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The standard way of solving a polynomial eigenvalue prob-
lem associated with a matrix polynomial starts by embedding 
the matrix coefficients of the polynomial into a matrix pen-
cil, known as a strong linearization. This process transforms 
the problem into an equivalent generalized eigenvalue prob-
lem. However, there are some situations in which is more 
convenient to replace linearizations by other low degree ma-
trix polynomials. This has motivated the idea of a strong 
�-ification of a matrix polynomial, which is a matrix poly-
nomial of degree at most � having the same finite and infinite 
elementary divisors, and the same numbers of left and right 
minimal indices as the original matrix polynomial. We present 
in this work a novel method for constructing strong �-ifications 
of matrix polynomials of size m × n and grade d when � < d, 

* Corresponding author.
E-mail addresses: dopico@math.uc3m.es (F.M. Dopico), javier.perez-alvaro@mso.umt.edu (J. Pérez), 

paul.vandooren@uclouvain.be (P. Van Dooren).
1 Supported by “Ministerio de Economía, Industria y Competitividad of Spain” and “Fondo Europeo de 

Desarrollo Regional (FEDER) of EU” through grants MTM-2015-68805-REDT, MTM-2015-65798-P, and 
MTM-2017-90682-REDT (MINECO/FEDER, UE).
2 Partially supported by KU Leuven Research Council grant OT/14/074 and by the Belgian network 

DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles 
Programme initiated by the Belgian Science Policy Office.
3 Supported by the Belgian network DYSCO (Dynamical Systems, Control, and Optimization), funded by 

the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office. This work 
was partially developed while Paul Van Dooren held a “Chair of Excellence” at Universidad Carlos III de 
Madrid in the academic year 2017–18.
https://doi.org/10.1016/j.laa.2018.10.010
0024-3795/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2018.10.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:dopico@math.uc3m.es
mailto:javier.perez-alvaro@mso.umt.edu
mailto:paul.vandooren@uclouvain.be
https://doi.org/10.1016/j.laa.2018.10.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2018.10.010&domain=pdf


164 F.M. Dopico et al. / Linear Algebra and its Applications 562 (2019) 163–204
Minimal indices
Dual minimal bases
Linearization
Quadratification
Strong �-ification
Companion �-ification
Dual minimal bases matrix 
polynomial
Block Kronecker matrix polynomial

and � divides nd or md. This method is based on a fam-
ily called “strong block minimal bases matrix polynomials”, 
and relies heavily on properties of dual minimal bases. We 
show how strong block minimal bases �-ifications can be con-
structed from the coefficients of a given matrix polynomial 
P (λ). We also show that these �-ifications satisfy many de-
sirable properties for numerical applications: they are strong 
�-ifications regardless of whether P (λ) is regular or singular, 
the minimal indices of the �-ifications are related to those of 
P (λ) via constant uniform shifts, and eigenvectors and mini-
mal bases of P (λ) can be recovered from those of any of the 
strong block minimal bases �-ifications. In the special case 
where � divides d, we introduce a subfamily of strong block 
minimal bases matrix polynomials named “block Kronecker 
matrix polynomials”, which is shown to be a fruitful source of 
companion �-ifications.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Minimal (polynomial) bases are an important type of bases of rational vector sub-
spaces used extensively in many areas of applied mathematics. They were introduced 
by Dedekind and Weber in [13], where they are called “normal bases”, in the context of 
valuation theory. Since then, they have played an important role in multivariable linear 
systems theory, coding theory, control theory, and in the spectral theory of rational and 
polynomial matrices. For detailed introductions to minimal bases, their algebraic proper-
ties, computational schemes for constructing such bases from arbitrary polynomial bases, 
their robustness under perturbations, and their role in the singular structure of singular 
rational and polynomial matrices, we refer the reader to the classical works [28,33,53], 
the works [3,27,51] and [38], where an elegant approach to minimal bases via filtrations 
is presented.

In this paper, we are interested in the use of minimal bases as a tool for solving poly-
nomial eigenvalue problems [2,16,22]. We recall that the complete polynomial eigenvalue 
problem (CPEP) associated with a regular matrix polynomial consists in computing all 
the eigenvalues (finite and infinite) of the polynomial, while for a singular matrix polyno-
mial, it consists in computing all the eigenvalues (finite and infinite) and all the minimal 
indices of the polynomial. One of the most common strategies for solving a CPEP is to 
transform it into a generalized eigenvalue problem (GEP) by using a strong linearization 
[17,29,34]. More specifically, a strong linearization of a matrix polynomial P (λ) is a ma-
trix pencil (i.e., a matrix polynomial of degree at most 1) having the same finite and 
infinite elementary divisors (and, thus, the same eigenvalues) and the same number of 
left and right minimal indices. Given a strong linearization L(λ) of a matrix polynomial 
P (λ), the CPEP associated with P (λ) can be solved by applying the QZ algorithm [42]
or the staircase algorithm [49,50] to L(λ), provided that the minimal indices of L(λ) are 
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related with those of P (λ) by known rules. In many applications, the eigenvectors of 
regular matrix polynomials and the minimal bases of singular matrix polynomials are 
of interest as well. In these cases, the strong linearization L(λ) should also allow the 
recovery of eigenvectors and minimal bases of the original matrix polynomial P (λ).

Due to their many favorable properties, the most common strong linearizations used 
in practice to solve CPEP’s are the well-known Frobenius companion forms [34]. Indeed, 
they are constructed from the coefficients of the matrix polynomials without performing 
any arithmetic operations, they are strong linearizations regardless of whether the matrix 
polynomials are regular or singular [18,20], the minimal indices of singular polynomials 
are related with the minimal indices of the Frobenius companion forms by uniform shifts 
[18], the eigenvectors of regular matrix polynomials and minimal bases of singular matrix 
polynomials are easily recovered from those of the Frobenius companion forms [18], and 
solving CPEP’s by applying a backward stable eigensolver to the Frobenius companion 
forms is backward stable [22,50]. However, the Frobenius companion forms present some 
significant drawbacks. For instance, they do not preserve any of the most important 
algebraic structures appearing in applications [40], they increase significantly the size 
of the problem, they modify the conditioning of the problem [30], and they are easily 
constructed from the coefficients of the matrix polynomial only if these coefficients are 
given with respect to the monomial basis.

In the past few years, much effort has been made to constructing strong linearizations 
that do not present the drawbacks of the Frobenius companion forms. Concerning the 
preservation of algebraic structures, there are two main sources available of structure-
preserving strong linearizations for structured matrix polynomials. The first source is the 
vector space DL(P ). This vector space was introduced in [39] and further analyzed in 
[30,31,40]. The second source is based on Fiedler pencils [4,18,20,26] and their different 
extensions [7,8,10,11,19,52]. Regarding matrix polynomials expressed in different polyno-
mial bases, strong linearizations can be found in [1,36,44] for the Chebyshev polynomial 
basis, in [1,24] for orthogonal polynomial bases, in [43] for degree-graded polynomial 
bases, in [41] for the Bernstein polynomial basis, in [12,47] for the Lagrange interpolants 
basis, and in [47] for the Hermite interpolants basis, to name a few recent references.

The notion of strong linearization has been extended to matrix polynomials of arbi-
trary degree � [14]. This new notion is named strong �-ification. A strong �-ification of 
a matrix polynomial P (λ) is a matrix polynomial of degree at most � having the same 
finite and infinite elementary divisors, and the same number of left and right minimal 
indices as the matrix polynomial P (λ). The first examples of strong �-ifications of an 
arbitrary m ×n matrix polynomial P (λ) of grade d were given in [14]. These �-ifications 
were named Frobenius-like companion forms of grade �, because of their resemblance 
to the Frobenius companion forms. However, they are defined only when � divides d. 
A more general construction was presented in [16]. This construction is valid for the 
case where � divides nd or md, which is the more general condition for which a given 
construction can provide strong �-ifications for all matrix polynomials with such size 
and grade [15]. Another approach for constructing �-ifications can be found in [6]. The 
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interest of strong �-ifications for solving CPEP’s mainly stems from the fact that some 
even-grade structured matrix polynomials do not have any strong linearization with the 
same structure due to some spectral obstructions [14]. This phenomenon implies the im-
possibility of constructing structured companion forms for even grades, which suggests 
that, for even-grade structured matrix polynomials, linearizations should be replaced by 
other low-degree matrix polynomials in numerical computations [32].

There are many (in fact, infinitely many) choices available in the literature for con-
structing strong linearizations and strong �-ifications of matrix polynomials. From a 
numerical analyst point of view, this situation is very desirable, since one can choose the 
most favorable construction in terms of various criteria, such as conditioning and back-
ward errors [30,31], the basis in which the polynomial is represented [1], preservation 
of algebraic structures [32,40], exploitation of matrix structures in numerical algorithms
[37,48,46], etc. However, there has not been a framework providing a way to construct 
and analyze all these strong linearizations and strong �-ifications in a consistent manner. 
Providing such a framework is one of the main goals of this work. More specifically, 
our main contributions are the following. First, we provide a framework broad enough 
to accommodate most of the recent work on strong �-ifications (strong linearizations, 
strong quadratifications, etc.). This is achieved by introducing the families of block min-
imal bases matrix polynomials and strong block minimal bases matrix polynomials, which 
unifies the constructions in [15,22,45]. These families rely heavily on the concept of min-
imal bases [27]. Second, we show that our new framework allows for the construction 
of infinitely many new strong �-ifications of matrix polynomials (regular or singular). 
These constructions are possible for matrix polynomials of size m × n and grade d in 
the case where � divides nd or md. In the special case where � divides d, we introduce 
the family of block Kronecker matrix polynomials. The advantage of this family over 
general strong block minimal bases matrix polynomials is that they allow constructing 
strong �-ifications without performing any arithmetic operation. Moreover, some of these 
�-ifications are shown to be companion forms [14, Def. 5.1] different from the Frobenius-
like companion forms in [14]. Third, we provide the theoretical tools to analyze the 
algebraic and analytical properties of �-ifications based on strong block minimal bases 
pencils in a unified way. To be more specific, we show how eigenvectors, minimal bases 
and minimal indices of the matrix polynomials are related with those of the �-ifications, 
and that these �-ifications present one-sided factorizations as those used in [35], useful 
for performing residual “local”, i.e., for each particular computed eigenpair, backward 
error analyses of regular CPEP’s solved by using �-ifications.

We mention in passing that a potential advantage –from the numerical point of view–
of the �-ifications introduced in this work is that the minimal bases involved in their 
construction are particular instances of the so called full-Sylvester-rank minimal bases
[51]. Full-Sylvester-rank minimal bases are the only kind of minimal bases for which it 
is possible to perform a perturbation analysis [51] when fixing the grade of the minimal 
basis. These perturbation results have been successfully used for performing a rigorous 
backward error analysis of solving CPEP’s by using block Kronecker linearizations [22] or 
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by using the �-ifications introduced by De Terán, Dopico and Van Dooren [16,51]. Thus, 
we expect that our framework for constructing �-ifications from dual minimal bases, 
together with the perturbation results for full-Sylvester-rank minimal bases [51], will 
allow us to extend in a future work the backward error results in [51] for the �-ifications 
in [16] to a wider family of �-ifications.

The rest of the paper is as follows. In Section 2, we introduce the definitions and 
notation used throughout the paper, and some basic results needed in other sections. 
In Section 3, we recall the notions of minimal bases and dual minimal bases of ratio-
nal vector subspaces, review some known results for dual minimal bases, and present 
some basic new results needed in other sections. In Section 4, we introduce the family 
of strong block minimal bases matrix polynomials, study their properties, and establish 
the connection of previous works with our work. Section 5 is devoted to explain the 
general construction of strong �-ifications of given matrix polynomials from strong block 
minimal bases matrix polynomials. We also introduce in this section the family of block 
Kronecker matrix polynomials, an important subfamily of strong block minimal bases 
matrix polynomials. This family provides many examples of �-ifications for matrix poly-
nomials that are constructed without performing any arithmetic operations. In Section 6, 
we include recovery procedures of eigenvectors, and minimal bases and minimal indices 
of a matrix polynomial from those of its strong block minimal bases matrix polynomials 
and block Kronecker matrix polynomials. We also show that strong block minimal bases 
matrix polynomials admit one-sided factorizations.

