). Let ∆L(λ) be any pencil with the same size and structure as L(λ) and with
‖∆L(λ)‖F sufficiently small. If ‖λM1 +M0‖F ≈ ‖P (λ)‖F , then L(λ) + ∆L(λ) is a
strong linearization of a matrix polynomial P (λ) + ∆P (λ) with grade g and such
that

(6.38)
‖∆P (λ)‖F
‖P (λ)‖F

. g3
√
n
‖∆L(λ)‖F
‖L(λ)‖F

with S (∆P ) = S (P ).

In addition, the right minimal indices of L(λ) + ∆L(λ) are those of P (λ) + ∆P (λ)
shifted by k, and the left minimal indices of L(λ)+∆L(λ) are those of P (λ)+∆P (λ)
also shifted by k.

Remark 6.16. We emphasize that Corollary 6.15 can be applied in particular to
the non-permuted block-tridiagonal and block-antitridiagonal structure preserving
strong linearizations in [5, 52, 53, 54] (see also Example 5.8 in this paper), since the
Frobenius norm is invariant under permutations, permutations preserve strong lin-
earizations and minimal indices, and the structure of the pencils are preserved
under ?-congruence. Therefore, given one of these block-tridiagonal or block-
antitridiagonal structure preserving strong linearization and a perturbation of it
with the same structure, we can permute both and transform the corresponding
perturbation problem into the problem we have solved in this section.

Remark 6.17. Notice the following rather surprising result. The constant (6.37),
which shows whether or not solving SPEPs or SCPEs applying a structured back-
ward stable algorithm to a structured block Kronecker pencil is structurally global
backward stable, is the same constant that shows whether or not the (unstruc-
tured) backward stability of solving PEPs and CPEs applying a backward stable
algorithm (like the QZ algorithm of the staircase algorithm) to a block Kronecker
pencil holds (see [28, Section 6.3]).

7. Conclusions

The numerical solution of a structured polynomial eigenvalue problem is usually
performed by embedding the associated structured matrix polynomial into a ma-
trix pencil with the same structure, called a structure-preserving linearization, and
then applying well-established algorithms for structured matrix pencils, like the
palindromic-QR algorithm or the structured versions of the staircase algorithm,
to the linearization. This approach guarantees that the computed complete eigen-
structure is the exact one of a nearby matrix pencil with the same structure as
the original matrix polynomial. However, it has remained an open problem to de-
termine whether or not the computed eigenstructure is the exact one of a nearby
structured matrix polynomial. In this paper, we have solved this problem for a
large family of structure-preserving linearizations, i.e., the family of structured
block Kronecker linearizations. More precisely, we have performed for the first
time a rigorous global and structured backward error analysis of structured com-
plete polynomial eigenvalue problems solved by using structured block Kronecker
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linearizations, when the associated matrix polynomial has odd degree and is (skew-
)symmetric, (anti-)palindromic or alternating. In order to perform our analysis for
the six considered structures in an unified way, we have introduced the formalism of
MA-structured matrix polynomials, and the families of MA-structured strong block
minimal bases pencils and MA-structured block Kronecker pencils, which contains
as a particular subclass the family of structured Kronecker pencils. This analysis
has allowed us to identify a huge family of structure-preserving linearizations that
yield perfect structured polynomial backward stability in the solution of structured
complete polynomial eigenvalue problems. In particular, this family contains the
famous block-tridiagonal and block-antitridiagonal structure preserving strong lin-
earizations presented in [5, 23, 52, 53, 54] and the symmetric and skew-symmetric
strong linearizations in [31].
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Appendix A. Proof of Lemma 6.4

The goal of this appendix is the computation of the minimum singular value of
the matrix

TA =

[
(bFkn − dEkn)⊗ Ikn −Ikn ⊗ Ekn
(aFkn − cEkn)⊗ Ikn Ikn ⊗ Fkn

]
,

when the matrix A =
[
a b
c d

]
is equal to any of the following matrices

A1 :=

[
1 0
0 1

]
, A2 :=

[
−1 0
0 −1

]
, A3 :=

[
0 1
1 0

]
, A4 :=

[
0 −1
−1 0

]
,

A5 :=

[
−1 0
0 1

]
, and A6 :=

[
1 0
0 −1

]
.

We start by reducing the problem of computing the minimum singular value of

TA to the problem of computing the minimum singular value of a matrix T̂A with
a size much smaller than the size of TA. First, notice that we may write the matrix
TA as

TA =

[
(bFkn − dEkn)⊗ Ik ⊗ In −Ikn ⊗ Ek ⊗ In
(aFkn − cEkn)⊗ Ik ⊗ In Ikn ⊗ Fk ⊗ In

]
=

[
(bFkn − dEkn)⊗ Ik −Ikn ⊗ Ek
(aFkn − cEkn)⊗ Ik Ikn ⊗ Fk

]
⊗ In =: T̃A ⊗ In.

Thus, we obtain σmin(TA) = σmin(T̃A). Then, we perform a perfect shuffle permu-

tation on each block of the matrix T̃A to swap the order of the Kronecker products.
In other words, there exist permutation matrices S, R1, and R2 (see, for example,
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[74]) such that[
S

S

] [
(bFkn − dEkn)⊗ Ik −Ikn ⊗ Ek
(aFkn − cEkn)⊗ Ik Ikn ⊗ Fk

] [ RT1

RT2

]

=

[
Ik ⊗ (bFkn − dEkn) −Ek ⊗ Ikn
Ik ⊗ (aFkn − cEkn) Fk ⊗ Ikn

]
=

[
Ik ⊗ (bFk − dEk) −Ek ⊗ Ik
Ik ⊗ (aFk − cEk) Fk ⊗ Ik

]
⊗ In =: T̂A ⊗ In.

