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Abstract
In this paper we study the backward stability of running a backward stable eigenstruc-
ture solver on a pencil S(λ) that is a strong linearization of a rational matrix R(λ)

expressed in the form R(λ) = D(λ) + C(λI� − A)−1B, where D(λ) is a polyno-
mial matrix and C(λI� − A)−1B is a minimal state-space realization. We consider the
family of block Kronecker linearizations of R(λ), which have the following structure

S(λ) :=
⎡
⎣

M(λ) K̂ T
2 C KT

2 (λ)

BK̂1 A − λI� 0
K1(λ) 0 0

⎤
⎦ ,

where the blocks have some specific structures. Backward stable eigenstructure
solvers, such as the QZ or the staircase algorithms, applied to S(λ) will compute
the exact eigenstructure of a perturbed pencil Ŝ(λ) := S(λ) + ΔS(λ) and the special
structure of S(λ) will be lost, including the zero blocks below the anti-diagonal. In
order to link this perturbed pencil with a nearby rational matrix, we construct in this
paper a strictly equivalent pencil S̃(λ) = (I − X)Ŝ(λ)(I −Y ) that restores the original
structure, and hence is a block Kronecker linearization of a perturbed rational matrix
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R̃(λ) = D̃(λ) + C̃(λI� − Ã)−1 B̃, where D̃(λ) is a polynomial matrix with the same
degree as D(λ). Moreover, we bound appropriate norms of D̃(λ) − D(λ), C̃ − C ,
Ã − A and B̃ − B in terms of an appropriate norm of ΔS(λ). These bounds may be,
in general, inadmissibly large, but we also introduce a scaling that allows us to make
them satisfactorily tiny, by making the matrices appearing in both S(λ) and R(λ) have
norms bounded by 1. Thus, for this scaled representation, we prove that the staircase
and the QZ algorithms compute the exact eigenstructure of a rational matrix R̃(λ)

that can be expressed in exactly the same form as R(λ) with the parameters defining
the representation very near to those of R(λ). This shows that this approach is back-
ward stable in a structured sense. Several numerical experiments confirm the obtained
backward stability results.

Keywords Rational matrix · Rational eigenvalue problem · Linearization · Matrix
pencils · Perturbations · Backward error analysis

Mathematics Subject Classification 65F15 · 15A18 · 15A22 · 15A54 · 93B18 ·
93B20 · 93B60

1 Introduction

It has been known since the 1970s that the zeros of a rational matrix are also the
eigenvalues of an appropriately defined pencil of matrices, i.e., a polynomial matrix of
degree at most 1, and that its poles are the eigenvalues of a principal submatrix of such
a pencil. This connection was established in the influential book of Rosenbrock [18].
About 10 years later numerical algorithms were proposed in [21, 22] to construct such
a pencil in a numerically stable way. Not only the zeros and poles can be determined
via these pencils, but also their structural indices, or partial multiplicities, as well as the
minimal indices of the left and right null-spaces of the rational matrix, see e.g. [26].
Together, these are called the eigenstructure of the rational matrix, and the pencils
considered in [26] are called system matrices of a strongly irreducible generalized
state-space realization.

Polynomial matrices can be viewed as special cases of rational matrices, which
happen to have all their poles at infinity. The notions of generalized state-space real-
izations and corresponding (strongly) irreducible system matrices therefore apply to
polynomial matrices as well. But in the classic reference [10] a new notion of strong
linearization is introduced for polynomial matrices which is consistent with that of
strongly irreducible system matrix of [26] for the finite eigenvalues and their struc-
tural indices. But for the structural indices at infinity, these two definitions differ by a
constant shift, which means that the structural indices at infinity can easily be recov-
ered from one definition to the other. Moreover, the definition of strong linearization
introduced in [10] does not guarantee any relationship between the minimal indices of
the linearization and those of the polynomial matrix [5], in contrast with the pencils
in [26] for which the minimal indices are equal.

Even though the definition of strong linearization in [10] was originally given for
polynomial matrices, there have been several attempts to extend it to rational matrices
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[2, 4], including in these extensions also the concept of (non-strong) linearization [1,
2]. Thus, inspired by previous results for polynomial matrices [7], a wide family of
strong linearizations called strong block minimal bases linearizations is proposed in
[2, Theorem 5.11] for any m × n rational matrix R(λ) with coefficient matrices in an
arbitrary field F. These linearizations are based on the splitting of R(λ) into its strictly
proper part Rp(λ) and its polynomial part D(λ) and in the representation :

R(λ) := Rp(λ) + D(λ) = C(λI� − A)−1B +
d∑

i=0

Diλ
i , (1.1)

where C(λI� − A)−1B is a minimal state-space realization of the strictly proper part
Rp(λ), represented in what follows by the triple {A, B,C}, and d > 1 is the degree of
the polynomial part. Then R(λ) is represented by the quadruple {λI�−A, B,C, D(λ)}.
We emphasize that this representation of a rational matrix is one of themost commonly
used in applications and that it is valid for any rational matrix [18]. Since in this paper
we are analyzing perturbations related to backward errors of eigenvalue solvers of
pencils with real or complex matrix coefficients, we restrict F to be the real field R or
the complex field C.

A particular case of the strong block minimal bases linearizations in [2, Theo-
rem 5.11] of anym×n rational matrix R(λ) represented as in (1.1) are (modulo block
permutations) the pencils of the form

S(λ) :=
⎡
⎣

M(λ) K̂ T
2 C KT

2 (λ)

BK̂1 A − λI� 0
K1(λ) 0 0

⎤
⎦ , (1.2)

with M(λ) a pencil whose properties are described below,

K1(λ) := Lε(λ) ⊗ In, K̂1 := eTε+1 ⊗ In, K2(λ) := Lη(λ) ⊗ Im, K̂2 := eTη+1 ⊗ Im,

and where ⊗ denotes the Kronecker product, ek = [0 · · · 0 1]T is the standard kth
unit vector of dimension k and Lk(λ) is the classical Kronecker block of dimension
k × (k + 1)

Lk(λ) :=

⎡
⎢⎢⎢⎣

1 −λ

1 −λ

. . .
. . .

1 −λ

⎤
⎥⎥⎥⎦ .

Moreover, the pencil M(λ) in (1.2) is related to the polynomial part D(λ) in (1.1) by
the “dual basis” vector Λk(λ) of powers of λ,

ΛT
k (λ) := [

λk · · · λ2 λ 1
]
,
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which satisfies Lk(λ)Λk(λ) = 0 and also

D(λ) = (Λη(λ) ⊗ Im)T M(λ)(Λε(λ) ⊗ In).

Thus, d = ε + η + 1 (see [7, eq. (4.5)]). We emphasize that the values ε = 0 or
η = 0 are allowed in the definition of S(λ) in (1.2). If ε = 0, then the last block row
of S(λ) is omitted and K̂1 = In , while if η = 0, then the last block column of S(λ) is
omitted and K̂2 = Im . As we explain below, the parameters ε and η determine how
the minimal indices of S(λ) are related to those of R(λ). The results in this paper will
show that the backward error bounds are better when choosing ε and η (almost) equal.

The strong linearizations (1.2) are inspired by the so-called “block Kronecker lin-
earizations” that were introduced in [7, Section 4] for an arbitrary m × n polynomial
matrix D(λ). Therefore, we use the same name in the rational setting. For polynomial
matrices, such linearizations are obtained by omitting the second block row and the
second block column in S(λ) and, for ε = 0 or η = 0, they include the classical second
and first Frobenius companion forms [10], amongmany other linearizations. However,
taking ε = 0 or η = 0 does not allow to construct structure preserving linearizations
of structured polynomial matrices. For this purpose, one should take ε = η �= 0 [8].
The representation of R(λ) in (1.1) and the block Kronecker linearizations S(λ) of
R(λ) (1.2) are the two fundamental ingredients of this paper.

As explained in [2, Section 3.1], the finite eigenvalues, together with their partial
multiplicities, of S(λ) (resp. A − λI�) coincide with the finite zeros (resp. poles) of
R(λ), together with their partial multiplicities. Moreover, the eigenvalue structure at
infinity of S(λ) allows us to obtain via a simple shift rule the pole-zero structure at
infinity of R(λ),1 In addition, as proved in [3, Section 6], the right (resp. left) minimal
indices of S(λ) are those of R(λ) plus ε (resp. η). Thus, S(λ) comprises the complete
eigenstructure of R(λ). Observe that the application to S(λ) of the QZ algorithm [16],
in the regular case, or of the staircase algorithm [21], in the singular case, gives the
zeros and the minimal indices, in the singular case, of R(λ), but not the poles, which
are in A − λI�.

It is worth mentioning that although the families of block Kronecker linearizations
of polynomial [7] and rational [2] matrices are very recent, some particular examples
of strong linearizations in these families appeared much earlier in the literature. For
instance, it was shown in [24] that a valid “realization” for the polynomial part D(λ)

in (1.1) is given by the following minimal Rosenbrock polynomial systemmatrix [18]

SD(λ) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

In −λIn

In
. . .

. . . −λIn
In −λIn

λDd . . . . . . λD2 λD1 + D0

⎤
⎥⎥⎥⎥⎥⎥⎦

:=
[
T (λ) −U (λ)

V (λ) W (λ)

]
,

1 More precisely, according to [2, p. 1683] if r is the normal rank of R(λ) and e1 ≤ · · · ≤ er are the r
largest partial multiplicities at infinity of S(λ), then e1 − d ≤ · · · ≤ er − d are the structural indices at
infinity of R(λ).
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whichmeans that D(λ) = W (λ)+V (λ)T (λ)−1U (λ). It is easy to see that aftermoving
the bottom block row of SD(λ) to the top position, a block Kronecker linearizarion
of D(λ) is obtained with K2(λ) empty [7, Section 4]. Combining the minimal state-
space realization C(λI� − A)−1B and the polynomial system matrix SD(λ) yields the
following minimal polynomial system matrix for the rational matrix R(λ) in (1.1):

SR(λ) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A − λI� B
In −λIn

In
. . .

. . . −λIn
In −λIn

C λDd · · · · · · λD2 λD1 + D0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

:=
[
TR(λ) −UR(λ)

VR(λ) WR(λ)

]
,

i.e., R(λ) = WR(λ)+VR(λ)TR(λ)−1UR(λ). A pencil with a structure similar to SR(λ)

can also be found in [19]. Observe that if the bottom block row of SR(λ) is moved
to the top position and the leftmost block column is moved to the rightmost position,
then the following reordered pencil is obtained

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λDd · · · · · · λD2 λD1 + D0 C
B A − λI�

In −λIn

In
. . .

. . . −λIn
In −λIn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is a particular case of the block Kronecker linearizations appearing in (1.2) for
R(λ)with η = 0, i.e., with the last block column omitted, K̂2 = Im , and ε = d −1. In
fact, it can be proved that what has been shown above for SR(λ) holds for all the block
Kronecker linearizations of R(λ) in (1.2), since all of them can be seen as minimal
Rosenbrock polynomial system matrices of R(λ) when we permute them to

SK (λ) :=
⎡
⎣
A − λI� 0 BK̂1

0 0 K1(λ)

K̂ T
2 C KT

2 (λ) M(λ)

⎤
⎦

and, then, we partition them appropriately, since the bottom right submatrix is a lin-
earization for D(λ). This approach based on the block Kronecker linearizations for
polynomial matrices, also contains the companion forms as a special case.

Itwas shown in [7] that perturbations of the blockKronecker linearizations of a poly-
nomialmatrix D(λ) can bemapped to perturbations of the coefficients of D(λ)without
significant growth of the relative norms of the perturbations under mild assumptions
that require to scale D(λ) to have norm equal to 1 and to use linearizations with the
norm of M(λ) of the same order as the norm of D(λ) (see [7, Corollary 5.24]). As a
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corollary of this perturbation result, we obtain that under such assumptions the compu-
tation of the eigenvalues and minimal indices of a polynomial matrix by applying the
QZ or the staircase algorithm to one of its block Kronecker linearizations is a back-
ward stable method from the point of view of the polynomial matrix. In this paper we
show that this can be extended to rational matrices as well, considering as coefficients
of the rational matrix those in the quadruple {λI� − A, B,C, D(λ)}. However, we
emphasize that the perturbation analysis for block Kronecker linearizations of ratio-
nal matrices is considerably more complicated than the one in [7] and, therefore, we
limit ourselves to perform a first order analysis.We also remark that the scaling needed
to get satisfactory perturbation bounds is more delicate than the one in [7]. As far as
we know, this is the first structural backward error analysis of this type performed in
the literature for linearizations of rational matrices.

We assume throughout the paper that � > 0 since, otherwise, R(λ) in (1.1) is a
polynomial matrix and this case was studied in [7]. Except in Sect. 4.6, we also assume
that at least one of the parameters ε and η in (1.2) is larger than zero since, otherwise,
none of the blocks K1(λ) and K2(λ) appears and block Kronecker linearizations
collapse to much simpler pencils. Note that max(η, ε) > 0 implies that the degree d
of the polynomial part D(λ) of R(λ) is larger than 1. The simple case d ≤ 1 is studied
in Sect. 4.6.

In order to measure perturbations, we need to introduce appropriate norms for
pencils, polynomial matrices and rational matrices expressed as in (1.1). For any pair
of matrices X and Y of arbitrary dimensions (that might be different), we will use the
following norms

‖(X ,Y )‖F :=
(
‖X‖2F + ‖Y‖2F

) 1
2 = ‖ [vec(X)T , vec(Y )T ] ‖2,

‖(X ,Y )‖2 :=
(
‖X‖22 + ‖Y‖22

) 1
2
,

where ‖X‖F and ‖X‖2 are, respectively, the Frobenius and spectral matrix norms and
vec(X) is the operator that stacks the columns of a matrix into one column vector [11].
For a pencil S(λ) := A − λB we define the corresponding norms via the two matrix
coefficients:

‖S(λ)‖F := ‖(A, B)‖F , ‖S(λ)‖2 := ‖(A, B)‖2.