2. Definitions, notation, and some auxiliary results

In this section, we introduce the notation used in the paper, recall some basic defini-
tions and review some basic results.

Although the most relevant case in numerical applications is to consider matrix poly-
nomials with real or complex coefficients, the results in this paper are presented for 
matrix polynomials with coefficients in arbitrary fields. Hence, throughout the paper, we 
use F to denote an arbitrary field, and F to denote the algebraic closure of F. By F[λ]
and F(λ) we denote, respectively, the ring of polynomials with coefficients from the field 
F and the field of rational functions over F. The set of m ×n matrices with entries in F[λ]
is denoted by F[λ]m×n. Any element of F[λ]m×n is called an m ×n matrix polynomial, or, 
just a matrix polynomial. When m = 1 (resp. n = 1), we refer to the matrix polynomial 
as a row vector polynomial (resp. column vector polynomial). A matrix polynomial P (λ)
is said to be regular if it is square and the scalar polynomial detP (λ) is not identically 
equal to the zero polynomial. Otherwise, P (λ) is said to be singular. If P (λ) is regular 
and detP (λ) ∈ F, then P (λ) is said to be unimodular. The normal rank of a matrix 
polynomial P (λ) is the rank of P (λ) considered as a matrix over the field F(λ).

A matrix polynomial P (λ) ∈ F[λ]m×n is said to have grade d if it can be expressed in 
the form



168 F.M. Dopico et al. / Linear Algebra and its Applications 562 (2019) 163–204
P (λ) =
d∑

i=0
Piλ

i, with P0, . . . , Pd ∈ F
m×n, (2.1)

where any of the coefficients, including Pd, can be zero. The degree of P (λ), denoted 
by deg(P (λ)), is the maximum integer k such that Pk �= 0. When the grade of P (λ) is 
not explicitly stated, we consider its grade equal to its degree. A matrix polynomial of 
grade 1 is called a matrix pencil or, simply, a pencil. The vector space of m × n matrix 
polynomials of grade k is denoted by Fk[λ]m×n.

For any d ≥ deg(P (λ)), the d-reversal matrix polynomial of P (λ) is defined as

revdP (λ) := λdP (λ−1).

When P (λ) is assumed to have grade d, then it is assumed that revdP (λ) has also grade d.
Two matrix polynomials P (λ) and Q(λ) are said to be strictly equivalent if there exist 

nonsingular constant matrices E and F such that EP (λ)F = Q(λ), and are said to be 
unimodularly equivalent if there exist unimodular matrix polynomials U(λ) and V (λ)
such that U(λ)P (λ)V (λ) = Q(λ).

The complete eigenstructure of a regular matrix polynomial consists of its finite and 
infinite elementary divisors, and for a singular matrix polynomial it consists of its fi-
nite and infinite elementary divisors together with its right and left minimal indices. 
For more detailed definitions of the complete eigenstructure of matrix polynomials, we 
refer the reader to [14, Section 2]. Nevertheless, due to its relevance in this work, the 
singular eigenstructure of matrix polynomials will be briefly reviewed in Section 3 (see 
Definition 3.9).

The standard way of solving CPEP’s is by linearization. The definitions of linearization 
and strong linearization of matrix polynomials were introduced in [29,34] for regular 
matrix polynomials, and then extended to the singular case in [17]. In [14], the notion of 
(strong) linearization was extended to matrix polynomials of arbitrary grade, giving rise 
to the concept of (strong) �-ifications. All these concepts are introduced in the following 
definition.

Definition 2.1. A matrix polynomial L(λ) of grade � is said to be an �-ification of a given 
matrix polynomial P (λ) of grade d if for some s ≥ 0 there exist unimodular matrix 
polynomials U(λ) and V (λ) such that

U(λ)L(λ)V (λ) =
[
Is 0
0 P (λ)

]
.

If, additionally, the matrix polynomial rev�L(λ) is an �-ification of revdP (λ), then L(λ) is 
said to be a strong �-ification of P (λ). When � = 1, (strong) �-ifications are called (strong) 
linearizations. When � = 2, (strong) �-ifications are called (strong) quadratifications.

Any strong �-ification L(λ) of a matrix polynomial P (λ) shares with P (λ) the same 
finite and infinite elementary divisors [14, Theorem 4.1]. However, Definition 2.1 only 
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guarantees that the number of left (resp. right) minimal indices of L(λ) is equal to the 
number of left (resp. right) minimal indices of P (λ). Except by these constraints on 
the numbers, L(λ) may have a very different set of right and left minimal indices [14, 
Corollary 7.12]. Therefore, in the case of singular matrix polynomials, it is important in 
practice to consider strong �-ifications with the additional property that their minimal 
indices allow to recover the minimal indices of the polynomial via some simple rule. The 
strong �-ifications introduced in this work present very simple recovery formulas for the 
minimal indices of the original matrix polynomial.

To easily recognize �-ifications in certain situations which are of interest in this work, 
we present Lemma 2.2. This result is a simple generalization of [22, Lemma 2.13], so we 
omit its proof.

Lemma 2.2. Let P (λ) ∈ F[λ]m×n and let L(λ) be a grade-� matrix polynomial. If there 
exist two unimodular matrix polynomials Ũ(λ) and Ṽ (λ) such that

Ũ(λ)L(λ)Ṽ (λ) =

⎡⎣Z(λ) X(λ) It
Y (λ) P (λ) 0
Is 0 0

⎤⎦ , (2.2)

for some s ≥ 0 and t ≥ 0 and some matrix polynomials X(λ), Y (λ), and Z(λ), then 
L(λ) is an �-ification of P (λ).

3. Minimal indices, minimal bases and dual minimal bases

We review in this section the notions of minimal indices of singular matrix polynomi-
als, minimal polynomial bases of rational vector spaces and dual minimal bases.

Recall that any rational subspace W has bases consisting entirely of vector polyno-
mials. The order of a vector polynomial basis of W is defined as the sum of the degrees 
of its vectors [27, Definition 2]. Among all of the possible polynomial bases of W, those 
with least order are called minimal (polynomial) bases of W [27, Definition 3]. In gen-
eral, there are many minimal bases of W, but the ordered list of degrees of the vector 
polynomials in any of its minimal bases is always the same. This list of degrees is called 
the list of minimal indices of W.

Remark 1. Most of the minimal bases appearing in this work can be arranged as the rows 
of a matrix with more columns than rows. Therefore, with a slight abuse of notation, we 
say throughout the paper that an m × n matrix polynomial with m < n is a minimal 
basis if its rows form a minimal basis of the rational subspace they span.

To work in practice with minimal bases we need the following definitions.

Definition 3.1. The ith row degree of a matrix polynomial Q(λ) is the degree of the ith 
row of Q(λ).
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Definition 3.2. Let Q(λ) ∈ F[λ]m×n be a matrix polynomial with row degrees 
d1, d2, . . . , dm. The highest row degree coefficient matrix of Q(λ), denoted by Qh, is 
the m ×n constant matrix whose jth row is the coefficient of λdj in the jth row of Q(λ), 
for j = 1, 2, . . . , m. The matrix polynomial Q(λ) is called row reduced if Qh has full row 
rank.

Theorem 3.3 gives a very useful characterization of minimal bases. This result was 
originally proved in [27, Main Theorem-Part 2, p. 495]. The version we present below 
can be found in [15, Theorem 2.14].

Theorem 3.3. The matrix polynomial Q(λ) ∈ F[λ]m×n is a minimal basis if and only if 
Q(λ) is row reduced and Q(λ0) has full row rank for all λ0 ∈ F.

Remark 2. Definition 3.2 and Theorem 3.3 admit obvious extensions to minimal bases 
arranged as the columns of matrix polynomials, which are used occasionally in this paper 
(in particular, in Section 6).

We recall in Definition 3.4 the concept of dual minimal bases. These bases were intro-
duced in [27], and named “dual minimal bases” in [21].

Definition 3.4. Two matrix polynomials L(λ) ∈ F[λ]m1×n and N(λ) ∈ F[λ]m2×n are 
called dual minimal bases if m1 +m2 = n, L(λ)N(λ)T = 0 and L(λ) and N(λ) are both 
minimal bases.

Remark 3. As in [22], we use the expression “N(λ) is a minimal basis dual to L(λ)”, or 
vice versa, for referring to matrix polynomials L(λ) and N(λ) as those in Definition 3.4.

Theorem 3.5 is an important result on the existence of dual minimal bases with 
prescribed row degrees. The proof that the condition in Theorem 3.5 is necessary comes 
back at least to [27]. The sufficiency of the condition has been recently proved in [21, 
Theorem 6.1].

Theorem 3.5. There exists a pair of dual minimal bases K(λ) ∈ F[λ]m1×(m1+m2) and 
N(λ) ∈ F[λ]m2×(m1+m2) with row degrees (η1, . . . , ηm1) and (ε1, . . . , εm2), respectively, if 
and only if

m1∑
j=1

ηj =
m2∑
i=1

εi. (3.1)

Remark 4. Algorithmic procedures for constructing dual minimal bases as those in The-
orem 3.5 satisfying (3.1) are presented in [21, Theorem 6.1]. Those procedures are based 
on the construction of zigzag and dual zigzag matrices [21, Definitions 3.1 and 3.21] by 
using the simple algorithm in [21, Theorem 5.1].



F.M. Dopico et al. / Linear Algebra and its Applications 562 (2019) 163–204 171
A fruitful source of pairs of dual minimal bases that are relevant in this work are the 
following two matrix polynomials.

Lk(λ) :=

⎡⎢⎢⎣
−1 λ

−1 λ
. . . . . .

−1 λ

⎤⎥⎥⎦ ∈ F[λ]k×(k+1), (3.2)

and

Λk(λ)T :=
[
λk · · · λ 1

]
∈ F[λ]1×(k+1), (3.3)

where here and throughout the paper we occasionally omit some, or all, of the zero 
entries of a matrix. The matrix polynomials Lk(λ) and Λk(λ)T are dual minimal bases 
[22, Example 2.6]. Lemma 3.6 shows how to obtain easily other pairs of dual minimal 
bases.

Lemma 3.6. Let Lk(λ) and Λk(λ)T be the matrix polynomials defined, respectively, in 
(3.2) and (3.3). Then, for any � ∈ N the following statements hold.

(a) The matrix polynomials Lk(λ�) and Λk(λ�)T are dual minimal bases.
(b) For any p ∈ N, the matrix polynomials Lk(λ�) ⊗Ip and Λk(λ�)T⊗Ip are dual minimal 

bases.

Proof. Theorem 3.3 guarantees that Lk(λ�) and Λk(λ�)T are minimal bases for any � ∈ N. 
In addition, from Lk(λ�)Λk(λ�) = 0, we conclude that the matrix polynomials Lk(λ�)
and Λk(λ�)T are dual minimal bases. Therefore, part (a) is true. Part (b) follows from 
part (a) and [22, Corollary 2.4], together with some basic properties of the Kronecker 
product. �

Notice that the matrix polynomials Lk(λ�) ⊗ Ip and Λk(λ�)T ⊗ Ip are dual minimal 
bases with constant row degrees (equal to � in the case of Lk(λ�) ⊗ Ip, and equal to �k
in the case of Λk(λ�)T ⊗ Ip). For pairs of dual minimal bases with this property, the 
following result will be useful.

Theorem 3.7. [22, Theorem 2.7] The following statements hold.

(a) Let K(λ) be a minimal basis whose row degrees are all equal to j. Then revjK(λ) is 
also a minimal basis whose row degrees are all equal to j.

(b) Let K(λ) and N(λ) be dual minimal bases. If the row degrees of K(λ) are all equal 
to j and the row degrees of N(λ) are all equal to �, then revjK(λ) and rev�N(λ) are 
also dual minimal bases.
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It is well-known that a matrix polynomial Q(λ) having full row rank for all λ0 ∈
F can be completed into a unimodular matrix polynomial (see [33] or [5] for efficient 
algorithms for computing such completions). Furthermore, this result can be extended 
to the following theorem.