Therefore, we obtain σmin(TA) = σmin(T̃A) = σmin(T̂A).

We will denote by T̂i the matrix T̂A when A = Ai, for i = 1, . . . , 6. The rest of

the proof consists in showing that the minimum singular value of the matrix T̂i, for
i = 1, . . . , 6, is equal to the minimum singular value of the matrix

(A.1) T̂ :=

[
Ik ⊗ Ek Ek ⊗ Ik
Ik ⊗ Fk Fk ⊗ Ik

]
,

which, by [28, Lemmas 6.4 and B.1], is equal to 2 sin(π/(4k)).
First, notice the following equalities

T̂ =

[
−Ik2 0

0 Ik2

] [
−Ik ⊗ Ek −Ek ⊗ Ik
Ik ⊗ Fk Fk ⊗ Ik

]
=

[
−Ik2 0

0 Ik2

] [
Ik ⊗ Ek −Ek ⊗ Ik
−Ik ⊗ Fk Fk ⊗ Ik

] [
−Ik(k+1) 0

0 Ik(k+1)

]
.

Thus, we immediately obtain σmin(T̂1) = σmin(T̂2) = σmin(T̂ ) = 2 sin(π/(4k)). In
addition, notice[
−Ik ⊗ Fk −Ek ⊗ Ik
Ik ⊗ Ek Fk ⊗ Ik

]
=

[
Ik ⊗ Fk −Ek ⊗ Ik
−Ik ⊗ Ek Fk ⊗ Ik

] [
−Ik(k+1) 0

0 Ik(k+1)

]
, and[

−Ik ⊗ Ek −Ek ⊗ Ik
−Ik ⊗ Fk Fk ⊗ Ik

]
=

[
Ik ⊗ Ek −Ek ⊗ Ik
Ik ⊗ Fk Fk ⊗ Ik

] [
−Ik(k+1) 0

0 Ik(k+1)

]
,

so we obtain σmin(T̂3) = σmin(T̂4) and σmin(T̂5) = σmin(T̂6), and, therefore, we only

need to compute σmin(T̂3) and σmin(T̂5).

Let us compute first the minimum singular value of T̂3. Recall that the singular

values of T̂3 are equal to the square roots of the eigenvalues of the matrix T̂3T̂
T
3 .

The matrix T̂3T̂
T
3 is equal to

T̂3T̂
T
3 =

[
2Ik2 −Ŵk,k

−ŴT
k,k 2Ik2

]
= 2I2k2 −

[
0 Ŵk,k

ŴT
k,k 0

]
,

where Ŵk,k = Ik⊗FkETk +EkF
T
k ⊗ Ik. It is well known that the eigenvalues of the

matrix [
0 Ŵk,k

ŴT
k,k 0

]
are ±σ1(Ŵk,k), . . . ,±σk2(Ŵk,k), where σ1(Ŵk,k) ≥ · · · ≥ σk2(Ŵk,k) are the singu-

lar values of Ŵk,k. Therefore, the eigenvalues of T̂3T̂
T
3 are 2 ± σ1(Ŵk,k), . . . , 2 ±
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σk2(Ŵk,k), which implies

σmin(T̂3) =

√
2− σmax(Ŵk,k).

So we have to compute the largest singular value of the matrix Ŵk,k. To this aim,
let us denote by Rk the k × k reverse identity matrix, i.e., the matrix

Rk :=

 1

. .
.

1

 ∈ Rk×k.

Notice RkFkE
T
k Rk = EkF

T
k . Thus, we have (Ik⊗Rk)Ŵk,k(Ik⊗Rk) = Ik⊗EkFTk +

EkF
T
k ⊗ Ik =: Wk,k. From [28, Proposition B4] and the previous argument, we get

σmax(Ŵk,k) = σmax(Wk,k) = 2 cos(π/(2k)). Therefore, using a simple trigonometric
identity, we obtain

σmin(T̂3) =

√
2− 2 cos

( π
2k

)
= 2 sin

( π
4k

)
,

which is the desired result.
Let us compute, now, the minimum singular value of the matrix T̂5. To this

purpose, note that[
−Ik2

Ik2

]
T̂5 =

[
Ik ⊗ Ek Ek ⊗ Ik

Ik ⊗ (−Fk) Fk ⊗ Ik

]
=: T̃5,

and that T̂5 and T̃5 have the same singular values. If we define the diagonal matrices
Sk := diag((−1)0, (−1)1, . . . , (−1)k−1) ∈ Rk×k and Sk+1 := diag(Sk, (−1)k) ∈
R(k+1)×(k+1), then SkEkSk+1 = Ek and SkFkSk+1 = −Fk. Therefore[

Ik ⊗ Sk
Ik ⊗ Sk

]
T̃5

[
Ik ⊗ Sk+1

Ik+1 ⊗ Sk

]
= T̂ ,

where T̂ is the matrix in (A.1). So the singular values of T̂5 and T̂ coincide and

σmin(T̂5) = σmin(T̂ ) = 2 sin(π/(4k)), which completes the proof.

Finally, the inequality σmin(TA) ≥ 2
√

2/g follows from sin(x) ≥ 2
√

2x/π, for
0 ≤ x ≤ π/4, and k ≤ g/2.
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7. T. Apel, V. Mehrmann, D. Watkins. Numerical solution of large scale structured polynomial

or rational eigenvalue problems. In: Cucker, F., Olver, P. (eds.). Foundations of Computa-

tional Mathematics. London Mathematical Society Lecture Note Series, vol. 312. Cambridge
University Press, Cambridge, pp. 137–157 (2004).
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