More generally, for a polynomial matrix D(λ) := ∑d
i=0 Diλ

i , we will use the norm

‖D(λ)‖F :=
√√√√ d∑

i=0

‖Di‖2F ,
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and for a list of polynomial matrices (D1(λ), . . . , Dp(λ)), the norm

‖(D1(λ), . . . , Dp(λ))‖F :=
√√√√

p∑
i=1

‖Di (λ)‖2F .

Finally, for a rational matrix R(λ), represented by a quadruple {λI�− A, B,C, D(λ)},
as in (1.1), we use the “norm”

‖R(λ)‖F := ‖(λI� − A, B,C, D(λ))‖F

=
√√√√� + ‖A‖2F + ‖B‖2F + ‖C‖2F +

d∑
i=0

‖Di‖2F .

That is, the “norm” of a rational matrix R(λ) is defined as the norm of an associated
polynomial system matrix P(λ), in this case,

‖R(λ)‖F := ‖P(λ)‖F where P(λ) :=
[
λI� − A −B

C D(λ)

]
. (1.3)

We remark that ‖R(λ)‖F is not rigorously a “norm” for R(λ) because, for instance,
R(λ) is zero if B = 0 and D(λ) = 0, but ‖R(λ)‖F is not. Despite this fact, and with a
clear abuse of nomenclature, we will use the terminology “norm of a rational matrix”
in the sense explained above.

The paper is organized as follows. After this introductory section, we describe in
Sect. 2 the basic systems of matrix equations we will use in this paper, and, in Sect. 3,
some bounds for the singular values of certain matrices related to these systems of
matrix equations. In Sect. 4 we explain how to restore the structure of block Kronecker
linearizations of rationalmatrices after they suffer sufficiently small perturbations, and,
in Sect. 5, we derive a scaling technique that allows us to guarantee structured back-
ward stability for (regular or singular) rational eigenvalue problems solved via block
Kronecker linearizations. Finally, in Sect. 6 we give a number of numerical results
illustrating our theoretical bounds and, in Sect. 7, we establish some conclusions.

2 Generalized Sylvester equations

In order to restore the structure of perturbed block Kronecker linearizations of rational
matrices, we will need to guarantee that some matrix equations have solutions and to
bound the norm of their minimal norm solution. The matrix equations that we will
encounter are particular cases of the generalized Sylvester equation formi ×ni pencils
of matrices Ai − λBi , i = 1, 2, which is the following equation in the unknowns X
and Y :

X(A1 − λB1) + (A2 − λB2)Y = Ha − λHb, (2.1)
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that is assumed to hold for any λ. It is easily seen to be equivalent to a linear system
of equations, when rewriting it as

X A1 + A2Y = Ha,

XB1 + B2Y = Hb,

or, when using Kronecker products and the vec(·) notation, as
[
AT
1 ⊗ Im2 In1 ⊗ A2

BT
1 ⊗ Im2 In1 ⊗ B2

] [
vec(X)

vec(Y )

]
=
[
vec(Ha)

vec(Hb)

]
. (2.2)

The dimension of the unknowns X and Y are m2 ×m1 and n2 × n1, respectively, and
those of the right hand sides Ha and Hb are each m2 × n1. These equations will be
used in this paper in two contexts, which we briefly recall here.

Block elimination. Let Ai − λBi be two mi × ni pencils, i = 1, 2, that have
respectively full columnnormal rankn1 and full rownormal rankm2. Then the problem

of block anti-diagonalizing the pencil

[
0 A1 − λB1

A2 − λB2 Ha − λHb

]
, that is, finding X and

Y such that
[
Im1 0
−X Im2

] [
0 A1 − λB1

A2 − λB2 Ha − λHb

] [
In2 −Y
0 In1

]
=
[

0 A1 − λB1
A2 − λB2 0

]
, (2.3)

amounts to finding a solution for the generalized Sylvester equation (2.1). It is known
that there exists a solution (X ,Y ) ∈ F

m2×m1 ×F
n2×n1 for a particular right hand side

(Ha, Hb) ∈ F
m2×n1 × F

m2×n1 if and only if the pencils

[
0 A1 − λB1

A2 − λB2 Ha − λHb

]
and

[
0 A1 − λB1

A2 − λB2 0

]

are strictly equivalent (i.e. have the same Kronecker structure) [6]. But in order to have
a solution for any right hand side Ha − λHb one requires the stronger condition that
the pencils A1 − λB1 and A2 − λB2 have no common generalized eigenvalues (see
[23]). We recall here the result proven in [23] that is relevant for our work.

Theorem 2.1 ([23]) Let the pencils Ai − λBi of dimensions mi × ni , i = 1, 2, be
respectively of full column normal rank n1 ≤ m1 and of full row normal rank m2 ≤
n2, and let these two pencils have no common generalized eigenvalues. Then there
always exists a solution (X ,Y ) to the system of equations (2.3), for any perturbation
Ha − λHb. Moreover, the generalized eigenvalues of the pencil (2.3) are the union of
the generalized eigenvalues of the pencils Ai − λBi , i = 1, 2.

The system is underdetermined if either of the two inequalities m1 ≥ n1 and
n2 ≥ m2, is strict. Under the hypotheses of Theorem 2.1, the system (2.2) must be
compatible for any right hand side, and hence the Kronecker product matrix in the
left hand side of (2.2) must have full row rank 2m2n1. A bound for the minimum
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Frobenius-norm solution (X ,Y ) is then obtained in terms of the smallest singular
value σ2m2n1 of the matrix in (2.2):

‖(X ,Y )‖F ≤ ‖(Ha, Hb)‖F
σ2m2n1

([
AT
1 ⊗ Im2 In1 ⊗ A2

BT
1 ⊗ Im2 In1 ⊗ B2

]) . (2.4)

Equivalentpencils.The secondproblem in this paperwhere a generalizedSylvester
equation as in (2.1) arises is that of strictly equivalent pencils (see e.g. [9]). Let the
pencils Ai − λBi , i = 1, 2, be both of dimension m × n, then they are strictly
equivalent if and only if there exist invertiblematrices S and T such that S(A1−λB1) =
(A2 − λB2)T . Such pencils must then have the same Kronecker canonical form [9].
We are interested in finding the solution where S and T are as close as possible to the
identity matrix. This can be achieved by writing the transformation matrices as

S = I + X , T = I − Y

and then minimizing the Frobenius norm of the pair (X ,Y ). The corresponding equa-
tions are then

(I + X)(A1 − λB1) = (A2 − λB2)(I − Y )

or, when putting Ha − λHb := (A2 − λB2) − (A1 − λB1), we finally obtain

X(A1 − λB1) + (A2 − λB2)Y = Ha − λHb, (2.5)

which is again solved by using (2.2). We will use this to “restore” a slightly perturbed
pencil (A2 − λB2) := (A1 − λB1) + (Ha − λHb) to its original form (A1 − λB1)

using a strict equivalence transformation

(I + X)−1(A2 − λB2)(I − Y ) = A1 − λB1 (2.6)

that is very close to the identity, when we are sure that both pencils have the same
Kronecker canonical form. The bounds for the norm of X and Y are in fact given by
(2.4) for which we derive exact expressions in the next section. Notice that we can
not apply Theorem 2.1 to prove existence of a solution for equation (2.5), since in this
case both pencils must have the same generalized eigenvalues and the same normal
rank. A sufficient condition for the consistency of (2.5) is that A1−λB1 and A2−λB2
have the same Kronecker canonical form.

The condition that the Kronecker canonical form of a pencil does not change under
arbitrary sufficiently small perturbations only holds for very special pencils. In partic-
ular, it holds for the Kronecker product of Kronecker blocks times identity matrices,
i.e., for Lk(λ)⊗ Ir . This is a consequence of the results in [25], because Lk(λ)⊗ Ir has
full-Sylvester-rank by [25, Theorem 4.3(a)] and, then, [25, Theorem 6.6] guarantees
that Lk(λ)⊗ Ir +(Ha−λHb) has the sameKronecker canonical form as Lk(λ)⊗ Ir for
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all the perturbations (Ha, Hb) whose norms are smaller than the bounds in [25, Theo-
rem 6.6]. Sincewewill solve (2.5)–(2.6) only in the case A1−λB1 = Lk(λ)⊗ Ir , these
results prove that (2.5) has a solution for all sufficiently small perturbations (Ha, Hb)

in the cases of interest in this paper.

3 Singular value bounds

In the analysis of Sect. 4, we will need upper bounds for the minimum norm solutions
of the generalized Sylvester equation (2.1) for pairs of pencils (Ai − λBi ), i = 1, 2,
which all involve Kronecker blocks Lk(λ) := Ek−λFk , where the k×(k+1)matrices
Ek and Fk are given by

Ek :=

⎡
⎢⎢⎢⎣

1 0
1 0

. . .
. . .

1 0

⎤
⎥⎥⎥⎦ and Fk :=

⎡
⎢⎢⎢⎣

0 1
0 1

. . .
. . .

0 1

⎤
⎥⎥⎥⎦ .

To find such upper bounds is equivalent to find lower bounds for the singular values in
the denominator of the right hand side of (2.4). We consider the generalized Sylvester
equations for the following list of pencil pairs with their smallest singular value of the
corresponding linear maps:

1. A1 − λB1 = A − λI� and A2 − λB2 = Lε(λ) ⊗ In :

ω1 := σ2�εn

[
AT ⊗ Iεn I� ⊗ Eε ⊗ In
I� ⊗ Iεn I� ⊗ Fε ⊗ In

]
. (3.1)

2. A1 − λB1 = LT
η (λ) ⊗ Im and A2 − λB2 = A − λI�:

ω2 := σ2ηm�

[
Eη ⊗ Im� Iηm ⊗ A
Fη ⊗ Im� Iηm ⊗ I�

]
. (3.2)

3. A1 − λB1 = LT
η (λ) ⊗ Im and A2 − λB2 = Lε(λ) ⊗ In :

ω3 := σ2ηmεn

[
Eη ⊗ Imεn Iηm ⊗ Eε ⊗ In
Fη ⊗ Imεn Iηm ⊗ Fε ⊗ In

]
. (3.3)

4. A1 − λB1 = Lk(λ) ⊗ Ir and A2 − λB2 = Lk(λ) ⊗ Ir :

ω4 := σ2(k+1)rkr

[
ET
k ⊗ Irkr I(k+1)r ⊗ Ek ⊗ Ir

FT
k ⊗ Irkr I(k+1)r ⊗ Fk ⊗ Ir

]
. (3.4)

In Lemma 3.1 we analyze the first problem and give a lower bound for ω1.

123



Structural backward stability in rational eigenvalue problems Page 11 of 45     7 

Lemma 3.1 Let ω1 be the singular value in (3.1). Then

ω1 ≥ 1

1 + 2ε max(1, ‖A‖ε
2)

. (3.5)

Proof It follows from the properties of singular values of Kronecker products that ω1
is also equal to

ω1 = σ2�ε

[
AT ⊗ Iε I� ⊗ Eε

I� ⊗ Iε I� ⊗ Fε

]

and using perfect shuffle permutations we also get

ω1 = σ2ε�

[
Iε ⊗ AT Eε ⊗ I�
Iε ⊗ I� Fε ⊗ I�

]
.

The smallest singular value σ2ε� is larger than the smallest singular value of any
2ε� × 2ε� submatrix. Let us take for this the submatrix obtained by dropping the last
block column:

M =
[
Iε ⊗ AT Iε ⊗ I�
Iε ⊗ I� Jε ⊗ I�

]
, where Jε :=

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .

. . . 1
0

⎤
⎥⎥⎥⎥⎦

∈ F
ε×ε .

We can factorize this matrix as

M =
[
Iε ⊗ AT Iε ⊗ I�
Iε ⊗ I� 0

] [
Iε� 0
0 Iε� − Jε ⊗ AT

] [
Iε ⊗ I� Jε ⊗ I�

0 Iε ⊗ I�

]
.

Therefore its inverse equals

M−1 =
[
Iε ⊗ I� −Jε ⊗ I�

0 Iε ⊗ I�

] [
Iε� 0
0 (Iε� − Jε ⊗ AT )−1

] [
0 Iε ⊗ I�

Iε ⊗ I� −Iε ⊗ AT

]

=
[
Iε�
0

] [
0 Iε�

]+
[−Jε ⊗ I�

Iε�

]
(Iε� − Jε ⊗ AT )−1 [ Iε� −Iε ⊗ AT

]
.

It then follows that

‖M−1‖2 ≤ 1 + √
2
√
1 + ‖A‖22

[
1 + ‖A‖2 + ‖A‖22 + . . . + ‖A‖ε−1

2

]
,

since

(Iε� − Jε ⊗ AT )−1 =
ε−1∑
i=0

J iε ⊗ Ai T .
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In particular, for ‖A‖2 ≤ 1we obtain the bound ‖M−1‖2 ≤ 1+2ε, while for ‖A‖2 > 1
we obtain the bound ‖M−1‖2 ≤ 1 + 2ε‖A‖ε

2. This finally yields the inequality

ω1 ≥ 1

1 + 2ε max(1, ‖A‖ε
2)

.

	

The second generalized Sylvester equation is essentially a shuffled version of the

first equation and the analysis is therefore completely analogous. This immediately
yields Lemma 3.2.