Theorem 3.8. [22, Theorem 2.10] Let K(λ) ∈ F[λ]m1×n and N(λ) ∈ F[λ]m2×n be matrix 
polynomials such that m1 + m2 = n, K(λ0) and N(λ0) have both full row rank for 
all λ0 ∈ F, and K(λ)N(λ)T = 0. Then, there exists a unimodular matrix polynomial 
U(λ) ∈ F[λ]n×n such that

U(λ) =
[
K(λ)
K̂(λ)

]
and U(λ)−1 =

[
N̂(λ)T N(λ)T

]
.

As a consequence of Theorem 3.3, Theorem 3.8 can be applied to any pair of dual 
minimal bases. In the case of the dual minimal bases Lk(λ�) ⊗ Ip and Λk(λ�)T ⊗ Ip, this 
embedding into unimodular matrix polynomials is particularly simple, as we show in the 
following example.

Example 1. Let Lk(λ) and Λk(λ) be the matrix polynomials introduced in (3.2) and 
(3.3). If ek+1 is the last column of the (k+ 1) × (k + 1) identity matrix, then the matrix 
polynomial

Vk(λ) =
[
Lk(λ�)
eTk+1

]

is unimodular, and its inverse is given by

Vk(λ)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −λ� −λ2� · · · −λ(k−1)� λk�

−1 −λ� . . .
... λ(k−1)�

−1
. . . −λ2� ...
. . . −λ� λ2�

−1 λ�

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice that the last column of Vk(λ)−1 is Λk(λ�). Hence, the matrix Vk(λ) is a particular 
instance of the matrix U(λ) in Theorem 3.8. Furthermore, the matrix Vk(λ) ⊗ Ip is a 
particular instance of the embedding U(λ) for the dual minimal bases Lk(λ�) ⊗ Ip and 
Λk(λ�)T ⊗ Ip.

Finally, we review the concepts of minimal bases and minimal indices of singular 
matrix polynomials.
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Definition 3.9. If a matrix polynomial P (λ) ∈ F[λ]m×n is singular, then it has non-trivial 
left and/or right rational null spaces:

N�(P ) := {y(λ)T ∈ F(λ)1×m such that y(λ)TP (λ) = 0},
Nr(P ) := {x(λ) ∈ F(λ)n×1 such that P (λ)x(λ) = 0},

(3.4)

which are particular instances of rational subspaces. Then, the left (resp. right) mini-
mal indices and bases of a matrix polynomial P (λ) are defined as those of the rational 
subspace N�(P ) (resp. Nr(P )).

Remark 5. Given a pair of dual minimal bases L(λ) and N(λ), notice that the rows 
of N(λ) are a minimal basis for the subspace Nr(L) and the row degrees of N(λ) are 
the right minimal indices of L(λ), and vice versa. In other words, each L(λ) and N(λ)
provides a minimal basis for the right nullspace of the other.

4. Block minimal bases matrix polynomials

We start by introducing the family of (strong) block minimal bases matrix polynomials
in Definition 4.1, which is the most important concept introduced in this work.

Definition 4.1. A grade-� matrix polynomial

L(λ) =
[
M(λ) K2(λ)T

K1(λ) 0

]
, (4.1)

where M(λ) is arbitrary, is called a block minimal bases matrix polynomial if K1(λ) and 
K2(λ) are both minimal bases. If, in addition, the row degrees of K1(λ) are all equal 
to �, the row degrees of K2(λ) are all equal to �, the row degrees of a minimal basis dual 
to K1(λ) are all equal, and the row degrees of a minimal basis dual to K2(λ) are all 
equal, then L(λ) is called a strong block minimal bases degree-� matrix polynomial.

Remark 6. We allow in Definition 4.1 the border cases

[
M(λ) K(λ)T

]
or

[
M(λ)
K(λ)

]
,

where K(λ) is a minimal basis. In those cases, the corresponding (strong) block minimal 
bases matrix polynomials are said to be degenerate.

Theorem 4.2 shows that any (strong) block minimal bases matrix polynomial is a 
(strong) �-ification of a certain matrix polynomial.

Theorem 4.2. Let K1(λ) and N1(λ) be a pair of dual minimal bases, and let K2(λ) and 
N2(λ) be another pair of dual minimal bases. Consider the matrix polynomial
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Q(λ) := N2(λ)M(λ)N1(λ)T , (4.2)

and the block minimal bases matrix polynomial L(λ) in (4.1). Then:

(a) L(λ) is an �-ification of Q(λ).
(b) If L(λ) is a strong block minimal bases degree-� matrix polynomial, then L(λ) is 

a strong �-ification of Q(λ), when Q(λ) is considered as a polynomial with grade 
� + deg(N1(λ)) + deg(N2(λ)).

Proof. Proof of part (a): By Theorem 3.8, there exist unimodular matrix polynomials 
such that, for i = 1, 2,

Ui(λ) =
[
Ki(λ)
K̂i(λ)

]
and Ui(λ)−1 =

[
N̂i(λ)T Ni(λ)T

]
. (4.3)

If mi denotes the number of rows of Ki(λ), for i = 1, 2, notice that (4.3) implies 
Ki(λ)N̂i(λ)T = Imi

and Ki(λ)Ni(λ)T = 0, as this will be important in the argument. 
Then, let us consider the unimodular matrices U2(λ)−T ⊕ Im1 and U1(λ)−1 ⊕ Im2 . By a 
direct matrix multiplication, we obtain

(U2(λ)−T ⊕ Im1)L(λ) (U1(λ)−1 ⊕ Im2)

=

⎡⎣N̂2(λ) 0
N2(λ) 0

0 Im1

⎤⎦ [
M(λ) K2(λ)T
K1(λ) 0

] [
N̂1(λ)T N1(λ)T 0

0 0 Im2

]

=

⎡⎣Z(λ) X(λ) Im2

Y (λ) Q(λ) 0
Im1 0 0

⎤⎦ , (4.4)

where the matrix polynomials X(λ), Y (λ), and Z(λ) are not relevant in this proof. Fi-
nally, from (4.4), Lemma 2.2 proves that L(λ) is an �-ification of Q(λ).

Proof of part (b): Set �1 := deg(N1(λ)) and �2 := deg(N2(λ)). Part (b) in Theorem 3.7
guarantees that rev�Ki(λ) and rev�iNi(λ) are dual minimal bases, for i = 1, 2. Therefore, 
the matrix polynomial

rev�L(λ) =
[

rev�M(λ) rev�K2(λ)T
rev�K1(λ) 0

]
is also a block minimal bases matrix polynomial. Thus, part (a) implies that rev�L(λ) is 
an �-ification of

(rev�2N2(λ)) (rev�M(λ)) (rev�1N1(λ))T = λ�2N2
(
λ−1) λ� M

(
λ−1) λ�1N1

(
λ−1)T

= λ�+�1+�2Q(λ−1) = rev�+�1+�2Q(λ).

This proves part (b). �
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Remark 7. All the results proven in this paper for block minimal bases matrix polynomi-
als remain valid for degenerate block minimal bases matrix polynomials provided we use 
the following convention: if K1(λ) (resp. K2(λ)) is an empty matrix, then N1(λ) = Is
(resp. N2(λ) = Is), where s is the number of columns (resp. rows) of M(λ). In particu-
lar, if K(λ) and N(λ) are dual minimal bases, then Theorem 4.2 remains valid for the 
degenerate block minimal bases polynomials

[
M(λ) K(λ)T

]
and

[
M(λ)
K(λ)

]

provided we replace the polynomial Q(λ) in (4.2) with N(λ)M(λ) and M(λ)N(λ)T , 
respectively.

Remark 8. Throughout the rest of the paper, the sizes of K1(λ) and K2(λ) in Defini-
tion 4.1 are denoted without loss of generality by m1 × (n + m1) and m2 × (m + m2), 
respectively. In other words, we have[ ]

M(λ) K2(λ)T m + m2
K1(λ) 0 m1
n + m1 m2

.

With this convention, notice that the sizes of N1(λ) and N2(λ) in Theorem 4.2 are 
n × (m1 +n) and m × (m2 +m), respectively, and, thus, Q(λ) in (4.2) is an m ×n matrix 
polynomial.

Theorem 4.2 shows that every strong block minimal bases matrix polynomial is al-
ways a strong �-ification of a certain matrix polynomial. In Section 5, we address the 
inverse problem, that is, we show how to construct strong �-ifications for a given matrix 
polynomial P (λ) from strong block minimal bases matrix polynomials. But before ad-
dressing this important problem, we show in the following section how previous works 
on linearizations, quadratifications, and �-ifications are related with the block minimal 
bases framework introduced in this section.

4.1. Previous works related with the block minimal bases matrix polynomials framework

Most of the linearizations, quadratifications and, in general, �-ifications introduced in 
previous works fit in the framework of block minimal bases matrix polynomials (modulo 
some simple operations). We review some important examples in this section.

(i) The Frobenius companion linearizations. Let P (λ) =
∑d

i=0 Piλ
i ∈ F[λ]m×n. The 

most well-known strong linearizations of P (λ) are the so called Frobenius compan-
ion linearizations [14,34]
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C1(λ) =

⎡⎢⎢⎢⎢⎣
λPd + Pd−1 Pd−2 · · · P0

−In λIn
. . . . . .

−In λIn

⎤⎥⎥⎥⎥⎦ =
[

M1(λ)
Ld−1(λ) ⊗ In

]

and

C2(λ) =

⎡⎢⎢⎢⎢⎣
λPd + Pd−1 −Im

Pd−2 λIm
. . .

...
. . . −Im

P0 λIm

⎤⎥⎥⎥⎥⎦ =
[
M2(λ) Ld−1(λ)T ⊗ Im

]
,

where the matrix polynomial Lk(λ) has been defined in (3.2). The Frobenius com-
panion forms are degenerate strong block minimal bases pencils. Moreover, from 
Theorem 4.2 and Lemma 3.6, they are strong linearizations of

[λPd + Pd−1 Pd−2 · · · P0 ](Λd−1(λ) ⊗ In) =

(Λd−1(λ)T ⊗ Im)

⎡⎢⎢⎣
λPd + Pd−1

Pd−2
...
P0

⎤⎥⎥⎦ = P (λ),

as it is well-known [14, Theorems 5.3 and 5.4].
(ii) (Strong) block minimal bases pencils. The family of (strong) block minimal bases 

pencils introduced in [22] consists in (strong) block minimal bases matrix polyno-
mials with � = 1. Some important examples in this family are the block Kronecker 
pencils [22], the Chebyshev pencils [36], the extended block Kronecker pencils [9], 
the linearizations for product bases in [45], and the pencils in block-Kronecker 
ansatz spaces [25].

(iii) Fiedler and Fiedler-like pencils. Fiedler pencils were introduced in [26] for monic 
scalar polynomials (m = n = 1), and then generalized to regular matrix polynomi-
als in [4], to square singular matrix polynomials in [18], and to rectangular matrix 
polynomials in [20]. With the goal of constructing large families of structure-
preserving linearizations, the families of generalized Fiedler pencils, Fiedler pencils 
with repetition and generalized Fiedler pencils with repetition [4,8,52] were in-
troduced. Very recently, it has been shown in [9,22] that Fiedler pencils and 
generalized Fiedler pencils, and, under some generic nonsingularity conditions, 
Fiedler pencils with repetition and generalized Fiedler pencils with repetition are, 
modulo permutation, strong block minimal bases pencils.

(iv) The standard basis of DL(P ). Two vector spaces, denoted by L1(P ) and L2(P )
of potential linearizations were introduced in [39]. The intersection of these vector 
spaces, denoted by DL(P ), was shown to be a fertile source of structure-preserving 
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linearizations [40]. Since the pencils in the standard basis of the vector space DL(P )
consist of Fiedler pencils with repetition [7,52], up to permutation and under some 
generic nonsingularity conditions, they are strong block minimal bases pencils.

(v) Linearizations for degree-graded polynomial bases by Amiraslani, Corless and Lan-
caster. In [1], the authors consider matrix polynomials of the form

P (λ) =
d∑

i=0
Piφi(λ) ∈ F[λ]n×n, (4.5)

where {φi(λ)}∞i=0 is a set of degree-graded polynomials satisfying a three-term 
recurrence relation

λφi(λ) = αiφi+1(λ) + βiφi(λ) + γiφi−1(λ), i = 1, 2, . . . ,

where αi, βi, γi are real, φ−1(λ) = 0, φ0(λ) = 1, and, if κi denotes the leading 
coefficient of φi(λ), 0 �= αi = κi/κi−1. A linearization for (4.5) is given by λBφ−Aφ

with4

Bφ =

⎡⎢⎢⎣
κdPd

In
. . .