Lemma 3.2 Let ω2 be the singular value in (3.2). Then

ω2 ≥ 1

1 + 2ηmax(1, ‖A‖η
2)

. (3.6)

The third generalized Sylvester equation was analyzed in [7] and its associated
smallest singular value is exactly equal to ω3 = 2 sin(π/(4min(ε, η) + 2)) if ε �= η,
and to 2 sin(π/4η) if ε = η. Notice that we can assume min(ε, η) ≥ 1 since otherwise
the equation is void. For ε �= η we then obtain ω3 ≥ 3

2min(ε,η)+1 since sin x ≥ 3x/π

for 0 ≤ x ≤ π/6, and for ε = η we then obtain ω3 ≥
√
2

η
since sin x ≥ 2

√
2x/π for

0 ≤ x ≤ π/4. We have also that 2η = ε + η if ε = η and 2min(ε, η) + 1 ≤ ε + η if
ε �= η, which finally yields the lower bound in Lemma 3.3 for ω3.

Lemma 3.3 Let ω3 be the singular value in (3.3). Then

ω3 ≥ 2
√
2

(ε + η)
. (3.7)

In Lemma 3.4, we give a lower bound for the smallest singular value ω4 corre-
sponding to the fourth generalized Sylvester equation.

Lemma 3.4 Let ω4 be the singular value in (3.4). Then

ω4 ≥ 3

4k − 1
. (3.8)

Proof We prove first that ω4 = 2 sin(π/(8k−2)). This is obtained as follows. We can
again use the properties of Kronecker products to prove that

ω4 = σ2k(k+1)

[
ET
k ⊗ Ik I(k+1) ⊗ Ek

FT
k ⊗ Ik I(k+1) ⊗ Fk

]
.

This matrix can be transformed by row and column permutations to the direct sum of
smaller matrices:

M1 ⊕ M1 ⊕ M3 ⊕ M3 ⊕ · · · ⊕ M2k−1 ⊕ M2k−1 ⊕ N2k,
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see A, where the blocks

Mk :=

⎡
⎢⎢⎢⎢⎣

1 1

1
. . .

. . . 1
1

⎤
⎥⎥⎥⎥⎦

∈ F
k×k, Nk :=

⎡
⎢⎢⎢⎢⎣

1 1

1
. . .

. . . 1
1 1

⎤
⎥⎥⎥⎥⎦

∈ F
k×(k+1) (3.9)

have as smallest singular values 2 sin π
4k+2 and 2 sin π

2k+2 , respectively (see [7,
Proof of PropositionB.4]). The smallest singular value therefore corresponds toM2k−1
and equals ω4 = 2 sin(π/(8k − 2)). For k ≥ 1, we use again that sin x ≥ 3x/π for
0 ≤ x ≤ π/6, to obtain the bound ω4 ≥ 3

4k−1 . 	


4 Restoring the rational structure of the linearization after
perturbations

We now consider perturbations of the following block Kronecker linearization intro-
duced in (1.2)

S(λ) :=
⎡
⎣
S11(λ) S12(λ) S13(λ)

S21(λ) S22(λ) 0
S31(λ) 0 0

⎤
⎦ :=

⎡
⎣

M(λ) K̂ T
2 C KT

2 (λ)

BK̂1 A − λI� 0
K1(λ) 0 0

⎤
⎦ , (4.1)

where S13(λ) is (η + 1)m × ηm and has full column rank ηm, S22(λ) is � × � and
is a regular pencil, S31(λ) is εn × (ε + 1)n and has full row rank εn, and where no
two of these three pencils have common generalized eigenvalues. As explained in
the introduction, if the state-space triple {A, B,C} is minimal, then S(λ) is a strong
linearization of the m × n rational matrix

R(λ) = C(λI� − A)−1B + (Λη(λ) ⊗ Im)T M(λ)(Λε(λ) ⊗ In). (4.2)

Except in Sect. 4.6, we assume in this section that max(η, ε) > 0. This means that the
degree d = ε+η+1 of the polynomial part D(λ) = (Λη(λ)⊗ Im)T M(λ)(Λε(λ)⊗ In)
of R(λ) is greater than 1 and that at least one of the blocks K1(λ) or K2(λ) is not
an empty matrix. The degenerate case in which ε = 0 and η = 0 will be studied in
Sect. 4.6.

Since S(λ) is a strong linearization of R(λ), S(λ) has the exact eigenstructure of
the finite zeros of R(λ), and its infinite zero structure as well as its left and right null-
space structure can be correctly retrieved from the pencil via simple constant shifts,
as explained in the introduction. In order to compute this eigenstructure, we make
use of the staircase algorithm [21], followed by the QZ algorithm [16], on S(λ). The
backward stability of these two algorithms guarantees in fact that we computed the
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exact eigenstructure of a slightly perturbed pencil

Ŝ(λ) := S(λ) + ΔS(λ), ΔS(λ) :=
⎡
⎣

Δ11(λ) Δ12(λ) Δ13(λ)

Δ21(λ) Δ22(λ) Δ23(λ)

Δ31(λ) Δ32(λ) Δ33(λ)

⎤
⎦ , (4.3)

where the pencil ΔS(λ) has a norm which is much smaller than the norm of S(λ).
More precisely, ‖ΔS(λ)‖F = O(εM ) ‖S(λ)‖F , where εM is the machine precision of
the computer. But even for very small perturbations, the structure of the pencil S(λ) is
lost, and therefore also the connection between Ŝ(λ) and some rational matrix R̂(λ) is
lost. In this section, we will show that this structure can be restored, without affecting
the computed eigenstructure. For this, one needs only to find a strict equivalence
transformation that is close to the identity and restores the structure of Ŝ(λ) to a new
pencil S̃(λ) that is a block Kronecker linearization, with the same parameters ε and η

as S(λ), of a rational matrix R̃(λ):

S̃(λ) := (I − X)(S(λ) + ΔS(λ))(I − Y ) =
⎡
⎣

M̃(λ) K̂ T
2 C̃ K T

2 (λ)

B̃ K̂1 Ã − λI� 0
K1(λ) 0 0

⎤
⎦ . (4.4)

We will see that if ‖ΔS(λ)‖F is sufficiently small, then the perturbed system triple
{ Ã, B̃, C̃} is very close to the unperturbed minimal one {A, B,C} and, so, { Ã, B̃, C̃}
is still minimal, since minimality is a generic property equivalent to the controllability
matrix having full row rank and the observability matrix having full column rank [14,
Chapter 6]. Observe that according to [2], or the discussion in the introduction, S̃(λ)

is a strong linearization of the m × n rational matrix

R̃(λ) := C̃(λI� − Ã)−1 B̃ + (Λη(λ) ⊗ Im)T M̃(λ)(Λε(λ) ⊗ In)

=: C̃(λI� − Ã)−1 B̃ + D̃(λ) .
(4.5)

Since the eigenstructures of the pencils Ŝ(λ) and S̃(λ) are identical, the results in this
section prove that the computed finite eigenvalues of S(λ) and their partial multiplic-
ities are the exact finite zeros and their partial multiplicities of R̃(λ), the computed
right (resp. left) minimal indices of S(λ) minus ε (resp. η) are the exact right (resp.
left) minimal indices of R̃(λ), and, if a number νr of right minimal indices of S(λ)

have been computed, then the computed n− νr largest partial multiplicities at infinity
of S(λ)minus d are the exact structural indices at infinity of R̃(λ). This is a very strong
backward error result for the computation of the eigenstructure of R(λ) in the case we
are able to prove that ‖ Ã − A‖F , ‖B̃ − B‖F , ‖C̃ − C‖F and ‖D̃(λ) − D(λ)‖F are
very small.

The restoration of the structure in Ŝ(λ) will be done in three steps, each of them
involving a strict equivalence transformation close to the identity:

– Step 1:We restore the block anti-triangular structure of the perturbed pencil Ŝ(λ),

i.e., the blocks (2,3), (3,2) and (3,3) are transformed to become 0.
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– Step 2:We take care of the anti-diagonal blocks (1,3), (2,2) and (3,1), by restoring
their 0 and I block matrices.

– Step 3: We restore the special structure of the blocks (1,2) and (2,1).

At each step k, for k = 1, 2, 3, we obtain a pencil

Ŝk(λ) := (I − Xk)Ŝk−1(λ)(I − Yk) := Ŝk−1(λ) + Δk(λ), (4.6)

where Ŝ0(λ) := Ŝ(λ) and Δ0(λ) := ΔS(λ):

S(λ)
+Δ0(λ)

−−−→ Ŝ(λ) = Ŝ0(λ)
+Δ1(λ)

−−−→ Ŝ1(λ)
+Δ2(λ)

−−−→ Ŝ2(λ)
+Δ3(λ)

−−−→ Ŝ3(λ) = S̃(λ).

We will compute bounds for ‖(Xk,Yk)‖F as a function of ‖Ŝk−1(λ)‖F , where the
Frobenius norms are computed as defined in the introduction. Moreover, we define
the cumulative errors:

Δold
k (λ) :=

k−1∑
i=0

Δi (λ), and

Δnew
k (λ) := Δold

k (λ) + Δk(λ) =
k∑

i=0

Δi (λ),

(4.7)

and we will also compute bounds for the Frobenius norm of these error pencils. In our
analysis, we will assume that δ := ‖ΔS(λ)‖F‖S(λ)‖F is very small, since in practice it is of the
order of the machine precision εM , and we will neglect, when appropriate, terms of
order larger than 1 in δ to simplify our bounds. Moreover, we will assume that δ is
sufficiently small for guaranteeing that all the steps in the analysis canbeperformed, for
instance, for guaranteeing that some perturbed matrices are invertible. In particular,
we have Lemma 4.1 for computing bounds of the growth of the cumulative errors
Δnew

k (λ).

Lemma 4.1 At each step k of our method, the perturbation Δnew
k (λ) can be bounded

by

‖Δnew
k (λ)‖F ≤ √

2‖Ŝk−1(λ)‖2‖(Xk,Yk)‖F + ‖Δold
k (λ)‖F + O(δ2),

assuming that ‖(Xk,Yk)‖F is of the order of ‖ΔS(λ)‖F .

Proof At step k, we have Ŝk(λ) = (I − Xk)Ŝk−1(λ)(I − Yk). Therefore

Δnew
k (λ) = Δold

k (λ) − Xk Ŝk−1(λ) − Ŝk−1(λ)Yk + Xk Ŝk−1(λ)Yk .

It then follows that the increment (up to O(δ2) terms) is given by

−Xk Sa − SaYk + λ(XkSb + SbYk) + O(δ2),
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where Sa − λSb := Ŝk−1(λ). We then use the inequalities

‖Xk Sa + SaYk‖2F ≤ 2‖Sa‖22‖(Xk,Yk)‖2F , ‖Xk Sb + SbYk‖2F ≤ 2‖Sb‖22‖(Xk,Yk)‖2F
and the definition for ‖Ŝk−1(λ)‖2, to finally get the required bound. 	


4.1 Step 1: Restoring the block anti-triangular structure

For step 1, that is, restoring the block anti-triangular structure of S(λ) in the perturbed
matrix pencil (4.3), we apply a strict equivalence transformation of the type:

⎡
⎣
I(η+1)m 0 0
−X21 I� 0
−X31 −X32 Iεn

⎤
⎦ Ŝ(λ)

⎡
⎣
I(ε+1)n −Y12 −Y13

0 I� −Y23
0 0 Iηm

⎤
⎦ (4.8)

in order to eliminate the perturbations Δ23(λ), Δ32(λ) and Δ33(λ) of the error matrix
pencil Δ0(λ). The notation Ŝai j − λŜbi j := Ŝi j := Ŝi j (λ) will be used in this section to

refer to sub-blocks of Ŝ0(λ). Let us write down the equations that we get by setting
the blocks (2,3), (3,2) and (3,3) of the matrix in (4.8) equal to zero:

Δ23(λ) := Δa
23 − λΔb

23 = X21 Ŝ13 + Ŝ21Y13 + Ŝ22Y23 − X21 Ŝ11Y13 − X21 Ŝ12Y23,

Δ32(λ) := Δa
32 − λΔb

32 = Ŝ31Y12 + X31 Ŝ12 + X32 Ŝ22 − X31 Ŝ11Y12 − X32 Ŝ21Y12,

Δ33(λ) := Δa
33 − λΔb

33 = X31 Ŝ13 + Ŝ31Y13 + X32Δ23 + Δ32Y23

− X31 Ŝ11Y13 − X32 Ŝ21Y13 − X31 Ŝ12Y23 − X32 Ŝ22Y23.

(4.9)

This is a system of nonlinear matrix equations for the six matrix unknowns
X21, X31, X32, Y12,Y13 and Y23. We will show that it is consistent and that it has
a solution for which the norms of the unknowns are of the order of ‖Δ0(λ)‖F , which
implies that there are many terms in the above three equations that are of second order.

Using Kronecker product and the vec(·) notation, the system of matrix equations
(4.9) can be rewritten as:

⎡
⎢⎢⎢⎢⎢⎢⎣

vec(Δa
23)

vec(Δb
23)

vec(Δa
32)

vec(Δb
32)

vec(Δa
33)

vec(Δb
33)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
:=c

= (T + ΔT )

⎡
⎢⎢⎢⎢⎢⎢⎣

vec(X21)

vec(Y23)
vec(X32)

vec(Y12)
vec(X31)

vec(Y13)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
:=x

−

⎡
⎢⎢⎢⎢⎢⎢⎣

vec(Z1)

vec(Z2)

vec(Z3)

vec(Z4)

vec(Z5)

vec(Z6)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
:=z

, (4.10)

where

Z1 := X21 Ŝ
a
11Y13 + X21 Ŝ

a
12Y23, Z2 := X21 Ŝ

b
11Y13 + X21 Ŝ

b
12Y23,
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Z3 := X31 Ŝ
a
11Y12 + X32 Ŝ

a
21Y12, Z4 := X31 Ŝ

b
11Y12 + X32 Ŝ

b
21Y12,

Z5 := X31 Ŝ
a
11Y13 + X32 Ŝ

a
21Y13 + X31 Ŝ

a
12Y23 + X32 Ŝ

a
22Y23,

Z6 := X31 Ŝ
b
11Y13 + X32 Ŝ

b
21Y13 + X31 Ŝ

b
12Y23 + X32 Ŝ

b
22Y23,

ΔT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Δa
13

T ⊗ I� Iηm ⊗ Δa
22 0 0 0 Iηm ⊗ Δa

21

Δb
13

T ⊗ I� Iηm ⊗ Δb
22 0 0 0 Iηm ⊗ Δb

21
0 0 Δa

22
T ⊗ Iεn I� ⊗ Δa

31 Δa
12

T ⊗ Iεn 0

0 0 Δb
22

T ⊗ Iεn I� ⊗ Δb
31 Δb

12
T ⊗ Iεn 0

0 Iηm ⊗ Δa
32 Δa

23
T ⊗ Iεn 0 Δa

13
T ⊗ Iεn Iηm ⊗ Δa

31

0 Iηm ⊗ Δb
32 Δb

23
T ⊗ Iεn 0 Δb

13
T ⊗ Iεn Iηm ⊗ Δb

31

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

T11 T12 0 0 0 T16
T21 T22 0 0 0 0

T33 T34 T35 0
T43 T44 0 0

T55 T56
T65 T66

⎤
⎥⎥⎥⎥⎥⎥⎦

,

with

[
T11 T12
T21 T22

]
:=

[
Eη ⊗ Im� Iηm ⊗ A
Fη ⊗ Im� Iηm ⊗ I�

]
,

[
T33 T34
T43 T44

]
:=

[
AT ⊗ Iεn I� ⊗ Eε ⊗ In
I� ⊗ Iεn I� ⊗ Fε ⊗ In

]
,

[
T55 T56
T65 T66

]
:=

[
Eη ⊗ Imεn Iηm ⊗ Eε ⊗ In
Fη ⊗ Imεn Iηm ⊗ Fε ⊗ In

]
,

{
T16 := Iηm ⊗ eTε+1 ⊗ B
T35 := eTη+1 ⊗ CT ⊗ Iεn

.

We emphasize that the matrices in the two lines above are precisely those appearing in
equations (3.2), (3.1) and (3.3), respectively. Observe also that the matrixΔT encodes
those linear terms of the nonlinear system (4.9) related to blocks of the perturbation
pencil ΔS(λ) in (4.3), while the matrix T encodes those linear terms of (4.9) related
to blocks of the unperturbed block Kronecker linearization S(λ) in (4.3).

The smallest singular value of T and the 2–norm of ΔT will be needed in the
analysis of the bound for the structured backward errors. More precisely for proving
that (4.9) is consistent and bounding the norm of one of its solutions. A lower bound
for σmin(T ) and an upper bound for ‖ΔT ‖2 are given in Lemma 4.2 and Lemma 4.3,
respectively.

Lemma 4.2 Let T be the matrix in (4.10). Let α := 1 + 2ε max(1, ‖A‖ε
2), β :=

1+ 2ηmax(1, ‖A‖η
2), γ := ε+η

2
√
2
and s := max(α, β, γ ) + γ (β‖B‖2 + α‖C‖2) then

σmin(T ) ≥ 1

s
.
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Proof If we partition the matrix T as a block triangular matrix

T =
⎡
⎣
T1 0 TB

T2 TC
T3

⎤
⎦ ,

then the diagonal blocks have full row ranks because their smallest singular values are
strictly larger than zero according to Lemmas 3.2, 3.1 and 3.3, respectively. Therefore,
they are right invertible, withMoore–Penrose pseudoinverses T r

i satisfying Ti T r
i = I ,

for i = 1, 2, 3. Moreover, ‖T r
1 ‖2 = ω−1

2 , ‖T r
2 ‖2 = ω−1

1 and ‖T r
3 ‖2 = ω−1

3 , with
ω1, ω2 and ω3 as in (3.1), (3.2) and (3.3). A right inverse T r for T is given by

T r =
⎡
⎣
T r
1 0 −T r

1 TBT
r
3

T r
2 −T r

2 TCT
r
3

T r
3

⎤
⎦

since T T r = I . It then follows that the smallest singular value of T is lower bounded
by ‖T r‖−1

2 . This right inverse can be written as the sum of three matrices (one of them
being diag(T r

1 , T r
2 , T r

3 )), and the 2-norm of each of them can be upper bounded using
the results of Sect. 3 and the fact that ‖TB‖2 = ‖B‖2 and ‖TC‖2 = ‖C‖2. We then
obtain the bound:

σmin(T ) ≥1/
[
max(ω−1

1 , ω−1
2 , ω−1

3 ) + ω−1
3 (ω−1

2 ‖B‖2 + ω−1
1 ‖C‖2)

]

≥1/
[
max(α, β, γ ) + γ (β‖B‖2 + α‖C‖2)

]
,

by taking into account inequalities (3.5), (3.6), (3.7). 	

Lemma 4.3 Let ΔT be the matrix in (4.10) and let ΔS(λ) be the pencil in (4.3). Then

‖ΔT ‖2 ≤ √
3‖ΔS(λ)‖2.

Proof We consider a permutation matrix P such that

ΔT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Δa
13

T ⊗ I� 0 0 0 Iηm ⊗ Δa
22 Iηm ⊗ Δa

21

Δb
13

T ⊗ I� 0 0 0 Iηm ⊗ Δb
22 Iηm ⊗ Δb

21
0 I� ⊗ Δa

31 Δa
22

T ⊗ Iεn Δa
12

T ⊗ Iεn 0 0

0 I� ⊗ Δb
31 Δb

22
T ⊗ Iεn Δb

12
T ⊗ Iεn 0 0

0 0 Δa
23

T ⊗ Iεn Δa
13

T ⊗ Iεn Iηm ⊗ Δa
32 Iηm ⊗ Δa

31

0 0 Δb
23

T ⊗ Iεn Δb
13

T ⊗ Iεn Iηm ⊗ Δb
32 Iηm ⊗ Δb

31

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
P

:= [T1|T2|T3] P.

Using properties of norms and Kronecker products (see [13, Chapter 4]) we have that
‖Ti‖2 ≤ ‖ΔS(λ)‖2 for i = 1, 2, 3. Finally, by [12, Lemma 3.5],
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‖ΔT ‖2 ≤ √
3max{‖T1‖2, ‖T2‖2, ‖T3‖2} ≤ √

3‖ΔS(λ)‖2.

	

In order to prove that the system of nonlinear matrix equations (4.9) is consistent,

first, we remove quadratic terms in Xi j and Yi j of these equations and we get the
following system of linear equations:

Δ23(λ) = X21 Ŝ13 + Ŝ21Y13 + Ŝ22Y23,

Δ32(λ) = Ŝ31Y12 + X31 Ŝ12 + X32 Ŝ22,

Δ33(λ) = X31 Ŝ13 + Ŝ31Y13 + X32Δ23 + Δ32Y23.

This linear system of matrix equations can be rewritten as the underdetermined linear
system:

(T + ΔT )x = c, (4.11)

with the same notation as in (4.10). Next we prove that (4.11) is consistent for any
right hand side ifΔT is sufficiently small. From the minimum norm solution of (4.11),
we obtain in Theorem 4.1 that there exists a solution for the quadratic system (4.10)
under certain conditions and bound its norm.

Lemma 4.4 Let (T + ΔT )x = c be the underdetermined linear system in (4.11), and
let us assume that σmin(T ) > ‖ΔT ‖2. Then (T + ΔT )x = c is consistent and its
minimum norm solution (X0,Y 0) := (X0

21, X
0
31, X

0
32,Y

0
12,Y

0
13,Y

0
23) satisfies

‖(X0,Y 0)‖F ≤ 1

σ
‖(Δ23(λ),Δ32(λ),Δ33(λ))‖F ,

where σ := σmin(T ) − ‖ΔT ‖2.
Proof Analogous proof as for [7, Lemma 5.6]. 	


The notation σ := σmin(T ) − ‖ΔT ‖2 has been chosen to remind that σ is a lower
bound for the smallest singular value of T + ΔT , since σmin(T + ΔT ) ≥ σmin(T ) −
‖ΔT ‖2 by Weyl’s perturbation theorem for singular values [13, Theorem 3.3.16].
Lemma 4.5 gives a sufficient condition on ‖ΔS(λ)‖2 that guarantees σ > 0 and,
hence, that allows us to apply Lemma 4.4.

Lemma 4.5 Consider the real number s defined as in Lemma 4.2. Let T and ΔT be
the matrices in (4.11), and let ΔS(λ) be the pencil in (4.3). If ‖ΔS(λ)‖2 < 1

2 s then

σ = σmin(T ) − ‖ΔT ‖2 >
2 − √

3

2s
> 0.

Proof If ‖ΔS(λ)‖2 < 1
2s we have, by Lemmas 4.2 and 4.3, that σmin(T ) − ‖ΔT ‖2 ≥

1
s − √

3 ‖ΔS(λ)‖2 > 2−√
3

2 s > 0. 	
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Theorem 4.1 establishes conditions in order the system of matrix equations (4.9) to
have a solution as we announced. Moreover, it gives an upper bound for the Frobenius
norm of this solution. We remark that Theorem 4.1 is similar to [7, Theorem 5.8],
though the involved systems of matrix equations are very different from each other.
Therefore, some details in the proof of Theorem 4.1 are omitted since they can be
found in [7].

Theorem 4.1 There exists a solution (X ,Y ) := (X21, X31, X32,Y12,Y13,Y23) of the
quadratic system of equations (4.10) satisfying

‖(X ,Y )‖F ≤ 2
θ

σ
,

whenever

σ > 0 and
θω

σ 2 <
1

4
, (4.12)

where ω := ‖(M(λ), A − λI�, B,C)‖F + ‖ΔS(λ)‖F , θ := ‖(Δ23(λ),Δ32(λ),

Δ33(λ))‖F , and σ = σmin(T ) − ‖ΔT ‖2.
Proof Since σ > 0, we can apply Lemma 4.4 and consider (X0,Y 0) the minimum
norm solution of (4.11). Let

x0 := [
vec(X0

21)
T vec(Y 0

23)
T vec(X0

32)
T vec(Y 0

12)
T vec(X0

31)
T vec(Y 0

13)
T
]T

.

Let us define the sequence {(Xi ,Y i ) := (Xi
21, X

i
31, X

i
32,Y

i
12,Y

i
13,Y

i
23)}∞i=0 such that,

for each i > 0, (Xi ,Y i ) is the minimum norm solution of the linear system

(T + ΔT )

⎡
⎢⎢⎢⎢⎢⎢⎣

vec(Xi
21)

vec(Y i
23)

vec(Xi
32)

vec(Y i
12)

vec(Xi
31)

vec(Y i
13)

⎤
⎥⎥⎥⎥⎥⎥⎦

= c +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vec(Zi−1
1 )

vec(Zi−1
2 )

vec(Zi−1
3 )

vec(Zi−1
4 )

vec(Zi−1
5 )

vec(Zi−1
6 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (4.13)

where

Zi−1
1 := Xi−1

21 Ŝa11Y
i−1
13 + Xi−1

21 Ŝa12Y
i−1
23 , Zi−1

2 := Xi−1
21 Ŝb11Y

i−1
13 + Xi−1

21 Ŝb12Y
i−1
23 ,

Zi−1
3 := Xi−1

31 Ŝa11Y
i−1
12 + Xi−1

32 Ŝa21Y
i−1
12 , Zi−1

4 := Xi−1
31 Ŝb11Y

i−1
12 + Xi−1

32 Ŝb21Y
i−1
12 ,

Zi−1
5 := Xi−1

31 Ŝa11Y
i−1
13 + Xi−1

32 Ŝa21Y
i−1
13 + Xi−1

31 Ŝa12Y
i−1
23 + Xi−1

32 Ŝa22Y
i−1
23 , and

Zi−1
6 := Xi−1

31 Ŝb11Y
i−1
13 + Xi−1

32 Ŝb21Y
i−1
13 + Xi−1

31 Ŝb12Y
i−1
23 + Xi−1

32 Ŝb22Y
i−1
23 .