In

⎤⎥⎥⎦
and

Aφ =

⎡⎢⎢⎢⎢⎢⎢⎣

−κd−1Pd−1 + κdβd−1Pd αd−2In
−κd−1Pd−2 + κdγd−1Pd βd−2In αd−3In

−κd−1Pd−3 γd−2In βd−3In
. . .

...
. . . . . . α0In

−κd−1P0 γ1In β0In

⎤⎥⎥⎥⎥⎥⎥⎦ .

The pencil λBφ − Aφ is known as the colleague pencil when {φi(λ)}∞i=0 is the 
set of Chebyshev polynomials, or as the comrade pencil when {φi(λ)}∞i=0 is a set 
of orthogonal polynomials other than the Chebyshev polynomials. We can write 
λBφ −Aφ =

[
Mφ(λ) Kφ(λ)T ⊗ In

]
, where

Mφ(λ) =

⎡⎢⎢⎢⎢⎢⎢⎣
λκdPd + κd−1Pd−1 − κdβd−1Pd

κd−1Pd−2 − κdγd−1Pd

κd−1Pd−3
...

κd−1P0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ F[λ]dn×n

4 The linearization in [1] is a permutation of the one presented here.
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and

Kφ(λ)T ⊗ In =

⎡⎢⎢⎢⎢⎢⎢⎣

−αd−2
λ− βd−2 −αd−3

−γd−2 λ− βd−3
. . .

. . . . . . −α0
−γ1 λ− β0

⎤⎥⎥⎥⎥⎥⎥⎦⊗ In ∈ F[λ]dn×(d−1)n.

It is not difficult to show that Kφ(λ) ⊗ In is a minimal basis with a dual minimal 
basis given by

Φd(λ)T ⊗ In := [φd−1(λ) · · · φ1(λ) φ0(λ)] ⊗ In.

Since Kφ(λ) ⊗ In has all its row degrees equal to 1, and Φd(λ)T ⊗ In has all its 
row degrees equal to d − 1, we conclude that the pencil λBφ −Aφ is a degenerate 
strong block minimal bases pencil. Furthermore, from Theorem 4.2, it is a strong 
linearization of

(Φd(λ)T ⊗ In)Mφ(λ) = κd−1P (λ),

as it was also proved in [1].
(vi) The Frobenius-like companion �-ifications. The first known construction of strong 

�-ifications was presented in [14] for the case � divides d. These strong �-ifications 
where named Frobenius-like companion forms of grade �, because of their resem-
blance to the first and second Frobenius companion linearizations. Let P (λ) =∑d

i=0 Piλ
i ∈ F[λ]m×n, and assume that d = k�, for some k ∈ N. The Frobenius-

like companion �-ifications are constructed as follows. Based on the coefficients of 
P (λ), let us introduce the following grade-� matrix polynomials

B1(λ) := P�λ
� + P�−1λ

�−1 + · · · + P1λ + P0,

Bj(λ) := P�jλ
� + P�j−1λ

�−1 + · · · + P�(j−1)+1λ, for j = 2, . . . , k.
(4.6)

Then, the first and second Frobenius-like companion forms of grade � associated 
with P (λ) are, respectively,⎡⎢⎢⎢⎢⎢⎢⎣

Bk(λ) Bk−1(λ) Bk−2(λ) · · · B1(λ)
−In λ�In

−In λ�In
. . . . . .

−In λ�In

⎤⎥⎥⎥⎥⎥⎥⎦ =
[

M �
1(λ)

Lk−1(λ�) ⊗ In

]

and
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⎡⎢⎢⎢⎢⎢⎢⎢⎣

Bk(λ) −Im
Bk−1(λ) λ�Im −Im

Bk−2(λ) λ�Im
. . .

...
. . . −Im

B1(λ) λ�Im

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
[
M �

2(λ) Lk−1(λ�)T ⊗ Im

]
,

where Lk(λ) is the matrix polynomial in (3.2). The above matrix polynomials are 
degenerate strong block minimal bases degree-� matrix polynomials. Moreover, 
from Theorem 4.2 and Lemma 3.6, they are strong linearizations of

[Bk(λ) Bk−1(λ) · · · B1(λ) ](Λk−1(λ�) ⊗ In) =

(Λk−1(λ�)T ⊗ Im)

⎡⎢⎢⎣
Bk(λ)

Bk−1(λ)
...

B1(λ)

⎤⎥⎥⎦ = P (λ),

as it was also proved in [14] using very different techniques.
(vii) The �-ifications by De Terán, Dopico and Van Dooren. In [16], the authors provided 

for the first time an algorithm for constructing strong �-ifications of a given matrix 
polynomial P (λ) ∈ F[λ]m×n of grade d, when � divides dn or dm. The constructed 
�-ifications are of the form

[
L̂(λ)
L̃(λ)

]
or

[
L̂(λ) L̃(λ)T

]
,

where L̃(λ) ∈ F[λ]m̂×(n̂+n) is a matrix polynomial of grade �, and L̂(λ) ∈
F[λ]n̂×(n̂+n) is a minimal basis with degree �. Notice that

[
0 Im̂
In̂ 0

] [
L̂(λ)
L̃(λ)

]
=
[

L̃(λ)
L̂(λ)

]

is a degenerate block minimal bases matrix polynomial. Thus, up to a simple block-
permutation, the �-ifications in [16] are block minimal bases matrix polynomials.

(viii) The palindromic quadratifications by Huang, Lin, and Su. With the aim of devising 
a structure-preserving algorithm for palindromic matrix polynomials of even grade, 
in [32], the authors constructed palindromic strong quadratifications of palindromic 
matrix polynomials of even grade. The form of these strong quadratifications de-
pends on whether the grade of P (λ) ∈ F[λ]n×n is of the form 4s or 4s +2, for some 
s ∈ N. For example, for d = 8 the quadratification is given by
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Q1(λ) =

⎡⎢⎢⎣
λ2P5 + λP4 + P3 − λ(In + P8P0) λ2P8 λ2P7 + λP6 In

P0 −λIn λ2In 0
λP2 + P1 In 0 −λ2In
λ2In 0 −In 0

⎤⎥⎥⎦ ,

and for d = 10, it is given by

Q2(λ) =

⎡⎢⎢⎢⎢⎣
λ2P6 + λP5 + P4 λ2P10 + λP9 0 λ2P8 + λP7 In

λP1 + P0 0 −λ2In 0 0
0 −In 0 λ2In 0

λP3 + P2 0 In 0 −λ2In
λ2In 0 0 −In 0

⎤⎥⎥⎥⎥⎦ .

It is not difficult to show that there exist two permutation matrices, denoted by 
Π1 and Π2, such that ΠT

1 Q1(λ)Π1 =

⎡⎢⎢⎢⎢⎣
λ2P5 + λP4 + P3 − λ(In + P8P0) λ2P7 + λP6 λ2P8 In

λP2 + P1 0 In −λ2In

P0 λ2In −λIn 0

λ2In −In 0 0

⎤⎥⎥⎥⎥⎦
and ΠT

2 Q2(λ)Π2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ2P6 + λP5 + P4 λ2P8 + λP7 λ2P10 + λP9 In 0
λP3 + P2 0 0 −λ2In In

λP1 + P0 0 0 0 −λ2In

λ2In −In 0 0 0
0 λ2In −In 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

which are block minimal bases quadratic matrix polynomials. Furthermore, it is 
easily checked that ΠT

2 Q2(λ)Π2 is, in fact, a strong block minimal bases quadratic 
matrix polynomial. These results are easily generalized for any even grade. Hence, 
the quadratifications introduced in [32] are, up to permutations, block minimal 
bases quadratic matrix polynomials.

The above list is just a sample of linearizations, quadratifications, and �-ifications 
given in order to show that a great part of the recent work on �-ifications (lineariza-
tions, quadratifications, etc.) is included in the block minimal bases matrix polynomials 
framework. Many other constructions fit also in this framework [44,45,47].
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5. Constructing a strong block minimal bases �-ification for a given matrix polynomial

We return to the problem left open at the end of Section 3. We show how to construct 
strong �-ifications of a prescribed matrix polynomial P (λ) ∈ F[λ]m×n of grade d when 
� divides md or nd. We focus on the case � divides md. The case � divides nd will be 
considered in Section 5.3.

From Theorem 4.2, we obtain the following procedure for constructing strong 
�-ifications of a given matrix polynomial P (λ) ∈ F[λ]m×n of grade d from strong block 
minimal bases matrix polynomials.

Step 1 Choose two pairs of dual minimal bases K1(λ) and N1(λ), and K2(λ) and N2(λ), 
with sizes as in Remark 8, such that all the row degrees of K1(λ) and K2(λ) are 
equal to �, all the row degrees of N1(λ) are equal to ε, and all the row degrees of 
N2(λ) are equal to η, with ε + η = d − �.

Step 2 Solve the matrix polynomial equation N2(λ)M(λ)N1(λ)T = P (λ) for M(λ) with 
grade �.

We consider, first, the problem of constructing the pairs of dual minimal bases K1(λ)
and N1(λ), and K2(λ) and N2(λ) in Step 1. Then, we show that for each minimal bases 
N1(λ) and N2(λ) obtained from Step 1, the polynomial equation in Step 2 has infinitely 
many solutions with grade �. When deg(P (λ)) = d, all such solutions have degree equal 
to �.

5.1. Solving Step 1

There are some constraints on the degrees and sizes of the dual minimal bases in
Step 1 that follow from Theorem 3.5. Indeed, we obtain from Theorem 3.5 that the two 
pairs of dual minimal bases in Step 1 exist if and only if the linear system

[
� 0 −n 0
0 � 0 −m
0 0 1 1

]⎡⎢⎣m1
m2
ε
η

⎤⎥⎦ =
[ 0

0
d− �

]
(5.1)

has at least one non-negative integer solution. When � < d and � divides md this is always 
the case, since md = s�, for some non-zero natural number s, implies that m2 = s −m, 
m1 = 0, ε = 0 and η = d − � is a non-negative integer solution of (5.1). Moreover, as 
we show in Proposition 5.1, there may exist many more non-negative integer solutions 
of (5.1) under the hypothesis � < d and � divides md.

Proposition 5.1. Given natural numbers �, d, n, m such that d > � and � divides md, set

γ := �
.
gcd{�, n,m}
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Then, the vectors⎡⎢⎢⎢⎢⎣
knγ

�
md

�
− kmγ

� −m

kγ
d− �− kγ

⎤⎥⎥⎥⎥⎦ with k = 0, 1, . . . , �(d− �)/γ� , (5.2)

are the non-negative integer solutions of (5.1), where �·� denotes the floor function.

Proof. The real solutions of (5.1) are given by⎡⎢⎢⎢⎢⎣
nε

�
md

�
− mε

� −m

ε
d− �− ε

⎤⎥⎥⎥⎥⎦ with ε ∈ R. (5.3)

Thus, the problem is reduced to find the values ε ∈ {0, 1, . . . , d − �} for which the vector 
(5.3) has non-negative integer entries. Since � divides md by assumption, this problem 
is equivalent to find those values of ε that make nε/� and mε/� non-negative integers. 
To finish the proof, it suffices to notice that (1) both nε/� and mε/� are non-negative 
integers if and only if ε is a multiple of γ, and (2) the entries of the vectors are all 
non-negative because k ≤ (d − �)/γ. �

Once some non-negative values for m1, m2, ε and η satisfying the linear system (5.1)
have been fixed, Theorem 3.5 guarantees the existence of the two pairs of dual minimal 
bases in Step 1. In order to construct those pairs of dual minimal bases, one may consider, 
as we pointed out in Remark 4, the procedures in [21, Theorems 5.1 and 6.1] or [21, 
Theorem 5.3] based on zigzag matrices.