Note that the minimum norm solution of (4.13) is obtained by multiplying the right
hand side of (4.13) by the Moore-Penrose pseudoinverse of T + ΔT , denoted by
(T + ΔT )†, and that x0 = (T + ΔT )†c.
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Now we assume that θω
σ 2 < 1

4 holds. Then we can prove that the sequence

{(Xi ,Y i )}∞i=0 converges to a solution (X ,Y ) of the quadratic system of equations
(4.10) analogously as it is done in [7, Theorem 5.8]. For that, we have to take into
account that, if ‖(Xi−1,Y i−1)‖F ≤ ρi−1, then

‖(Xi ,Y i )‖F
≤ ‖(X0,Y 0)‖F + ‖(T + ΔT )†‖2

∥∥∥∥
[
Xi−1
21 0

Xi−1
31 Xi−1

32

] [
Ŝ11 Ŝ12
Ŝ21 Ŝ22

] [
Y i−1
12 Y i−1

13
0 Y i−1

23

]∥∥∥∥
F

≤ ρ0 + σ−1ρ2
i−1ω := ρi ,

where ‖(X0,Y 0)‖F ≤ θσ−1 := ρ0. Therefore, we can define the same fixed point
iteration as in the proof of [7, Theorem5.8] andwe obtain that the sequence is bounded,
i.e., ‖(Xi ,Y i )‖F ≤ ρ, with ρ < 2σ−1θ , for all i ≥ 0. In addition, if we define the
sequence {Ci := (Xi+1,Y i+1) − (Xi ,Y i )}∞i=0 then

‖Ci‖F ≤ ‖(T + ΔT )†‖2
(∥∥∥∥
[
Xi
21 0

Xi
31 Xi

32

] [
Ŝ11 Ŝ12
Ŝ21 Ŝ22

] [
Y i
12 Y i

13
0 Y i

23

]

−
[
Xi−1
21 0

Xi−1
31 Xi−1

32

][
Ŝ11 Ŝ12
Ŝ21 Ŝ22

][
Y i−1
12 Y i−1

13
0 Y i−1

23

]∥∥∥∥∥
F

)

≤ ‖(T + ΔT )†‖2
(∥∥∥∥∥

[
Xi
21 − Xi−1

21 0
Xi
31 − Xi−1

31 Xi
32 − Xi−1

32

][
Ŝ11 Ŝ12
Ŝ21 Ŝ22

] [
Y i
12 Y i

13
0 Y i

23

]∥∥∥∥∥
F

+
∥∥∥∥∥

[
Xi−1
21 0

Xi−1
31 Xi−1

32

][
Ŝ11 Ŝ12
Ŝ21 Ŝ22

][
Y i
12 − Y i−1

12 Y i
13 − Y i−1

13
0 Y i

23 − Y i−1
23

]∥∥∥∥∥
F

)

≤ 2σ−1ρω‖Ci−1‖F .

The above inequality implies that {(Xi ,Y i )}∞i=0 is a Cauchy sequence, since
2σ−1ρω < 1.Thus, taking limits in both sides of (4.13),we see that {(Xi ,Y i )}∞i=0 con-
verges to a solution (X ,Y ) of the system of equations in (4.10) with ‖(X ,Y )‖F ≤ ρ.

	

Theorem 4.1, together with Lemma 4.5, allow us to prove in Theorem 4.2 that

there exists a solution (X ,Y ) of (4.9) which is of the order of the perturbation ΔS(λ)

whenever ‖ΔS(λ)‖F is properly upper bounded.

Theorem 4.2 Consider the real number s defined as in Lemma 4.2. Let S(λ) be a block
Kronecker linearization as in (4.1), and letΔS(λ) be a perturbation of S(λ) as in (4.3)
such that

‖ΔS(λ)‖F <

(
2 − √

3

4s

)2
1

1 + ‖(M(λ), A − λI�, B,C)‖F . (4.14)

Then there exists a solution (X ,Y ) := (X21, X31, X32,Y12,Y13,Y23) of the quadratic
system of matrix equations in (4.9) that satisfies

‖(X ,Y )‖F ≤ 4s‖ΔS(λ)‖F
2 − √

3
. (4.15)
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Proof We have

‖ΔS(λ)‖F <

(
2 − √

3

4s

)2
1

1 + ‖(M(λ), A − λI�, B,C)‖F ≤ 1

2s

since s ≥ 1. Then, by Lemma 4.5, σ = σmin(T ) − ‖ΔT ‖2 > 2−√
3

2 s > 0. In addition,
using the same notation as in Theorem 4.1,

θω

σ 2 ≤ ‖ΔS(λ)‖F (‖(M(λ), A − λI�, B,C)‖F + ‖ΔS(λ)‖F )(
2−√

3
2s

)2 <
1

4
,

by (4.14). Therefore, the conditions (4.12) hold and, by Theorem 4.1, there exists a
solution (X ,Y ) of the system in (4.9) satisfying

‖(X ,Y )‖F ≤ 2
θ

σ
≤ 4s‖ΔS(λ)‖F

2 − √
3

.

	

After restoring the block anti-triangular structure of S(λ), we get the perturbation

errorΔnew
1 (λ) defined in (4.7). The followingfirst order bound for the normofΔnew

1 (λ)

in Corollary 4.1 follows from Lemma 4.1 and Theorem 4.2.

Corollary 4.1 Let us define the scalar f1 := 4
√
2s

2−√
3
. Then

‖Δnew
1 (λ)‖F ≤ [1 + f1‖Ŝ0(λ)‖2] ‖ΔS(λ)‖F + O(δ2)

≤ [1 + f1‖S(λ)‖2] ‖ΔS(λ)‖F + O(δ2).

4.2 Step 2: Restoring the Kronecker blocks K1(�), K2(�) and the identity I�

At this stage we have obtained a pencil Ŝ1(λ) = S(λ) + Δnew
1 (λ) of the type

Ŝ1(λ) :=
⎡
⎣

M̂(λ) Ĉ(λ) K̂ T
2 (λ)

B̂(λ) Â − λ Î� 0
K̂1(λ) 0 0

⎤
⎦ , (4.16)

where the zero blocks below the anti-diagonal are exact and Ŝ1(λ) is strictly equivalent
to Ŝ(λ). In this subsection, we will use Δa

i j − λΔb
i j to denote the corresponding

blocks of the updated perturbation matrix Δnew
1 (λ). We assume that the norm of the

perturbation Δnew
1 (λ) is small enough for K̂1(λ) and K̂2(λ) to be also minimal bases

with row degrees all equal to 1 and the row degrees of their dual minimal bases all
equal to ε and η, respectively [7, Corollary 5.15]. Thus, K̂1(λ) and K̂2(λ) have the
same Kronecker canonical forms as K1(λ) and K2(λ), respectively, and are strictly

123



Structural backward stability in rational eigenvalue problems Page 23 of 45     7 

equivalent to them. We will then perform step 2, that is, an updating block-diagonal
strict equivalent transformation of the type

⎡
⎣
I(η+1)m − X11 0 0

0 I� − X22 0
0 0 Iεn − X33

⎤
⎦ Ŝ1(λ)

⎡
⎣
I(ε+1)n − Y11 0 0

0 I� − Y22 0
0 0 Iηm − Y33

⎤
⎦

(4.17)

such that

(I − X33)K̂1(λ)(I − Y11) = K1(λ), (I − X11)K̂
T
2 (λ)(I − Y33) = KT

2 (λ),

and

(I − X22) Î�(I − Y22) = I�.

In the last three equations the sizes of some identity matrices are not specified for
simplicity. Clearly, these three problems are independent from each other and can be
treated separately.

Let us first look at the equation restoring K1(λ). As pointed out in Sect. 2, this can
be reduced to the solution of a Sylvester equation. Let

K̂1(λ) = K1(λ) + ΔK1(λ) := Lε(λ) ⊗ In + ΔK1(λ)

:= (Eε − λFε) ⊗ In + (Δa
31 − λΔb

31).

Then, making the change of variables Y11 := Y and X33 := X(I + X)−1, it suffices
to solve

(K1(λ) + ΔK1(λ))Y + XK1(λ) = ΔK1(λ),

or, equivalently,

[
ET

ε ⊗ Inεn I(ε+1)n ⊗ (Eε ⊗ In + Δa
31)

FT
ε ⊗ Inεn I(ε+1)n ⊗ (Fε ⊗ In + Δb

31)

] [
vec(X)

vec(Y )

]
=
[
vec(Δa

31)

vec(Δb
31)

]
. (4.18)

By Lemma 3.4, the smallest singular value of the unperturbed problem satisfies

σ2εn(ε+1)n

[
ET

ε ⊗ Inεn I(ε+1)n ⊗ Eε ⊗ In
FT

ε ⊗ Inεn I(ε+1)n ⊗ Fε ⊗ In

]
≥ 3

4ε − 1
.

Then, by usingWeyl’s perturbation theorem for singular values [13, Theorem 3.3.16],
one obtains the following bound for the minimum norm solution of (4.18)

‖(X ,Y )‖F ≤
[

3

4ε − 1
− ‖Δa

31‖2 − ‖Δb
31‖2

]−1

‖(Δa
31,Δ

b
31)‖F ,
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assuming that the perturbation is small enough for satisfying 3
4ε−1 − ‖Δa

31‖2 −
‖Δb

31‖2 > 0. In addition,

‖(X33,Y11)‖F ≤ ‖(X ,Y )‖F/(1 − ‖(X ,Y )‖F ).

Since ‖Δa
31‖2 and ‖Δb

31‖2 are of the order of δ, this finally yields

‖(X33,Y11)‖F ≤ 4ε − 1

3
‖(Δa

31,Δ
b
31)‖F + O(δ2), (4.19)

by regrouping the quantities of the order of O(δ2).
The problem for restoring K2(λ) is clearly dual to the problem of K1(λ) and will

therefore yield the bound

‖(X11,Y33)‖F ≤ 4η − 1

3
‖(Δa

13,Δ
b
13)‖F + O(δ2). (4.20)

The problemof restoring I� amounts to solving (I�−X22)(I�+Δb
22)(I�−Y22) = I�,

with Î� = I� + Δb
22. There are many possible solutions. A very simple one is to take

Y22 = 0 and I� − X22 = (I� + Δb
22)

−1, assuming Δb
22 is small enough for the inverse

to exist. This means that X22 = Δb
22 + O(‖Δb

22‖2F ) and

‖(X22,Y22)‖F = ‖Δb
22‖F + O(δ2). (4.21)

We summarize this discussion in the following Theorem.

Theorem 4.3 Let the pencil Ŝ1(λ)have the block anti-triangular formgiven in (4.16). If
max(ε, η) > 0, then the updating strict equivalence transformation (I −X)Ŝ1(λ)(I −
Y ) detailed in (4.17) exists and can be bounded by

‖(X , Y )‖F ≤ 4max(ε, η) − 1

3
‖Δnew

1 (λ)‖F + O(δ2).

Proof The bound for ‖(X ,Y )‖F follows directly from the identity

‖(X ,Y )‖2F = ‖(X11,Y33)‖2F + ‖(X22,Y22)‖2F + ‖(X33,Y11)‖2F ,

from the inequality

‖(Δa
13,Δ

b
13)‖2F + ‖Δb

22‖2F + ‖(Δa
31,Δ

b
31)‖2F ≤ ‖Δnew

1 (λ)‖2F
and from the individual inequalities (4.19), (4.20) and (4.21). 	


The following first order bound in Corollary 4.2 for the norm of the perturbation
error Δnew

2 (λ) follows from Lemma 4.1, Theorem 4.3 and Corollary 4.1.
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Corollary 4.2 Let us define the scalar f2 :=
√
2(4max(ε,η)−1)

3 . Then

‖Δnew
2 (λ)‖F ≤ [1 + f2‖Ŝ1(λ)‖2] ‖Δnew

1 (λ)‖F + O(δ2)

≤ [1 + f2‖S(λ)‖2] ‖Δnew
1 (λ)‖F + O(δ2).

4.3 Step 3: Restoring the constant B and Cmatrices

From steps 1 and 2, described in the previous subsections, we have obtained a pencil
Ŝ2(λ) = S(λ) + Δnew

2 (λ) of the type

Ŝ2(λ) :=
⎡
⎣

M̂(λ) Ĉ(λ) KT
2 (λ)

B̂(λ) Â − λI� 0
K1(λ) 0 0

⎤
⎦ (4.22)

strictly equivalent to Ŝ(λ). We emphasize that the blocks M̂(λ), B̂(λ), Ĉ(λ) and the
matrix Â are obviously different in (4.22) and in (4.16). We use the same symbols for
avoiding a cumbersome notation. In this subsection, we will useΔi j (λ) = Δa

i j −λΔb
i j

to denote the corresponding blocks of the updated perturbation matrix Δnew
2 (λ). In

this third step, we will restore the pencil Ŝ2(λ) to one where the blocks

B̂(λ) = BK̂1 + Δ21(λ), and Ĉ(λ) = K̂ T
2 C + Δ12(λ)

are transformed to B̃ K̂1 and K̂ T
2 C̃ , respectively. We recall that

K1(λ) = Lε(λ) ⊗ In, K̂1 = eTε+1 ⊗ In, K2(λ) = Lη(λ) ⊗ Im, K̂2 = eTη+1 ⊗ Im,

where ek is the standard kth unit vector of dimension k and Lk(λ) is the classical
Kronecker block of dimension k×(k+1), as introduced below (1.2).Wewill construct
for this a strict equivalence transformation of the type

⎡
⎣
Im(η+1) −X12 0

I� −X23
Inε

⎤
⎦ Ŝ2(λ)

⎡
⎣
In(ε+1)
−Y21 I�
0 −Y32 Imη

⎤
⎦

=
⎡
⎣

M̃(λ) K̂ T
2 C̃ K T

2 (λ)

B̃ K̂1 Â − λI� 0
K1(λ) 0 0

⎤
⎦

(4.23)

The problems for B̂(λ) and Ĉ(λ) can again be treated separately. Let us first focus on
the subsystem

[
Im(η+1) −X12

I�

] [
Ĉ(λ) LTη (λ) ⊗ Im

Â − λI� 0

] [
I�

−Y32 Imη

]

=
[
eη+1 ⊗ C̃ LTη (λ) ⊗ Im
Â − λI� 0

]
.
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If we partition the matrices X12, Y32 and Ĉ(λ) as follows:

X12 :=

⎡
⎢⎢⎢⎢⎢⎣

E1
E2
...

Eη

Eη+1

⎤
⎥⎥⎥⎥⎥⎦

, Y32 :=

⎡
⎢⎢⎢⎣

F1
F2
...

Fη

⎤
⎥⎥⎥⎦ , Ĉ(λ) :=

⎡
⎢⎢⎢⎢⎢⎣

C01
C02
...

C0η
C0(η+1)

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎣

C11
C12
...

C1η
C1(η+1)

⎤
⎥⎥⎥⎥⎥⎦

λ,

where all blocks have dimension m × �, then we need to solve the following system
of equations

[
E1 F1 E2 . . . Fη Eη+1

]
(I(2η+1)� + N )

= [
C11 C01 C12 . . . C0η C1(η+1)

]
,

where

I(2η+1)� + N :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I� Â
I� I�

I� Â
. . .

. . .

I� I�
I�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and C̃ := C0(η+1) − Eη+1 Â. Clearly

‖ [ E1 F1 E2 . . . Fη Eη+1
] ‖F = ‖(X12,Y32)‖F ,

‖ [C11 C01 C12 . . . C0η C1(η+1)
] ‖F ≤ ‖Δ12(λ)‖F ,

and, since the matrix N is nilpotent with N 2η+1 = 0,

(I(2η+1)� + N )−1 =
2η∑
i=0

(−N )i .

In addition, N has even powers N 2i of 2-norm ‖ Âi‖2 ≤ ‖ Â‖i2, whereas the odd powers
N 2i−1 have 2-normmax(‖ Âi−1‖2, ‖ Âi‖2) ≤ max(‖ Â‖i−1

2 , ‖ Â‖i2). Since both of them
can be bounded by max(1, ‖ Â‖i2), it then follows that

‖(X12,Y32)‖F ≤ ‖Δ12(λ)‖F (1 + 2 max(1, ‖ Â‖2) + · · · + 2 max(1, ‖ Â‖η
2))

≤ [1 + 2ηmax(1, ‖ Â‖η
2)] ‖Δ12(λ)‖F .

(4.24)

The discussion for the B̂(λ) block is clearly analogous and will yield the bound

‖(X23,Y21)‖F ≤ [1 + 2ε max(1, ‖ Â‖ε
2)]‖Δ21(λ)‖F . (4.25)
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We can thus summarize this discussion in the following Theorem.

Theorem 4.4 Let the pencil Ŝ2(λ) have the anti-triangular form given in (4.22). Then
the updating strict equivalence transformation (I − X)Ŝ2(λ)(I −Y ) detailed in (4.23)
exists and can be bounded by

‖(X ,Y )‖F ≤ [1 + 2 max(η, ε) max(1, ‖ Â‖max(η,ε)
2 )] ‖Δnew

2 (λ)‖F .

Proof The bound for ‖(X ,Y )‖F follows directly from the identity

‖(X ,Y )‖2F = ‖(X12,Y32)‖2F + ‖(X23,Y21)‖2F ,

from the inequality ‖Δ12(λ)‖2F +‖Δ21(λ)‖2F ≤ ‖Δnew
2 (λ)‖2F and from the individual

inequalities (4.24) and (4.25). 	

The following first order bound in Corollary 4.3 for the norm of the perturbation

error Δnew
3 (λ) follows from Lemma 4.1, Theorem 4.4 and Corollaries 4.1 and 4.2.

Corollary 4.3 Let us define f3 := √
2(1 + 2max(η, ε)max(1, ‖ Â‖max(η,ε)

2 )). Then

‖Δnew
3 (λ)‖F ≤ [1 + f3‖Ŝ2(λ)‖2] ‖Δnew

2 (λ)‖F + O(δ2)

≤ [1 + f3‖S(λ)‖2] ‖Δnew
2 (λ)‖F + O(δ2).

4.4 Putting it all together

In this subsection, we combine the obtained results regarding the strict equivalence
transformation that restores in Ŝ(λ) of (4.3) the special structure of the unperturbed
block Kronecker linearization S(λ) defined in (1.2), in such a way that the eigen-
structure of Ŝ(λ) can be linked to that of a particular rational matrix R̃(λ) as in
(4.5). The final goal is to bound the norms of the differences between the quadruples
{λI� − A, B,C, D(λ)} and {λI� − Ã, B̃, C̃, D̃(λ)} that are used for representing the
unperturbed rational matrix R(λ) and the perturbed one R̃(λ), respectively.

Recall that we were given the pencil S(λ) of which we want to compute the eigen-
structure, since it gives the one of the rational matrix R(λ) in (4.2). Instead, our
backward stable algorithm applied to S(λ) computes the exact eigenstructure of a
slightly perturbed pencil Ŝ(λ) with additive error ΔS(λ) which is induced by the
eigenstructure algorithm and is bounded as:

‖ΔS(λ)‖F ≤ c(�,mη, nε) · εM · ‖S(λ)‖F ,

where εM is themachine precision of the used computer, and c(�,mη, nε) is amoderate
function depending only on the size of the matrix pencil. We then constructed in three
steps a new modified block Kronecker linearization

S̃(λ) :=(I−X)Ŝ(λ)(I−Y ) :=(I−X3)(I−X2)(I − X1)Ŝ(λ)(I − Y1)(I − Y2)(I − Y3)

(4.26)
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as in (4.4), strictly equivalent to Ŝ(λ), where both ‖X‖F and ‖Y‖F are also of the order
of the machine precision times some factors and such that the corresponding rational
matrix R̃(λ) (4.5) has a similar representation as R(λ). Since Ŝ(λ) and S̃(λ) are strictly
equivalent pencils, they have exactly the same eigenstructure, which implies that we
have computed the exact eigenstructure of the nearby rational matrix R̃(λ).

For convenience, the blocks of S̃(λ) will be expressed in the sequel as M̃(λ) :=
M(λ) + ΔM(λ), Ã := A + ΔA, B̃ := B + ΔB and C̃ := C + ΔC . In the previous
subsections, we rewrote S̃(λ) as an additive perturbation

S̃(λ) = S(λ) + Δnew
3 (λ)

and derived a first order bound for the norm of the error pencil Δnew
3 (λ) in Corollar-

ies 4.1, 4.2 and 4.3:

‖Δnew
3 (λ)‖F ≤(1+ f1‖S(λ)‖2)(1+ f2‖S(λ)‖2)(1+ f3‖S(λ)‖2)‖ΔS(λ)‖F+O(δ2).

(4.27)

This implies, in particular, that if ‖ΔS(λ)‖F is sufficiently small, then the norms of the
perturbationsΔA,ΔB andΔC are sufficiently small to guarantee that C̃(λI�− Ã)−1 B̃
is a minimal state-space realization, as announced. Then, according to [2], S̃(λ) is
indeed a strong linearization of the rational matrix R̃(λ) in (4.5). Moreover, (4.27)
also implies that if ‖ΔS(λ)‖F is sufficiently small, then D̃(λ) := ∑d

i=0(Di +ΔDi )λ
i

in (4.5) is a polynomial matrix with the same degree d = η + ε + 1 as the polynomial
part D(λ) of R(λ) (recall that we are assuming that d is the degree of D(λ) or,
equivalently, that Dd �= 0).

Notice that R̃(λ) in (4.5) is the transfer function of the following perturbed poly-
nomial system matrix

P(λ) + ΔP(λ) :=
[
λI� − A −B

C D(λ)

]
+
[−ΔA −ΔB

ΔC
∑d

i=0ΔDiλ
i

]
, (4.28)

where P(λ) is a polynomial systemmatrix of the original rational matrix R(λ). Recall
that ‖R(λ)‖F is defined in (1.3) as ‖P(λ)‖F . This motivates us to define the norm of
the perturbation of R(λ) as

‖ΔR(λ)‖F := ‖ΔP(λ)‖F =
√√√√‖ΔA‖2F + ‖ΔB‖2F + ‖ΔC‖2F +

d∑
i=0

‖ΔDi‖2F .

After this discussion, we present our main perturbation results in Theorems 4.5
and 4.6. The first one focuses on block Kronecker linearizations and the second one
on the corresponding rational matrices.

Theorem 4.5 Let R(λ) be the m × n rational matrix in (1.1) and let S(λ) be a block
Kronecker linearization of R(λ) as in (1.2). Let us define α := 1+ 2ε max(1, ‖A‖ε

2),
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β := 1+2ηmax(1, ‖A‖η
2), γ := ε+η

2
√
2
and s := max(α, β, γ )+γ (β‖B‖2 +α‖C‖2).

Assume that max(ε, η) > 0 and consider the functions dependent on the initial data

f1 := f1(ε, η, ‖A‖2, ‖B‖2, ‖C‖2) := 4
√
2s

2 − √
3
,

f2 := f2(ε, η) :=
√
2 (4max(ε, η) − 1)

3
,

f3 := f3(ε, η, ‖A‖2) := √
2 [1 + 2max(η, ε)max(1, ‖A‖max(η,ε)

2 )].

Let Ŝ(λ) := S(λ)+ΔS(λ) be a perturbed pencil as in (4.3). If ‖ΔS(λ)‖F is sufficiently
small, then Ŝ(λ) is strictly equivalent to a block Kronecker linearization S̃(λ) as in
(4.4) with the same parameters ε and η as S(λ), i.e., the transformation (4.26) exists.
Moreover, S̃(λ) = S(λ) + Δnew

3 (λ) with

‖Δnew
3 (λ)‖F ≤(1+ f1‖S(λ)‖2)(1+ f2‖S(λ)‖2)(1+ f3‖S(λ)‖2)‖ΔS(λ)‖F+O(δ2),

(4.29)

where δ := ‖ΔS(λ)‖F‖S(λ)‖F .

Proof This follows directly from (4.27), except that we have replaced the 2-norm of
Â in f3 in Corollary 4.3 by that of A, because the difference can be absorbed in the
O(δ2) term. 	


Theorem 4.5 does not provide directly bounds on the norms of the differences
between the quadruples representing the rational matrices R(λ) and R̃(λ) corre-
sponding to the block Kronecker linearizations S(λ) and S̃(λ). The reason is that
the polynomial parts D(λ) = (Λη(λ) ⊗ Im)T M(λ)(Λε(λ) ⊗ In) and D̃(λ) =
(Λη(λ)⊗ Im)T M̃(λ)(Λε(λ)⊗ In) of R(λ) and R̃(λ) are not directly visible in S(λ) and
S̃(λ). For this reason,wewill needLemma 4.6, that follows from [7, Lemma 2.15, The-
orem 4.4 and Lemma 5.23(b)].

Lemma 4.6 Let M(λ) be am(η+1)×n(ε+1) pencil and letΛk(λ) := [
λk · · · λ 1

]T
.

If we define the polynomial matrix Q(λ) as

Q(λ) := (Λη(λ) ⊗ Im)T M(λ) (Λε(λ) ⊗ In), (4.30)

then we can bound its norm as follows

‖Q(λ)‖F ≤ √
2min(ε + 1, η + 1) ‖M(λ)‖F .

Moreover, for every polynomial matrix Q(λ) of degree at most d = ε + η + 1,
there exist infinitely many pencils M(λ) satisfying (4.30). For each of these pencils
‖M(λ)‖F ≥ ‖Q(λ)‖F/

√
2d and there exist pencils such that ‖Q(λ)‖F = ‖M(λ)‖F .

As commented in [7], Fiedler and proper generalized Fiedler pencils (modulo permu-
tations) of a polynomial matrix Q(λ) satisfy ‖Q(λ)‖F = ‖M(λ)‖F in Lemma 4.6.
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On the other hand, it might be worth to remind that there exist pencils M(λ) satisfying
(4.30) with norm arbitrarily larger than the norm of Q(λ).

We are finally in the position of proving the main perturbation result of this paper.

Theorem 4.6 Let R(λ) = C(λI� − A)−1B+∑d
i=0 Diλ

i be an m×n rational matrix,
where C(λI� − A)−1B is a minimal state-space realization of the strictly proper
part of R(λ), let S(λ) be a block Kronecker linearization of R(λ) as in (1.2) with
max(ε, η) > 0, and let f1, f2, f3 be the functions defined in Theorem 4.5. Let Ŝ(λ) :=
S(λ)+ΔS(λ) be a perturbed pencil as in (4.3). If ‖ΔS(λ)‖F is sufficiently small, then
Ŝ(λ) is strictly equivalent to a block Kronecker linearization S̃(λ) as in (4.4), with the
same parameters ε and η as S(λ), of a rational matrix

R̃(λ) = C̃(λI� − Ã)−1 B̃ +
d∑

i=0

D̃iλ
i ,

where C̃(λI�− Ã)−1 B̃ is aminimal state-space realization of the strictly proper part of
R̃(λ). Moreover, if Ã := A+ΔA, B̃ := B+ΔB, C̃ := C+ΔC and D̃i := Di +ΔDi ,
i = 0, 1, . . . , d, then

√
‖ΔA‖2F+‖ΔB‖2F+‖ΔC‖2F+∑d

i=0 ‖ΔDi‖2F
‖R(λ)‖F ≤KS,R

‖ΔS(λ)‖F
‖S(λ)‖F + O(δ2),

(4.31)

where

KS,R := √
2min(ε + 1, η + 1) (1 + f1‖S(λ)‖2)(1 + f2‖S(λ)‖2)

(1 + f3‖S(λ)‖2) ‖S(λ)‖F
‖R(λ)‖F

and δ = ‖ΔS(λ)‖F‖S(λ)‖F .