5.2. Solving Step 2

We now show that the equation

N2(λ)M(λ)N1(λ)T = P (λ) (5.4)

is always consistent (with infinitely many solutions) when N1(λ) and N2(λ) are any 
pair of minimal bases obtained from Step 1. We assume that both ε and η are nonzero, 
otherwise the consistency of (5.4) follows from the results in [16, Section 4.1]. We split
Step 2 into two substeps:

Step 2.1 Solve the equation N2(λ)B(λ) = P (λ) for B(λ) with grade d − η.
Step 2.2 Solve the equation M(λ)N1(λ)T = B(λ) for M(λ) with grade �.
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The consistency of the equations in Steps 2.1 and 2.2 follows from the fact that both 
N1(λ) and N2(λ) are minimal bases with constant row degrees whose right minimal 
indices are all equal to �. This motivates Lemma 5.2, where convolution matrices5 will 
be used. For any matrix polynomial Q(λ) =

∑q
i=0 Qiλ

i of grade q and arbitrary size, we 
define the sequence of its convolution matrices as follows

Cj(Q) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qq

Qq−1 Qq

... Qq−1
. . .

Q0
...

. . . Qq

Q0
... Qq−1

. . .
...
Q0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

j + 1 block columns

, for j = 0, 1, 2, . . . . (5.5)

Notice that for j = 0, the matrix C0(Q) is a block column matrix whose block entries 
are the matrix coefficients of the polynomial Q(λ).

Lemma 5.2. Let K(λ) ∈ F[λ]s×(s+t) and N(λ) ∈ F[λ]t×(s+t) be dual minimal bases such 
that all the row degrees of N(λ) are equal to n and all the row degrees of K(λ) are equal 
to k. Let Q(λ) ∈ F[λ]t×r be a matrix polynomial of grade n + b, with b ≥ k. Then, the 
following statements hold.

(a) The equation

N(λ)B(λ) = Q(λ) (5.6)

for the unknown matrix polynomial B(λ) of grade b has infinitely many solutions. 
Moreover, when deg(Q(λ)) = n + b, all of such solutions have degree equal to b.

(b) The set of solutions of (5.6) depends on (b − k + 1)sr free parameters.
(c) If B0(λ) is a particular solution of (5.6), then any other solution of (5.6) can be 

written as

B(λ) = B0(λ) + K(λ)TX(λ),

for some X(λ) ∈ Fb−k[λ]s×r.

5 Convolution matrices are called Sylvester matrices in [51]. More specifically, the convolution matrix 
Cj(Q) is the Sylvester matrix Sj+1(Q), j = 0, 1, . . . .
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Proof. Proof of part (a). Let us write N(λ) =
∑n

i=0 Niλ
i, B(λ) =

∑b
i=0 Biλ

i and 
Q(λ) =

∑n+b
i=0 Qiλ

i. Equating matrix coefficients on both sides of (5.6), we obtain the 
block-linear system

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nn

... Nn

N0
...

. . .

N0
... Nn

. . .
...
N0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

b+1 block columns

⎡⎢⎢⎣
Bb

Bb−1
...
B0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Qn+b

Qn+b−1
...
Q0

⎤⎥⎥⎦ , (5.7)

or, using convolution matrices, Cb(N)C0(B) = C0(Q). We will show that this linear 
system is consistent by showing that the matrix Cb(N) has full row rank. To do this, let 
us partition the matrix Cb(N) as follows

Cb(N) =
[
A11(N) 0
A21(N) Ck−1(N)

]
,

where A11(N) corresponds to the upper-left (b + 1 − k) × (b + 1 − k) block submatrix of 
Cb(N), which is of the form

A11(N) =

⎡⎣Nn

∗ . . .
∗ ∗ Nn

⎤⎦ ,

where “∗” denotes the parts of A11(N) that are not relevant for the argument. Notice 
that the matrix A11(N) has full row rank because Nn has full row rank. Thus, one can 
solve for Bb, . . . , Bk from the linear system

A11(N)

⎡⎢⎢⎣
Bb

Bb−1
...
Bk

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Qn+b

Qn+b−1
...

Qn+k

⎤⎥⎥⎦ ,

since the above system is always consistent. Additionally, when Q(λ) is assumed to have 
degree n + b, i.e., Qn+b �= 0, notice that we have NnBb = Qn+b, which implies Bb �= 0
because Nn has full row rank. Hence, when deg(Q(λ)) = n + b, all the solutions of (5.6)
have exactly degree b.
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Next, we can solve for Bk−1, . . . , B0 from

Ck−1(N)

⎡⎢⎢⎣
Bk−1
Bk−2

...
B0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Qn+k−1
Qn+k−2

...
Q0

⎤⎥⎥⎦−A21(N)

⎡⎢⎢⎣
Bb

Bb−1
...
Bk

⎤⎥⎥⎦ ,

which has a unique solution since the matrix Ck−1(N) is nonsingular. The nonsingularity 
of Ck−1(N) follows from the following argument. First, applying Theorem 3.5 to the 
dual minimal bases K(λ) and N(λ), we obtain nt = ks. Then, notice that the matrix 
Ck−1(N) has size (n + k)t × (s + t)k or, using nt = ks, (n + k)t × (n + k)t. Hence, it is a 
square matrix. Finally, note that K(λ) is a full-Sylvester-rank matrix (see, for example, 
[51, Theorem 4.4]) and, thus, all its convolution matrices have full rank. Therefore, the 
matrix Ck−1(N) is nonsingular.

Proof of part (b). Let us introduce the following linear operator

ΦN : Fb[λ](s+t)×r −→ Fn+b[λ]t×r

B(λ) −→ N(λ)B(λ),
(5.8)

which, by part (a), is surjective. Since Fb[λ](s+t)×r ∼= F
(s+t)r(b+1) and Fn+b[λ]t×r ∼=

F
tr(n+b+1), and using nt = ks (which, we recall, follows from applying Theorem 3.5 to 

K(λ) and N(λ)), we readily obtain that

dim(null(ΦN )) = (b− k + 1)sr,

which shows that the set of solutions of (5.6) depends on (b − k + 1)sr free parameters.

Proof of part (c). Note that the set of matrix polynomials of the form K(λ)TX(λ), 
where X(λ) ∈ F[λ]s×r is a matrix polynomial of grade b − k, is a vector subspace that 
is contained in null(ΦN ), with (b − k + 1)sr free parameters (the entries of the matrix 
coefficients of X(λ)). Hence, it suffices to show that the mapping X(λ) → K(λ)TX(λ)
is injective. Indeed K(λ)TX(λ) = 0 can only hold if X(λ) = 0 because K(λ) has full 
normal row rank. �

As a consequence of Lemma 5.2, the convolution matrix Cb(N) in (5.7) has full row 
rank. Hence, the matrix Cb(N)†C0(Q) is a solution of (5.7), where A† denotes the Moore–
Penrose pseudoinverse of a matrix A. This motivates the following definition.

Definition 5.3. Let N(λ) ∈ F[λ]t×(s+t) be a minimal basis with all its row degrees equal 
to n and with all its right minimal indices equal to k, and let ΦN be the linear operator 
in (5.8). Then, we introduce the linear operator
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Φ†
N : Fn+b[λ]t×r −→ Fb[λ](s+t)×r

Q(λ) −→ Φ†
N [Q](λ) = B(λ),

(5.9)

where B(λ) is defined by partitioning Cb(N)†C0(Q) into b +1 blocks of size (s +t) ×r and 
interpreting these blocks as the matrix coefficients of B(λ), i.e., C0(B) = Cb(N)†C0(Q). 
The matrix polynomial Φ†

N [Q](λ) is called the minimum norm solution to N(λ)B(λ) =
Q(λ).

We finally show in Theorem 5.4 that the equation (5.4) is consistent for every P (λ), 
determine the number of free parameters that its set of solution depends on, and give a 
concise characterization of this set. To do this, let us notice that the linear operator

Ψ(N1,N2) : F�[λ](m+m2)×(n+m1) −→ Fd[λ]m×n

M(λ) −→ N2(λ)M(λ)N1(λ)T
(5.10)

can be written as the composition Ψ(N1,N2) = φN2 ◦ (·)T ◦ φN1 ◦ (·)T , where (·)T denotes 
the transpose operation and g ◦ f denotes the composition of g with f .

Theorem 5.4. Let P (λ) ∈ F[λ]m×n be a matrix polynomial of grade d, and let � < d. Let 
K1(λ) and N1(λ), and K2(λ) and N2(λ) be two pairs of dual minimal bases obtained 
from Step 1. Then, the following statements hold.

(a) The equation (5.4) for the unknown matrix polynomial M(λ) of grade � has infinitely 
many solutions. When deg(P (λ)) = d, all of such solutions have degree equal to �.

(b) The set of solutions of (5.4) depends on m2n(ε + 1) + (m2 +m)m1 free parameters.
(c) Let Ψ†

(N1,N2) := (·)T ◦φ†
N1

◦ (·)T ◦φ†
N2

. Then, any solution of (5.4) can be written as

M(λ) = Ψ†
(N1,N2)[P ](λ) + Φ†

1[XTK2](λ)T + Y TK1(λ),

for some Y ∈ F
m1×(m2+m) and X(λ) ∈ Fε[λ]m2×n.

Proof. The results follow by applying repeatedly Lemma 5.2 to N2(λ)B(λ) = P (λ) and 
N1(λ)M(λ)T = B(λ)T , taking the minimum norm solutions as particular solutions. �
Remark 9. Given a particular solution M0(λ) of (5.4), the set of grade-� matrix polyno-
mials of the form M0(λ) + K2(λ)TX + Y K1(λ), where X, Y are arbitrary matrices of 
appropriate size, is a subset of the set of solutions of (5.4).

Remark 10. Given a particular solution M0(λ) of (5.4), the set of solutions of (5.4) takes 
a simpler form than the one in part (c) in Theorem 5.4 in three cases. The first case is 
when � = 1. In this situation, the set of solutions of (5.4) is equal to the set of pencils of 
the form
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M0(λ) + K2(λ)TX + Y K1(λ),

where X, Y are arbitrary matrices of appropriate sizes. The other two cases are when 
either m1 = 0 or m2 = 0. In the former case, the set of solutions of (5.4) is equal to the set 
of matrix polynomials of the form M0(λ) +K2(λ)TX, and in the latter, M0(λ) +Y K1(λ), 
where X, Y are again arbitrary matrices of appropriate sizes.

In Example 2, we apply our new procedure for constructing strong �-ifications to 
the problem of quadratizacing a symmetric matrix polynomial in a structure-preserving 
way. The interest of this example stems from the fact that there are symmetric matrix 
polynomials with even grade for which it is impossible to construct symmetric strong 
linearizations [14, Theorem 7.20].

Example 2. Let P (λ) =
[
λ4 0
0 0

]
, which is symmetric, that is, P (λ)T = P (λ). The matrix 

polynomial P (λ) is singular with exactly one right minimal index and one left minimal 
index, both equal to zero. Hence, P (λ) does not have any symmetric strong lineariza-
tion by [14, Corollary 7.19]. Nevertheless, we show in this example that P (λ) can be 
“quadratized” in a structure-preserving way. To do this, we use a strong block minimal 
bases quadratic matrix polynomial of the form[

M(λ) K(λ)T

K(λ) 0

]
(5.11)

where K(λ) and a dual minimal basis to K(λ), denoted by N(λ), are given, respectively, 
by

K(λ) =
[
1 −λ λ2 ] and N(λ) =

[
λ 1 0
0 λ 1

]
.

From Theorem 4.2, we see that in order to obtain a symmetric strong quadratification 
of the form (5.11), we need to solve[

λ4 0
0 0

]
=
[
λ 1 0
0 λ 1

]
M(λ)

[
λ 0
1 λ
0 1

]

for a symmetric M(λ) with degree equal to 2. The quadratic matrix polynomial M(λ) =[
λ2 0 0
0 0 0
0 0 0

]
is one of such solutions. Therefore, we conclude that

⎡⎢⎢⎢⎣
λ2 0 0 1
0 0 0 −λ

0 0 0 λ2

1 −λ λ2 0

⎤⎥⎥⎥⎦
is a symmetric strong quadratification of P (λ).
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5.3. When � divides nd

We consider in this subsection the problem of constructing strong �-ifications using 
strong block minimal bases matrix polynomials in the case when � divides nd. Our 
construction follows from the following lemma.

Lemma 5.5. Let L(λ) be a strong block minimal bases degree-� matrix polynomial as in 
(4.1), and let Q(λ) be the matrix polynomial in (4.2). Then, L(λ)T is also a strong block 
minimal bases degree-� matrix polynomial, which is a strong �-ification of the matrix 
polynomial Q(λ)T .