Proof Since S̃(λ) and S(λ) have the same structure according to Theorem 4.5,

Δnew
3 (λ) = S̃(λ) − S(λ) =

⎡
⎣
M̃(λ) − M(λ) K̂ T

2 (C̃ − C) 0
(B̃ − B)K̂1 Ã − A 0

0 0 0

⎤
⎦

and ‖Δnew
3 (λ)‖F =

√
‖ΔA‖2F + ‖ΔB‖2F + ‖ΔC‖2F + ‖M̃(λ) − M(λ)‖2F . Next,

we combine this expression of ‖Δnew
3 (λ)‖F with

∑d
i=0 Diλ

i = (Λη(λ) ⊗
Im)T M(λ)(Λε(λ) ⊗ In),

∑d
i=0 D̃iλ

i = (Λη(λ) ⊗ Im)T M̃(λ)(Λε(λ) ⊗ In) and
Lemma 4.6, and we get

√√√√‖ΔA‖2F + ‖ΔB‖2F + ‖ΔC‖2F +
d∑

i=0

‖ΔDi‖2F ≤ √
2min(ε + 1, η + 1) ‖Δnew

3 (λ)‖F .
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The rest of the proof follows from (4.29). 	

The strength of the new structured backward error analysis that we present in

this paper for the computation of the eigenstructure of a rational matrix R(λ) by
applying a backward stable generalized eigenvalue algorithm to a block Kronecker
linearization S(λ) of R(λ) is that we can interpret the computed eigenstructure as
the exact eigenstructure for a slightly perturbed rational matrix R̃(λ) corresponding
to the nearby quadruple {λI� − Ã, B̃, C̃, D̃(λ)}, and that we have a bound on the
error because we have a specific coordinate system in which we can describe both the
original rational matrix R(λ) and its perturbed version R̃(λ), namely by the quadruples
{λI� − A, B,C, D(λ)} and {λI� − Ã, B̃, C̃, D̃(λ)}. It still remains to analyze under
which conditions this bound is satisfactory. This is the purpose of the next subsection.

4.5 Sufficient conditions for structural backward stability

The goal of this section is to establish sufficient conditions on R(λ) and S(λ) that
guarantee that KS,R in (4.31) is moderate and, thus, that guarantee structural backward
stability. We advance that these conditions are the following

max(‖A‖F , ‖B‖F , ‖C‖F , ‖D(λ)‖F ) ≤ 1 and ‖M(λ)‖F ≈ ‖D(λ)‖F , (4.32)

where the notation introduced in the previous section is used. Observe that the first
condition is a condition on R(λ) while the second one is on S(λ). According to
Lemma 4.6, the second condition can be satisfied simply by choosing an adequate
block Kronecker linearization S(λ). In addition, we will see that the conditions (4.32)
are essentially necessary for KS,R to be moderate, though this does not mean that they
are necessary for structural backward stability since (4.31) is an upper bound. For the
sake of clarity, the discussion in this section focuses on identifying the key ingredients
for structural backward stability instead of on providing precise bounds. There exist,
obviously, rational matrices which do not satisfy the first condition in (4.32). We will
discuss in Sect. 5 how to proceed in such cases.

In the first place observe that each of the essential four factors of KS,R , that is,
(1 + f1‖S(λ)‖2), (1 + f2‖S(λ)‖2), (1 + f3‖S(λ)‖2) and ‖S(λ)‖F‖R(λ)‖F , is larger than 1.
This is obvious for the first three factors. For the fourth factor, it follows from the
equalities

‖S(λ)‖2F = ‖A‖2F + ‖B‖2F + ‖C‖2F + ‖M(λ)‖2F + � + 2(mη + nε) and

‖R(λ)‖2F = ‖A‖2F + ‖B‖2F + ‖C‖2F + ‖D(λ)‖2F + � .
(4.33)

To find upper bounds for the three factors (1 + f1‖S(λ)‖2), (1 + f2‖S(λ)‖2),
(1 + f3‖S(λ)‖2) of KS,R requires to upper bound each fi and ‖S(λ)‖2. For this
purpose,we considerLemmas4.7 and4.8. Lemma4.7 provides a boundon the function
f1 that allows us to identify its most relevant dependencies. Moreover, Lemma 4.7
emphasizes the key role of t := max(η, ε) in our perturbation analysis. Lemma 4.8
bounds ‖S(λ)‖2.
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Lemma 4.7 Let us define Ma := max(1, ‖A‖2), Mb := max(‖B‖2, ‖C‖2) and t :=
max(η, ε) > 0 and consider the functions f1, f2 and f3 in Theorem 4.5. Then

1 ≤ f1 ≤ 22(1 + 2 tMt
a)(1 + √

2 tMb), 1 ≤ f2

=
√
2

3
(4t − 1), 1 ≤ f3 = √

2 (1 + 2 tMt
a).

Proof It follows by taking into account the inequalities γ ≤ t√
2
and s ≤ (1 +

2tMt
a)(1 + √

2 t Mb). 	

Lemma 4.8 Let S(λ) be the block Kronecker linearization (1.2). Then

max(1, ‖A‖2, ‖B‖2, ‖C‖2, ‖M(λ)‖2) ≤ ‖S(λ)‖2
and

‖S(λ)‖2 ≤ √
2 + ‖

[
M(λ) K̂ T

2 C
BK̂1 A

]
‖2 ≤ √

2 +
√

‖A‖2F + ‖B‖2F + ‖C‖2F + ‖M(λ)‖2F .

Proof The first inequality follows from the definition of the 2-norm of a pencil given
in the introduction and the fact that the 2-norm of a matrix is larger than or equal to
the 2-norm of any of its submatrices. The second inequality follows from applying the
triangular inequality to

S(λ) =
⎡
⎣
M(λ) K̂ T

2 C 0
BK̂1 A 0
0 0 0

⎤
⎦+

⎡
⎣

0 0 KT
2 (λ)

0 −λI� 0
K1(λ) 0 0

⎤
⎦ .

Note that the 2-norm of a pencil as defined in the introduction is indeed a norm and,
so, the triangular inequality can be applied. 	


We remark that Lemmas 4.7 and 4.8 imply that the conditions (4.32) are essentially
necessary for KS,R to bemoderate. This can be seen as follows. First, fromLemma 4.6,
we have ‖M(λ)‖F ≥ ‖D(λ)‖F/

√
2(ε + η + 1). Thus, max(‖A‖F , ‖B‖F , ‖C‖F ,

‖D(λ)‖F ) � 1 implies ‖S(λ)‖2 � 1, which in turns implies KS,R � 1, since fi ≥ 1
for i = 1, 2, 3. Moreover, if ‖M(λ)‖F � ‖D(λ)‖F , then ‖S(λ)‖F/‖R(λ)‖F � 1
may happen, according to (4.33), and KS,R � 1 in that situation. We emphasize
that the condition ‖M(λ)‖F ≈ ‖D(λ)‖F was also used in the analysis in [7, Corol-
lary 5.24].

Next, we prove the announced result that conditions (4.32) are sufficient for KS,R

to be moderate and, thus, for structural backward stability.

Corollary 4.4 Under the hypotheses and with the notation of Theorem 4.6, assume, in
addition, that (4.32) holds and let t := max(η, ε) > 0. Then,

KS,R ≤ g tq
√
m + n ,
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where q = 5, if η > 0 and ε > 0, q = 9/2, if η = 0 or ε = 0, and g is a moderate
number (a constant that does not depend on η, ε,m, n, �). Moreover

√
‖ΔA‖2F + ‖ΔB‖2F + ‖ΔC‖2F +∑d

i=0 ‖ΔDi‖2F
‖R(λ)‖F

≤ g tq
√
m + n

‖ΔS(λ)‖F
‖S(λ)‖F + O(δ2) .

Proof Note that (4.32) and Lemmas 4.7 and 4.8 imply ‖S(λ)‖2 � 2+√
2, f1 ≤ g1t2,

f2 ≤ g2t , and f3 ≤ g3t , with g1, g2, g3 moderate numbers. Moreover, from (4.33),
(4.32) and ‖R(λ)‖F ≥ 1, we get that ‖S(λ)‖2F ≈ ‖R(λ)‖2F + 2(mη + nε) and

‖S(λ)‖2F ≤ (1 + 2(mη + nε)) ‖R(λ)‖2F ≤ 3 (m + n) t ‖R(λ)‖2F .

It only remains to analyze the factor
√
2min(ε + 1, η + 1) of KS,R , which is less

than or equal to
√
2(t + 1), if η > 0 and ε > 0, or equal to

√
2, if η = 0 or ε = 0.

Combining all these bounds with the fact that t ≥ 1, the result follows as a corollary
of Theorem 4.6. 	

Remark 4.1 Observe that (4.32) allow max(‖A‖F , ‖B‖F , ‖C‖F , ‖D(λ)‖F ) � 1.
However, since the rational matrix R(λ) in (1.1) can be multiplied by a nonzero
number without affecting at all its eigenstructure, it is natural and convenient to use
as sufficient conditions

max(‖A‖F , ‖B‖F , ‖C‖F , ‖D(λ)‖F ) = 1 and ‖M(λ)‖F ≈ ‖D(λ)‖F . (4.34)

Such conditions would have appeared as sufficient in the analysis if we had defined
the norm of R(λ) as

‖R(λ)‖F :=
√√√√‖A‖2F + ‖B‖2F + ‖C‖2F +

d∑
i=0

‖Di‖2F , (4.35)

instead as in (1.3) (observe that we have removed the � summand), depending only
on the free parameters of the representation of R(λ) in (1.1). We have chosen to use
(1.3) because, first, it identifies the informal “norm” of R(λ) with the formal norm
of the polynomial system matrix P(λ) and, second, it corresponds to the particular
case E = I� of the more general representation R(λ) = C(λE − A)−1B + D(λ),

with E nonsingular, when taking as norm the one of the corresponding polynomial
system matrix. Under the conditions (4.34), it is essentially equivalent to use (1.3) or
(4.35) as “norm” of R(λ). The use of representations R(λ) = C(λE − A)−1B+D(λ)

for rational matrices is of interest in certain applications and the block Kronecker
linearizations in this case are obtained just by replacing A − λI� by A − λE in (1.2).
We will consider the analysis of this general case in the future.
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4.6 Restoring the structure when the polynomial part of the rational matrix is
linear

In this subsection, we consider the particular case of having a rational matrix with
linear polynomial part. That is, the case of having a rational matrix that can be written
in the form

R(λ) = C(λI� − A)−1B + M(λ),

whereC(λI�−A)−1B is aminimal state-space realization andM(λ) is amatrix pencil.
Then R(λ) can be strongly linearized using the following linear polynomial system
matrix

S(λ) :=
[
M(λ) C
B A − λI�

]
. (4.36)

Notice that, in this case, the linearization does not have the block anti-triangular
structure as the block Kronecker linearization in (1.2) since K1(λ) and K2(λ) are
empty matrices. The strong linearization (4.36) can be seen as the limit case of (1.2)
when ε = η = 0.

If we compute the eigenstructure of S(λ), the backward stability of the staircase
algorithm [21] and the QZ algorithm [16] guarantees that we computed the exact
eigenstructure of a slightly perturbed pencil

Ŝ(λ) := S(λ) + ΔS(λ), ΔS(λ) :=
[

Δ11(λ) Δ12(λ)

Δ21(λ) Δ22(λ)

]
. (4.37)

The structure of (4.36) is lost in (4.37) since the off-diagonal blocks of Ŝ(λ) are not
constant matrices and the identity block I� is not preserved by the perturbation.

Notice that restoring in Ŝ(λ) the original structure of S(λ) is much simpler than
in previous sections, as we do not have to restore any anti-triangular zero block nor
the minimal bases K1(λ) and K2(λ) in (4.1). We only have to take care of restoring
the identity matrix I� and the constant matrices B and C to obtain in two steps a new
strictly equivalent linear polynomial system matrix

S̃(λ) := (I − X)Ŝ(λ)(I − Y ) := (I − X2)(I − X1)Ŝ(λ)(I − Y1)(I − Y2)

(4.38)

of the form

S̃(λ) :=
[
M̃(λ) C̃
B̃ Ã − λI�

]
, (4.39)

where M̃(λ) := M(λ) + ΔM(λ), Ã := A + ΔA, B̃ := B + ΔB and C̃ := C + ΔC .
For that, we consider the discussion in Sect. 4.2, for restoring I�; and a simplified
version of the discussion in Sect. 4.3, for restoring the constant matrices B and C .
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In particular, from the bound in (4.21) and a counterpart of Theorem 4.4 we get the
following result.

Theorem 4.7 Let S(λ) be a minimal linear system matrix as in (4.36). The trans-
formation (X ,Y ) in (4.38) exists and we can bound the corresponding perturbation
S̃(λ) − S(λ) as follows:

‖S̃(λ) − S(λ)‖F ≤ (1 + √
2‖S(λ)‖2)2 ‖ΔS(λ)‖F + O(δ2). (4.40)

In addition, if ‖S̃(λ)− S(λ)‖F is sufficiently small, then the perturbed pencil S̃(λ) is a
minimal linear system matrix of the rational matrix R̃(λ) = C̃(λI� − Ã)−1 B̃ + M̃(λ)

and

√
‖ΔA‖2F + ‖ΔB‖2F + ‖ΔC‖2F + ‖ΔM(λ)‖2F

‖R(λ)‖F ≤ (1 + √
2‖S(λ)‖2)2 ‖ΔS(λ)‖F

‖S(λ)‖F
+O(δ2),

where δ = ‖ΔS(λ)‖F/‖S(λ)‖F .
The simplicity of the bound in Theorem 4.7 is also a consequence of ‖S(λ)‖F =
‖R(λ)‖F .