Proof. Clearly, L(λ)T is also a strong block minimal bases degree-� matrix polynomial 
with the roles of (K1(λ), N1(λ)) and (K2(λ), N2(λ)) interchanged. Thus, L(λ)T is a 
strong �-ification of Q(λ)T . �

Let P (λ) ∈ F[λ]m×n be a matrix polynomial with grade d, and assume that there is 
� such that � divides nd. We obtain from Lemma 5.5 that if the process developed in 
the previous section for the case when � divides md is applied to the matrix polynomial 
P (λ)T (of size n ×m and grade d), then a strong �-ification L(λ)T of P (λ)T is constructed, 
and this gives a strong �-ification L(λ) of P (λ).

5.4. When � divides d: block Kronecker matrix polynomials and companion �-ifications

In applications, the most important type of strong �-ifications are the so called compan-
ion �-ifications [14, Definition 5.1], also known as companion forms. In words, companion 
�-ifications are uniform templates for constructing matrix polynomials L(λ) =

∑�
i=0 Liλ

i

of grade �, which are strong �-ifications for any matrix polynomial P (λ) =
∑d

i=0 Piλ
i

of fixed grade and size. Furthermore, for i = 0, . . . , �, the entries of Li are scalar-valued 
function of the entries of P0, P1, . . . , Pd. These scalar-valued functions are either a con-
stant or a constant multiple of just one of the entries of P0, P1, . . . , Pd. For � > 1, the only 
known example of companion �-ifications are the Frobenius-like companion �-ifications 
in [14]. For � = 1, many other companion linearizations exist [18].

One of the aims of this section is to present a procedure for constructing new com-
panion �-ifications. We start by introducing a subfamily of strong block minimal bases 
matrix polynomials. This family generalizes the block Kronecker pencils [22] from � = 1
to any degree �. The advantage of this family over general strong block minimal bases 
matrix polynomials as in (4.1) is that it is very easy to characterize the set of (1, 1)
blocks M(λ) that make them strong �-ifications of a prescribed matrix polynomial P (λ).

Definition 5.6. Let Lk(λ) be the matrix polynomial defined in (3.2) and let M(λ) be an 
arbitrary matrix polynomial of grade �. Then any matrix polynomial of the form
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L(λ) =
[

M(λ) Lη(λ�)T ⊗ Im

Lε(λ�) ⊗ In 0

]
, (5.12)

is called an (ε, n, η, m)-block Kronecker degree-� matrix polynomial or, simply, a block 
Kronecker matrix polynomial when its size and degree are clear from the context.

The following theorem for block Kronecker matrix polynomials follows immediately 
as a corollary of the general result in part (b) of Theorem 4.2 for strong block minimal 
bases matrix polynomials.

Theorem 5.7. Let L(λ) be an (ε, n, η, m)-block Kronecker degree-� matrix polynomial as 
in (5.12). Then L(λ) is a strong �-ification of the matrix polynomial

(Λη(λ�)T ⊗ Im)M(λ)(Λε(λ�) ⊗ In) ∈ F[λ]m×n (5.13)

of grade �(ε + η + 1).

Based on block Kronecker matrix polynomials, we now construct companion 
�-ifications for m × n matrix polynomials of grade d for any � < d, provided that �
divides d, that is, d = k�, for some non-zero natural number k. Except when k = 2, 
these companion �-ifications are different from the Frobenius-like companion �-ifications 
in [14]. To this end, let us consider again the matrix polynomials {Bi(λ)}ki=1 defined in 
(4.6) associated with a matrix polynomial P (λ) =

∑d
i=0 Piλ

i ∈ F[λ]m×n of grade d = k�. 
Notice that these polynomials satisfy the equality

P (λ) = λ�(k−1)Bk(λ) + λ�(k−2)Bk−1(λ) + · · · + λ�B2(λ) + B1(λ). (5.14)

Then, let us fix ε, η ∈ N such that ε + η = k − 1. Notice that, except in the case k = 2, 
both ε and η can be chosen to be nonzero simultaneously (if either ε or η is zero the 
construction that follows produces one of the Frobenius-like �-ifications). Let us define 
the grade-� matrix polynomial

Σ(ε,η)
P (λ) :=

⎡⎢⎢⎢⎢⎣
Bk(λ) Bk−1(λ) · · · Bη+1(λ)

0 · · · 0
...

...
. . .

... B2(λ)
0 · · · 0 B1(λ)

⎤⎥⎥⎥⎥⎦ , (5.15)

and notice that (5.14) implies

(Λη(λ�)T ⊗ Im)Σ(ε,η)
P (λ)(Λε(λ�) ⊗ In) = P (λ). (5.16)

From Theorem 5.7, together with (5.16) and the form of (5.15), we readily obtain the 
following result.
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Theorem 5.8. Let P (λ) =
∑d

i=0 Piλ
i ∈ F[λ]m×n be a matrix polynomial with grade d =

k�, for some k. Let ε + η + 1 = k, and let Σ(ε,η)
P (λ) be the matrix polynomial in (5.15). 

Then, the block Kronecker matrix polynomial

[
Σ(ε,η)

P (λ) Lη(λ�)T ⊗ Im

Lε(λ�) ⊗ In 0

]
(5.17)

is a companion �-ification (or a companion form) for m ×n matrix polynomials of grade d.

Example 3. Let P (λ) =
∑6

i=0 Piλ
i ∈ F[λ]m×n, then the quadratic matrix polynomial⎡⎣λ2P6 + λP5 λ2P4 + λP3 λ2P2 + λP1 + P0

−In λ2In 0
0 −In λ2In

⎤⎦
is the first Frobenius-like companion form introduced in [14], and the quadratic matrix 
polynomial ⎡⎢⎣ λ2P6 + λP5 λ2P4 + λP3 −Im

0 λ2P2 + λP1 + P0 λ2Im
−In λ2In 0

⎤⎥⎦
is the matrix polynomial obtained from Theorem 5.8 with ε = η = 1. Notice that 
both quadratic matrix polynomials are companion quadratifications for m × n matrix 
polynomials of grade d = 6.

The block Kronecker matrix polynomial (5.17) is clearly not the only block Kronecker 
matrix polynomial whose (1, 1) block M(λ) satisfies

(Λη(λ�)T ⊗ Im)M(λ)(Λε(λ�) ⊗ In) = P (λ). (5.18)

A succinct characterization of the set of all solutions of (5.18) for a prescribed polynomial 
P (λ) of grade d may be obtained by applying Theorem 5.4. However, for block Kronecker 
matrix polynomials, a different but simpler characterization is presented in Theorem 5.9.

Theorem 5.9. Let P (λ) =
∑d

i=0 Piλ
i ∈ F[λ]m×n be a matrix polynomial with grade d =

k�, for some k. Let ε + η + 1 = k, and let Σ(ε,η)
P (λ) be the matrix polynomial in (5.15). 

Then, any solution of (5.18) is of the form

M(λ) = Σ(ε,η)
P (λ)+

(
λ

[
0

D(λ)

]
+ B

)(
Lε(λ�) ⊗ In

)
+
(
Lη(λ�)T ⊗ Im

)
(λ [0 −D(λ)] + C) ,

(5.19)
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for some matrices B ∈ F
(η+1)m×εn and C ∈ F

ηm×(ε+1)n, and matrix polynomial D(λ) ∈
F�−2[λ]ηm×εn.

Proof. Let us introduce the linear operator

Ξ : F�[λ](η+1)m×(ε+1)n −→ Fd[λ]m×n

M(λ) −→ Ξ[M ](λ) = (Λη(λ�)T ⊗ Im)M(λ)(Λε(λ�) ⊗ In).

First, we notice that M(λ) as in (5.19) has grade equal to �. Since Ξ[Σ(ε,η)
P ](λ) = P (λ), it 

is easily checked that any M(λ) of the form (5.19) satisfies Ξ[M ](λ) = P (λ). Hence, the 
linear operator Ξ is surjective and dim(null(Ξ)) = εηmn(� −1) +(ε +1)ηmn +(η+1)εmn, 
which corresponds to the number of free parameters in (5.19). Furthermore, the set of 
matrix polynomials of the form

(
λ

[
0

D(λ)

]
+ B

)(
Lε(λ�) ⊗ In

)
+
(
Lη(λ�)T ⊗ Im

)
(λ [0 −D(λ)] + C) (5.20)

is contained in null(Ξ). Thus, to finish the proof, it suffices to show that the mapping 
(B, C, D(λ)) → M(λ), with M(λ) as in (5.20), is injective. We show the injectivity of 
this mapping by showing that the only matrix polynomials P1(λ) and P2(λ) of grade 
� − 1 satisfying

P1(λ)
(
Lε(λ�) ⊗ In

)
+
(
Lη(λ�)T ⊗ Im

)
P2(λ) = 0 (5.21)

are P1(λ) = 0 and P2(λ) = 0. Indeed, pre-multiplying (5.21) by (Λη(λ�)T ⊗ Im) we 
obtain (Λη(λ�)T ⊗ Im)P1(λ)(Lε(λ�) ⊗ In) = 0, which implies (Λη(λ�)T ⊗ Im)P1(λ) = 0
because Lε(λ�) ⊗ In has full normal row rank. Moreover, (Λη(λ�)T ⊗ Im)P1(λ) = 0 with 
P1(λ) �= 0 contradicts the fact that all the right minimal indices of Λη(λ�)T ⊗ Im are 
equal to �. Therefore, P1(λ) = 0. An analogous argument shows that P2(λ) = 0. �

Theorem 5.7 allows one to easily check whether or not a block Kronecker matrix poly-
nomial is a strong �-ification of a prescribed matrix polynomial P (λ), and Theorem 5.9
allows one to easily construct infinitely many strong �-ifications for P (λ). Moreover, many 
of these �-ifications are companion forms different from (5.17) or the Frobenius-like com-
panion forms. We illustrate this in Example 4, where we construct three different block 
Kronecker matrix polynomials with degrees 1, 2 and 3 that are, respectively, a strong 
linearization, a strong quadratification, and a strong 3-ification of a given matrix poly-
nomial of grade d = 6. Further, the three examples are companion forms.

Example 4. Let P (λ) =
∑6

i=0 Piλ
i ∈ F[λ]m×n. Then, the following block Kronecker 

matrix polynomials
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L(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λP6 0 0 0 −Im 0
λP5 λP4 0 0 λIm −Im

0 λP3 λP2 λP1 + P0 0 λIm

−In λIn 0 0 0 0
0 −In λIn 0 0 0
0 0 −In λIn 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q(λ) =

⎡⎢⎢⎣
λ2P6 + λP5 λP3 + P2 −Im

λ2P4 λP1 + P0 λ2Im

− In λ2In 0

⎤⎥⎥⎦ , and

C(λ) =
[
λ3P6 + λ2P5 + λP4 + P3 λ2P2 + λP1 + P0

− In λ3In

]

are, by Theorem 5.7, respectively, a strong linearization, a strong quadratification, and 
a strong 3-ification of the matrix polynomial P (λ). Notice that L(λ), Q(λ) and C(λ) are 
companion forms for matrix polynomials of grade 6 and size m × n.

Companion forms may sometimes have other valuable properties in addition to those 
specified at the beginning of this section. For example, one may require that the struc-
ture of the polynomials is preserved. We construct in Example 5 a symmetric companion 
quadratification for n ×n symmetric matrix polynomials of grade d = 10. The construc-
tion in (5.22) is easily generalized for any matrix polynomial with grade d = 4k + 2, 
for some k, and to other structures (palindromic, alternating, etc.) by using the ideas in 
[23].

Example 5. Let P (λ) =
∑10

i=0 Piλ
i ∈ F[λ]n×n. Then, the following block Kronecker 

quadratic matrix polynomial

⎡⎢⎢⎢⎢⎢⎢⎣
λ2P10 + λP9 + P8 λP7/2 0 −In 0

λP7/2 λ2P6 + λP5 + λP4 λP3/2 λ2In −In

0 λP3/2 λ2P2 + λP1 + P0 0 λ2In

− In λ2In 0 0 0
0 −In λ2In 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (5.22)

is, by Theorem 5.7, a strong quadratification of P (λ). Since (5.22) is symmetric when 
P (λ) is symmetric and it is constructed from the coefficients of P (λ) without using 
any arithmetic operation, (5.22) is a symmetric companion quadratification for n × n

symmetric matrix polynomials of grade d = 10.
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6. Minimal indices, minimal bases and eigenvector recovery procedures

We study in this section how to recover the eigenvectors, and the minimal bases and 
minimal indices of a matrix polynomial P (λ) from those of an �-ification L(λ) based on 
strong block minimal bases matrix polynomials. When L(λ) is a block Kronecker matrix 
polynomial, we will see that such eigenvectors and minimal bases recovery procedures 
are very simple. More precisely, block Kronecker matrix polynomials allow us to obtain 
the eigenvectors and the minimal bases of P (λ) from those of L(λ) without any extra 
computational cost.

6.1. Minimal indices

It is known that strong �-ifications may change the minimal indices of a singular matrix 
polynomial P (λ) almost arbitrarily [15, Theorem 4.10]. For this reason, it is important 
to be able to recover the minimal indices of P (λ) from those of an �-ification L(λ). The 
goal of this section is to show that the minimal indices of the singular matrix polynomial 
(4.2) are related with those of the strong block minimal bases matrix polynomial (4.1)
via uniform shifts.

The following lemma is key to prove Theorem 6.2, which is the main result of this 
section. The proof of Lemma 6.1 is identical (up to minor changes) to the proof of [22, 
Lemma A.1], so it is omitted.

Lemma 6.1. Let L(λ) be a strong block minimal bases degree-� matrix polynomial as in 
(4.1), let N1(λ) be a minimal basis dual to K1(λ), let N2(λ) be a minimal basis dual to 
K2(λ), let Q(λ) be the matrix polynomial in (4.2), and let N̂2(λ) be the matrix polynomial 
appearing in (4.3). Then the following hold:

(a) If h(λ) ∈ Nr(Q), then

z(λ) :=
[

N1(λ)T
−N̂2(λ)M(λ)N1(λ)T

]
h(λ) ∈ Nr(L) . (6.1)

Moreover, if 0 �= h(λ) ∈ Nr(Q) is a vector polynomial, then z(λ) is also a vector 
polynomial and

deg(z(λ)) = deg(N1(λ)T h(λ)) = deg(N1(λ)) + deg(h(λ)). (6.2)

(b) If {h1(λ), . . . , hp(λ)} is a right minimal basis of Q(λ), then{[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T
]
h1(λ), . . . ,

[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T
]
hp(λ)

}
is a right minimal basis of L(λ).



194 F.M. Dopico et al. / Linear Algebra and its Applications 562 (2019) 163–204
As a corollary of Lemma 6.1, we obtain Theorem 6.2, which shows that the minimal 
indices of the strong block minimal bases matrix polynomial (4.1) are related with those 
of the polynomial Q(λ) in (4.2) via uniform shifts. The proof of Theorem 6.2 is identical 
to the proof of [22, Theorem 3.6], so it is omitted.

Theorem 6.2. Let L(λ) be a strong block minimal bases degree-� matrix polynomial as in 
(4.1), let N1(λ) be a minimal basis dual to K1(λ), let N2(λ) be a minimal basis dual to 
K2(λ), and let Q(λ) be the matrix polynomial in (4.2). Then, the following statements 
hold:

(a) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of Q(λ), then

ε1 + deg(N1(λ)) ≤ ε2 + deg(N1(λ)) ≤ · · · ≤ εp + deg(N1(λ))

are the right minimal indices of L(λ).
(b) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq are the left minimal indices of Q(λ), then

η1 + deg(N2(λ)) ≤ η2 + deg(N2(λ)) ≤ · · · ≤ ηq + deg(N2(λ))

are the left minimal indices of L(λ).

Clearly, one can apply Theorem 6.2 to a block Kronecker matrix polynomial as in 
(5.12).

Theorem 6.3. Let P (λ) =
∑d

i=0 Piλ
i ∈ F[λ]m×n be a singular matrix polynomial with 

d = k�, for some k. Let L(λ) be an (ε, n, η, m)-block Kronecker degree-� matrix polynomial 
as in (5.12) with k = ε + η + 1 such that P (λ) = (Λη(λ�)T ⊗ Im)M(λ)(Λε(λ�) ⊗ In), 
where Λs(λ) is the vector polynomial in (3.3). Then the following hold:

(a) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

ε1 + ε� ≤ ε2 + ε� ≤ · · · ≤ εp + ε�

are the right minimal indices of L(λ).
(b) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq are the left minimal indices of P (λ), then

η1 + η� ≤ η2 + η� ≤ · · · ≤ ηq + η�

are the left minimal indices of L(λ).

6.2. Minimal bases recovery procedures

We discuss in this section how to recover the minimal bases of the singular matrix 
polynomial (4.2) from those of the singular strong block minimal bases matrix polynomial 
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(4.1). In particular, we show that such recovery procedures allow us to obtain the minimal 
bases of the polynomial (4.2) from those of any block Kronecker matrix polynomial 
without any extra computational cost.

The first result is Lemma 6.4, valid for any strong block minimal bases matrix poly-
nomial, which completes Lemma 6.1 and uses the notation introduced in Section 4. 
Lemma 6.4 gives abstract formulas for the minimal bases of block minimal bases matrix 
polynomials (4.1) in terms of those of the matrix polynomial (4.2).

Lemma 6.4. Let L(λ) be a strong block minimal bases degree-� matrix polynomial as in 
(4.1), let N1(λ) be a minimal basis dual to K1(λ), let N2(λ) be a minimal basis dual 
to K2(λ), let Q(λ) be the matrix polynomial in (4.2), and let N̂1(λ) and N̂2(λ) be the 
matrices appearing in (4.3). Then, the following statements hold.

(a) Any right minimal basis of L(λ) has the form{[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T
]
h1(λ), . . . ,

[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T
]
hp(λ)

}
,

where {h1(λ), . . . , hp(λ)} is some right minimal basis of Q(λ).
(b) Any left minimal basis of L(λ) has the form{

g1(λ)T [N2(λ),−N2(λ)M(λ)N̂1(λ)T ], . . . , gq(λ)T [N2(λ),−N2(λ)M(λ)N̂1(λ)T ]
}
,

where {g1(λ)T , . . . , gq(λ)T } is some left minimal basis of Q(λ).

Proof. We only prove part (a), since part (b) follows from applying part (a) to L(λ)T
and Q(λ)T and then taking transposes, as in the proof of part (b) in Theorem 6.2.

According to part (b) in Lemma 6.1, if the p columns of R(λ) are a particular right 
minimal basis of Q(λ), then the columns of

S(λ) :=
[

N1(λ)T
−N̂2(λ)M(λ)N1(λ)T

]
R(λ) (6.3)

are a particular right minimal basis of L(λ). Therefore, any other right minimal basis 
BL of L(λ) has the form

BL = {S(λ)v1(λ), . . . , S(λ)vp(λ)}, (6.4)

where v1(λ), . . . , vp(λ) are vector polynomials, and where it is assumed without loss of 
generality that deg(S(λ)v1(λ)) ≤ · · · ≤ deg(S(λ)vp(λ)). The fact that v1(λ), . . . , vp(λ)
in (6.4) are vector polynomials follows from [27, Part 4 in Main Theorem, p. 495]). 
Hence, it suffices to prove that BQ := {R(λ)v1(λ), . . . , R(λ)vp(λ)} is a minimal basis 
of Nr(Q). Indeed, first we note that the vector polynomial R(λ)vi(λ) ∈ Nr(Q), for 
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i = 1, . . . , p. Second, the set {R(λ)v1(λ), . . . , R(λ)vp(λ)} is linearly independent because 
BL is linearly independent. Third, the set BQ is a polynomial basis of Nr(Q) since 
dimNr(Q) = dimNr(L). Finally, part (a) in Lemma 6.1 implies that deg(S(λ)vi(λ)) =
deg(N1(λ)) +deg(R(λ)vi(λ)), and part (a) in Theorem 6.2 implies that deg(S(λ)vi(λ)) =
deg(N1(λ)) + εi, for i = 1, . . . , p, where ε1 ≤ · · · ≤ εp are the right minimal indices of 
Q(λ). Therefore, deg(R(λ)vi(λ)) = εi, which means that BQ is a right minimal basis of 
Q(λ). �

As a corollary of Lemma 6.4, we obtain Theorem 6.5, which shows abstract recovery 
results for minimal bases of matrix polynomials from strong block minimal bases matrix 
polynomials.

Theorem 6.5. Let L(λ) be a strong block minimal bases degree-� matrix polynomial as in 
(4.1), let K̂1(λ) and K̂2(λ) be the matrices appearing in (4.3), let the p columns of RL(λ)
be a right minimal basis of L(λ), and let the q rows of LL(λ) be a left minimal basis of 
L(λ). Then, the following statements hold.

(a) The p columns of

RQ(λ) :=
[
K̂1(λ) 0

]
RL(λ)

are a right minimal basis of Q(λ).
(b) The q rows of

LQ(λ) := LL(λ)
[
K̂2(λ)T

0

]

are a left minimal basis of Q(λ).

Proof. As in the proof of Lemma 6.4, we only prove part (a), since part (b) follows from 
applying part (a) to L(λ)T and Q(λ)T , together with Lemma 5.5.

According to part (a) in Lemma 6.4, any right minimal basis of L(λ) is of the form

RL(λ) =
[

N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
RQ(λ),

for some right minimal basis RQ(λ) of Q(λ). Then, the result follows immediately from 
K̂1(λ)N1(λ)TRQ(λ) = RQ(λ). �

In general, the minimal bases recovery procedure in Theorem 6.5 requires one matrix–
vector multiplication for each vector of the basis. Thus, the potential simplicity and low 
computational cost of these recovery results and formulas depend on the particular strong 
block minimal bases matrix polynomials used. In the particular case of block Kronecker 
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matrix polynomials, the minimal bases recovery procedures turn to be particularly sim-
ple, as we show in the following theorem.

Theorem 6.6. Let P (λ) =
∑d

i=0 Piλ
i ∈ F[λ]m×n be a singular matrix polynomial with 

d = k�, for some k. Let L(λ) be an (ε, n, η, m)-block Kronecker degree-� matrix polynomial 
as in (5.12) with k = ε + η + 1 such that P (λ) = (Λη(λ�)T ⊗ Im)M(λ)(Λε(λ�) ⊗ In), 
where Λs(λ) is the vector polynomial in (3.3). Consider the pencil L(λ) partitioned into 
k × k blocks whose sizes are fixed by the size n × n of the blocks of Lε(λ�) ⊗ In and the 
size m ×m of the blocks of Lη(λ�)T ⊗ Im. Then, the following statements hold.

(a) If {z1(λ), z2(λ), . . . , zp(λ)} is any right minimal basis of L(λ) whose vectors are 
partitioned into blocks conformable to the block columns of L(λ), and if xj(λ) is the 
(ε + 1)th block of zj(λ), for j = 1, 2, . . . , p, then {x1(λ), x2(λ), . . . , xp(λ)} is a right 
minimal basis of P (λ).

(b) If {w1(λ)T , w2(λ)T , . . . , wq(λ)T } is any left minimal basis of L(λ) whose vectors are 
partitioned into blocks conformable to the block rows of L(λ), and if yj(λ)T is the 
(η + 1)th block of wj(λ)T , for j = 1, 2, . . . , q, then {y1(λ)T , y2(λ)T , . . . , yq(λ)T } is a 
left minimal basis of P (λ).

Proof. Parts (a) and (b) are an immediate consequence of Lemma 6.4 combined with 
the fact that for (ε, n, η, m)-block Kronecker matrix polynomials N1(λ) = Λε(λ�)T ⊗ In
and N2(λ) = Λη(λ�)T ⊗ Im. �
6.3. Eigenvectors recovery procedures

In this subsection, we present the final recovery procedures for eigenvectors of regu-
lar matrix polynomials from those of block minimal bases matrix polynomials and, in 
particular, from those of block Kronecker matrix polynomials.

Lemma 6.7 is the counterpart of part (b) in Lemma 6.1 and Lemma 6.4 for eigenvec-
tors. Since only regular matrix polynomials have eigenvectors, we assume that Q(λ) is 
square and regular, which is equivalent to the fact that L(λ) is square and regular, since 
L(λ) is a strong �-ification of Q(λ). The proof of Lemma 6.7 is omitted for brevity, and 
because it follows the same steps as those of [22, Lemma A.1] and Lemma 6.4 but re-
moving all the arguments concerning degrees since only null spaces of constant matrices 
are considered.

Lemma 6.7. Let L(λ) be a square and regular strong block minimal bases degree-� matrix 
polynomial as in (4.1), let N1(λ) be a minimal basis dual to K1(λ), let N2(λ) be a minimal 
basis dual to K2(λ), let Q(λ) be the matrix polynomial in (4.2), and let N̂1(λ) and N̂2(λ)
be the matrices appearing in (4.3). Let λ0 be a finite eigenvalue of Q(λ) (which is also 
an eigenvalue of L(λ)). Then, the following statements hold.
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(a) Let G1(λ0) := N1(λ0)M(λ0)T N̂2(λ0)T . Then, any basis of Nr(L(λ0)) has the form

Br,λ0 =
{[

N1(λ0)T

−G1(λ0)T

]
x1, . . . ,

[
N1(λ0)T

−G1(λ0)T

]
xt

}
,

where {x1, . . . , xt} is some basis of Nr(Q(λ0)), and, vice versa, for any basis 
{x1, . . . , xt} of Nr(Q(λ0)), the set of vectors Br,λ0 is a basis of Nr(L(λ0)).

(b) Let G2(λ0) := N2(λ0)M(λ0)N̂1(λ0)T . Then, any basis of N�(L(λ0)) has the form

B�,λ0 =
{
yT1 [N2(λ0),−G2(λ0)], . . . , yTt [N2(λ0),−G2(λ0)]

}
,

where {yT1 , . . . , yTt } is some basis of N�(Q(λ0)), and, vice versa, for any basis 
{yT1 , . . . , yTt } of N�(Q(λ0)), the set of vectors B�,λ0 is a basis of N�(L(λ0)).

As a corollary of Lemma 6.7, we obtain Theorem 6.8, which shows abstract recovery 
results for eigenvectors of matrix polynomials from those of strong block minimal bases 
matrix polynomials. The proof of Theorem 6.8 follows the same steps as those of The-
orem 6.5, so it is omitted. For brevity, only the recovery of individual eigenvectors is 
explicitly stated. Clearly, the recovery of bases of the corresponding null spaces follows 
the same pattern.

Theorem 6.8. Let L(λ) be a strong block minimal bases degree-� matrix polynomial as in 
(4.1), let K̂1(λ) and K̂2(λ) be the matrices appearing in (4.3), let λ0 be a finite eigenvalue 
of L(λ), and let z and wT be, respectively, right and left eigenvectors of L(λ) associated 
with λ0. Then, the following statements hold.

(a) The vector

x :=
[
K̂1(λ0) 0

]
z

is a right eigenvector of Q(λ) for the eigenvalue λ0.
(b) The vector

yT := wT

[
K̂2(λ0)T

0

]
is a left eigenvector of Q(λ) for the eigenvalue λ0.

As with the minimal bases recovery procedure in Theorem 6.5, the eigenvectors re-
covery procedure in Theorem 6.8 requires one matrix–vector multiplication for each 
eigenvector. Thus, its potential simplicity and low computational cost depend on the 
particular strong block minimal bases matrix polynomials used. In the particular case 
of block Kronecker matrix polynomials, the eigenvectors recovery procedures turn to be 
particularly simple, as we show in the following theorem.
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Theorem 6.9. Let P (λ) =
∑d

i=0 Piλ
i ∈ F[λ]n×n be a regular matrix polynomial with 

d = k�, for some k. Let L(λ) be an (ε, n, η, n)-block Kronecker matrix polynomial as in 
(5.12) with k = ε +η+1 such that P (λ) = (Λη(λ�)T ⊗In)M(λ)(Λε(λ�) ⊗In), where Λs(λ)
is the vector polynomial in (3.3). Consider the pencil L(λ) partitioned into k × k blocks 
of size n × n, any vector of size nk × 1 partitioned into k × 1 blocks of size n × 1, and 
any vector of size 1 × nk partitioned into 1 × k blocks of size 1 × n. Then the following 
statements hold.

(a1) If z ∈ F
nk×1 is a right eigenvector of L(λ) with finite eigenvalue λ0, then the 

(ε + 1)th block of z is a right eigenvector of P (λ) with finite eigenvalue λ0.
(a2) If z ∈ F

nk×1 is a right eigenvector of L(λ) for the eigenvalue ∞, then the first block 
of z is a right eigenvector of P (λ) for the eigenvalue ∞.

(b1) If wT ∈ F
1×nk is a left eigenvector of L(λ) with finite eigenvalue λ0, then the 

(η + 1)th block of wT is a left eigenvector of P (λ) with finite eigenvalue λ0.
(b2) If wT ∈ F

1×nk is a left eigenvector of L(λ) for the eigenvalue ∞, then the first 
block of wT is a left eigenvector of P (λ) for the eigenvalue ∞.

Proof. Parts (a1) and (b1) follow directly from Lemma 6.7 and Theorem 6.8, just by 
taking into account that for an (ε, n, η, n)-block Kronecker matrix polynomial N1(λ)T =
Λε(λ�) ⊗ In and N2(λ) = Λη(λ�)T ⊗ In.

In order to prove parts (a2) and (b2), recall that the eigenvectors of L(λ) (resp. P (λ)) 
corresponding to the eigenvalue ∞ are those of rev�L(λ) (resp. revdP (λ)) corresponding 
to the eigenvalue 0. As a consequence of Theorem 3.7, the matrix polynomial rev�L(λ)
is a strong block minimal bases matrix polynomial (although not exactly a block Kro-
necker matrix polynomial), which is an �-ification of revdP (λ) (recall the proof of part 
(b) of Theorem 4.2). Therefore, Lemma 6.7 and Theorem 6.8 can be applied to the 
zero eigenvalue of rev�L(λ) and revdP (λ). For doing this properly, N1(λ0)T has to be 
replaced by revε�Λε(λ�

0) ⊗ In and N2(λ0) has to be replaced by revη�Λη(λ�
0)T ⊗ Im, as a 

consequence of Theorem 3.7 (together with other replacements which are of no interest 
in this proof). Then, parts (a2) and (b2) follow from the expression of revε�Λε(λ�) ⊗ In
and revη�Λη(λ�)T ⊗ Im. �

6.4. One-sided factorizations

We end this section by showing that strong block minimal bases matrix polynomials 
admit one-sided factorizations as those used in [35]. One-sided factorizations are useful 
for performing residual “local”, i.e., for each particular computed eigenpair, backward 
error analyses of regular PEPs solved by �-ifications.

In the following definition we introduce right- and left-sided factorizations as were 
defined in [35] particularized to the case of matrix polynomials.
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Definition 6.10. Given two matrix polynomials M(λ) ∈ F[λ]r×r and N(λ) ∈ F[λ]s×s, we 
say that M(λ) and N(λ) satisfy a right-sided factorization if

M(λ)F (λ) = G(λ)N(λ)

for some matrix polynomials F (λ), G(λ) ∈ F[λ]r×s. Additionally, we say that M(λ) and 
N(λ) satisfy a left-sided factorization if

E(λ)M(λ) = N(λ)H(λ),

for some matrix polynomials E(λ), H(λ) ∈ F[λ]s×r.

Theorem 6.11. Let L(λ) be a strong block minimal bases matrix polynomial as in (4.1), 
let N1(λ) be a minimal basis dual to K1(λ), let N2(λ) be a minimal basis dual to K2(λ), 
let Q(λ) be the matrix polynomial in (4.2), let K̂i(λ) and N̂i(λ) be the matrix polynomials 
appearing in (4.3), for i = 1, 2. Then, the following right- and left-sided factorizations 
hold.

L(λ)
[

N1(λ)T
−N̂2(λ)M(λ)N1(λ)T

]
=
[
K̂2(λ)T

0

]
Q(λ),

and [
N2(λ) −N2(λ)M(λ)N̂1(λ)T

]
L(λ) = Q(λ)

[
K̂1(λ) 0

]
.

Proof. Notice that X(λ) in (4.4) is given by X(λ) = N̂2(λ)M(λ)N1(λ)T . Then, from 
(4.4), we get

(U2(λ)−T ⊕ Im1)L(λ) (U1(λ)−1 ⊕ Im2)

⎡⎣ 0
In

−X(λ)

⎤⎦ =

⎡⎣ 0
Q(λ)

0

⎤⎦ ,

which implies

L(λ)
[

N1(λ)T
−N̂2(λ)M(λ)N1(λ)T

]
= (U2(λ)T ⊕ Im1)

⎡⎣ 0
Q(λ)

0

⎤⎦
which, by using the structure of U2(λ) in (4.3), implies the right-sided factorization. The 
left-sided factorization is obtained from a right-sided factorization of L(λ)T . �

In many important situations (see, for example, [30,31]), the one-sided factorizations 
in Definition 6.10 typically hold in the more specialized forms

M(λ)F (λ) = g ⊗N(λ) and E(λ)M(λ) = hT ⊗N(λ),
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for some vectors g, h. In the following theorem, we show that for block Kronecker matrix 
polynomials the one-sided factorization in Theorem 6.11 takes this simpler form. The 
matrix polynomial (recall Example 1)

Λ̂k(λ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −λ −λ2 · · · −λk−1

−1 −λ
. . .

...

−1
. . . −λ2

. . . −λ

−1
0 · · · · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is important in what follows.

Theorem 6.12. Let P (λ) =
∑d

i=0 Piλ
i ∈ F[λ]n×n be a regular matrix polynomial with 

d = k�, for some k. Let L(λ) be an (ε, n, η, n)-block Kronecker matrix polynomial as in 
(5.12) with k = ε +η+1 such that P (λ) = (Λη(λ�)T ⊗In)M(λ)(Λε(λ�) ⊗In), where Λs(λ)
is the vector polynomial in (3.3). Then, the following right- and left-sided factorizations 
hold:

L(λ)
[

Λε(λ�) ⊗ In
−(Λ̂η(λ�)T ⊗ Im)(λ)M(λ)(Λε(λ�) ⊗ In)

]
=
[
eη+1

0

]
⊗ P (λ),

and

[
Λη(λ�)T ⊗ Im −(Λη(λ�)T ⊗ Im)M(λ)(Λ̂ε(λ�) ⊗ In)

]
L(λ) =

[
eε+1

0

]T
⊗ P (λ),

where eη+1 and eε+1 denote, respectively, the last columns of the identity matrices Iη+1
and Iε+1.

Proof. The one-sided factorizations follow immediately from Theorem 6.11 taking into 
account that K̂1(λ) = eTε+1⊗In, K̂2(λ) = eTη+1⊗Im, N̂1(λ) = Λ̂ε(λ�)T ⊗In and N̂2(λ) =
Λ̂η(λ�)T ⊗ Im. �
7. Conclusions

We have introduced the family of strong block minimal bases matrix polynomials. This 
family has allowed us to present a new procedure for constructing strong �-ifications for 
m × n matrix polynomials of grade g, which unifies and extends previous constructions 
[16,22]. This procedure is valid in the case where � divides nd or md. Any strong �-ification 
obtained from this approach presents many properties that are desirable for numerical 
computations. First, the �-ification is constructed using only simple operations on the 
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coefficients of the matrix polynomial. Second, the left and right minimal indices of the 
�-ification and the ones of the matrix polynomial are related by simple rules. This prop-
erty implies that the complete eigenstructure of the polynomial can be recovered even in 
the singular case. Third, the eigenvectors and minimal bases of the matrix polynomial 
can be recovered from those of the �-ification. Four, the �-ification presents one-sided 
factorizations, useful for performing conditioning and local backward error analyses.

In the particular case when � divides d, we have introduced the family of block Kro-
necker matrix polynomials, which is a subfamily of strong block minimal bases pencils. 
This family has allowed us to construct many companion �-ifications that are differ-
ent from the Frobenius-like companion �-ifications in [14]. Furthermore, for any strong 
�-ification in the block Kronecker matrix polynomials family, we have shown that the 
eigenvectors and minimal bases of the matrix polynomial can be recovered from those of 
the �-ification without any extra computational cost.
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