5 Scaling for obtaining structural backward stability

Once a block Kronecker linearization S(λ) in (1.2) of R(λ) in (1.1) satisfying
‖M(λ)‖F ≈ ‖D(λ)‖F is chosen and the staircase or the QZ algorithm is applied
to S(λ), structural backward stability is guaranteed for the computed eigenstructure
if the first condition in (4.32) holds. However, there exist rational matrices which do
not satisfy max(‖A‖F , ‖B‖F , ‖C‖F , ‖D(λ)‖F ) ≤ 1 and, therefore, the computation
of their eigenstructure via a block Kronecker linearization might not be structurally
backward stable. In this section, we study how to proceed in these cases.

First observe that the eigenstructure of the rational matrix R(λ) does not change at
all if it is multiplied by a positive real constant dR . Choosing appropriately dR , we get
easily a rational matrix such that max(‖B‖F , ‖C‖F , ‖D(λ)‖F ) ≤ 1. Even more, if
dR is an integer power of 2, this multiplication can be performed without introducing
any rounding error. This indicates that the crucial point is how to deal with rational
matrices with ‖A‖F > 1. For this, note that when representing a rational matrix R(λ)

by a realization quadruple {λI� − A, B,C, D(λ)}, where D(λ) is polynomial,

R(λ) := C(λI� − A)−1B +
d∑

i=0

Diλ
i ,

one can change the coordinate system of the state-space realization {A, B,C} of the
strictly proper part of R(λ) by a diagonal similarity scaling T := diag(d1, . . . , d�),
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di > 0, without changing R(λ) since

C(λI� − A)−1B = CT (λI� − T−1AT )−1T−1B.

Thus, before multiplying R(λ) by dR , we can choose T to balance A, i.e., to minimize
its Frobenius norm under all diagonal similarities by making the 2-norms of the rows
and columns of T−1AT become equal [17]. Moreover, at the same time, the Frobenius
norms of T−1B and CT can be made equal by considering a positive scalar factor
multiplying T . Observe, in addition, that if the entries of T are integer powers of
2, this process does not introduce rounding errors, though, in this case, the norm of
T−1AT is only approximately minimized. However, the effects of T are limited since
‖T−1AT ‖F ≥ √|λ1|2 + · · · + |λ�|2, where λ1, . . . , λ� are the eigenvalues of A, for
any invertible T , i.e., diagonal or not. Therefore, other approaches are needed for
dealing with all instances of matrices A with large norms. It is important to emphasize
at this point that the influence of a large norm matrix A on the bound (4.31) is huge,
because it contributes to ‖S(λ)‖2, but also the factor ‖A‖max(η,ε)

2 is present in both f1
and f3.

The final solution comes from changing the variable λ to λ̂ := dλλ and from
combining this with the multiplication by the constant dR and the diagonal scaling T
discussed above. Note that the change of variable transforms the zeros and the poles
of R(λ) in a very simple way, preserving their partial multiplicities, and that does not
change at all its minimal indices [15, 20]. The combination of all these scalings yields
a new transfer function

R̂(̂λ) := D̂(̂λ) + Ĉ (̂λI� − Â)−1 B̂ := dR R(̂λ/dλ) (5.1)

where

Â := dλT
−1AT , B̂ := √

dλdR T−1B, Ĉ := √
dλdR CT (5.2)

and

D̂i := dRd
−i
λ Di , for all i = 0, 1, . . . , d. (5.3)

Then, we can choose dλ := min(1, ‖T−1AT ‖−1
F ), such that Â has norm smaller

than or equal to 1. Note that the preliminary balancing will make this step milder,
in the sense that dλ will be closer to 1. Finally, based on (5.1), we summa-
rize the following scaling procedure for obtaining a rational matrix R̂(̂λ) with
max(‖ Â‖F , ‖B̂‖F , ‖Ĉ‖F , ‖D̂(̂λ)‖F ) = 1 from the data {A, B,C, D0, D1, . . . , Dd}:

Step 1. Compute T = diag(d1, . . . , d�) to balance A and to make equal the norms
of T−1B and CT .
Step 2. Choose dλ := min(1, ‖T−1AT ‖−1

F ).
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Step 3. Choose

dR = 1

max( ‖√dλ T
−1B‖2F , ‖√dλ CT ‖2F ,

√√√√ d∑
i=0

‖d−i
λ Di‖2F )

.

Step 4. Compute { Â, B̂, Ĉ, D̂0, D̂1, . . . , D̂d} as in (5.2)–(5.3).
This process can be easily arranged to use scale factors that are all integer powers of
two and, thus, can be implemented without any rounding error. Moreover, this scaling
can be applied directly to the pencil S(λ). More precisely, the pencil

Ŝ(̂λ) := D�S(̂λ/dλ)Dr ,

where the left and right diagonal scalings D� and Dr are given by

D� := diag(d
1
2
Rd

−η
λ Im, . . . , d

1
2
Rd

0
λ Im, d

1
2
λ d

−1
1 , . . . , d

1
2
λ d

−1
� , d

− 1
2

R dε
λ In, . . . , d

− 1
2

R d1λ In),

Dr := diag(d
1
2
Rd

−ε
λ In, . . . , d

1
2
Rd

0
λ In, d

1
2
λ d1, . . . , d

1
2
λ d�, d

− 1
2

R dη
λ Im, . . . , d

− 1
2

R d1λ Im),

is a block Kronecker linearization of the rational matrix R̂(̂λ) in (5.1).

6 Numerical experiments

In this section, we describe three experiments illustrating that the potential sources
of structural backward instability revealed by the bound (4.31) are indeed observed
in practice. More precisely, the experiments will illustrate that if a rational matrix
R(λ) as in (1.1) does not satisfy the first condition in (4.32), then the computation
of the eigenstructure of R(λ) by applying the QZ algorithm to a block Kronecker
linearization S(λ) of R(λ) that satisfies ‖M(λ)‖F = ‖D(λ)‖F is not structurally
backward stable. Moreover, the experiments also illustrate that the scaling described
in Sect. 5 is effective and leads to structured backward stability for the scaled rational
matrices and linearizations.

A difficulty for performing fully reliable numerical experiments in this setting is that
to estimate the actual global backward error for the whole computed eigenstructure,
i.e., the left-hand side of (4.31), is a challenging optimization problem for which
we do not know yet a solution. Therefore, we will limit ourselves to computing a
lower bound for the backward error based on the “local” backwards errors of each
computed zero of the rational matrix, as we explain below. This lower bound might
severely underestimate the actual global backward error. Thus, we cannot check from
our experiments the sharpness of the bound (4.31), which, on the other hand, was
deduced through many potentially overestimating inequalities with the main goal of
getting a bound as clear as possible instead of optimizing its sharpness.

For simplicity, we will restrict our numerical experiments to square and regular
rational matrices R(λ) with a corresponding quadruple {A, B,C, D(λ)} of moderate
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dimensions and degree of its polynomial part: m = n = 2, � = 5, d = 3. The block
Kronecker pencil we choose for our computations is

S(λ) :=

⎡
⎢⎢⎣

λD3 + D2 0 0 I2
0 λD1 + D0 C −λI2
0 B A − λI� 0
I2 −λI2 0 0

⎤
⎥⎥⎦ ,

which has η and ε equal to 1, size 11 × 11 and satisfies ‖M(λ)‖F = ‖D(λ)‖F . We
also will look at the polynomial system matrix

P(λ) :=
[
A − λI� B

C D(λ)

]
, D(λ) := D0 + λD1 + λ2D2 + λ3D3

of R(λ) because it allows us to estimate the backward errors of our algorithm
as follows. We look for a rational matrix R̃(λ) corresponding to a quadruple
{A+ΔA, B+ΔB,C+ΔC, (D+ΔD)(λ)} such that all its finite zeros are exactly all
the computed finite eigenvalues obtained by applying the QZ algorithm to S(λ) and
such that ‖(ΔA,ΔB,ΔC, (ΔD)(λ) )‖F is as small as possible. As a consequence of
the classical results of Rosenbrock [18], this is equivalent to find a perturbed polyno-
mial system matrix P(λ) + ΔP(λ) of R̃(λ), whose finite zeros are the computed
eigenvalues λi and such that ‖(ΔA,ΔB,ΔC, (ΔD)(λ) )‖F is as small as possi-
ble. Therefore, {ΔA,ΔB,ΔC,ΔD0,ΔD1,ΔD2,ΔD3} must have the property that
simultaneously, at each computed eigenvalue λi , the matrix

P(λi ) + ΔP(λi ) = P(λi ) +
[

ΔA ΔB 0 0 0 0 0 0
ΔC ΔD0 0 ΔD1 0 ΔD2 0 ΔD3

]
⎡
⎢⎢⎣

I�+m

λi I�+m

λ2i I�+m

λ3i I�+m

⎤
⎥⎥⎦

must be singular. To find the smallest possible Frobenius norm of all possible
{ΔA,ΔB,ΔC,ΔD0,ΔD1,ΔD2,ΔD3} that satisfy this property for all computed
λi is not obvious, however to solve this problem for only one computed λi is easy. For
this purpose, letΔ(i) be the minimum Frobenius normmatrix that makes P(λi )+Δ(i)

singular. Note that Δ(i) can be computed through the singular value decomposition
of P(λi ) and that, generically, it is a rank one matrix with Frobenius norm equal to
σminP(λi ). Then, the linear system

Δ(i) :=
[

Δ
(i)
11 Δ

(i)
12

Δ
(i)
21 Δ

(i)
22

]
=
[

ΔA ΔB 0 0 0 0 0 0
ΔC ΔD0 0 ΔD1 0 ΔD2 0 ΔD3

]
⎡
⎢⎢⎣

I�+m

λi I�+m

λ2i I�+m

λ3i I�+m

⎤
⎥⎥⎦
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for the unknowns {ΔA,ΔB,ΔC,ΔD0,ΔD1,ΔD2,ΔD3} is consistent and its min-
imum Frobenius norm solution is given by

ΔA := Δ
(i)
11 , ΔB := Δ

(i)
12 , ΔC := Δ

(i)
21 , ΔDk := Δ

(i)
22λ

k
i /g(λi ), k = 0, 1, 2, 3,

where g(λi ) := (1+ |λi |2 + |λi |4 + |λi |6), and the Frobenius norm of this 7-tuple of
matrices is given by

r(P, λi ) :=
∥∥∥∥∥

[
Δ

(i)
11 Δ

(i)
12

Δ
(i)
21 Δ

(i)
22/

√
g(λi )

]∥∥∥∥∥
F

.

This leads us to use in our experiments

r(P) := max
i

r(P, λi ) (6.1)

as an estimate for the structured absolute backward error induced by our algorithm,
i.e., as an estimate for the numerator of the left-hand side of (4.31). We emphasize
that this is a lower bound for the actual global structured backward error, since it
corresponds to a rational matrix that has only one of the computed eigenvalues as a
finite zero.

In the first experiment, we investigate the behavior of the structured backward error
for rational matrices with matrices A of increasing (large) norms, and with the rest of
the matrices in the quadruple {A, B,C, D(λ)} having norms of order 1. The reason
why we pay first particular attention to the norm of A is because according to the
bound (4.31) the influence of A should be huge because it contributes to ‖S(λ)‖2 and
also to f1 and f3. For this purpose, we generated with the Matlab function randn,
7 batches of samples of 50 random matrix-tuples {A, B,C, D0, D1, D2, D3}, and in
each batch indexed with i , we multiplied the matrix A by 10i , with i going from 1
till 7, in each of the 50 runs of each batch. In each batch, we computed the average
of the absolute backward error estimators (6.1) for both the original matrix-tuples and
the scaled ones after applying the procedure in Sect. 5. In Fig. 1, we plot the results
of these computations: the horizontal axis represents the index i defining each batch
and the vertical axis the logarithm of the average absolute backward errors. Ideally,
the absolute backward error should be of order εM ‖R(λ)‖F , where εM is the machine
precision, and, so, we also plot this magnitude for the unscaled original data taking in
each batch the average of all ‖R(λ)‖F (for the scaled data, this magnitude is always
of order εM and is not plotted). We observe that the absolute backward errors for the
unscaled problem grow very strongly with the index i , i.e., with the norm of A, and
that computing the zeros of a rational matrix by applying the QZ algorithm to the
block Kronecker linearization S(λ) is highly structurally backward unstable for large
norms of A, as predicted by the bound (4.31). In contrast, when applying the scaling
procedure described in Sect. 5, this growth is absent and we get perfect structural
backward stability for the scaled rational matrix, as predicted by (4.31).

In the second experiment, we investigate the behavior of the structured backward
error for rational matrices with matrices A of norms of order 1, and with the rest
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Fig. 1 Experiment 1: behavior of absolute structured backward errors for increasing values of the norm of
A

of the matrices in the quadruple {A, B,C, D(λ)} having increasing (large) norms.
The situation in this experiment is opposite to the one in the first experiment. The
matrices are generated following the same pattern of the first experiment except by
the fact that once the matrices {A, B,C, D0, D1, D2, D3} are generated with randn,
B is multiplied by 10i/2, C by 10i/3, D1 by 10i , D2 by 10i/2 and D3 by 10i/3, for
i = 1, . . . , 7. The results are plotted in Fig. 2 and the conclusions are the same as in
the first experiment and are in agreement with our analysis. However, note that the
growth of the absolute backward errors of the original unscaled data is much smaller
than in the first experiment. This effect is qualitatively expected from the bound (4.31),
since f3 does not depend on the norms of B, C and D(λ), but the observed very large
quantitative difference is not fully explained by (4.31). Possible reasons of this are
that, as we have emphasized before, our backward error estimator is a lower bound that
may underestimate severely the actual global backward error and/or that the bound in
(4.31) overestimates the actual error.

The last experiment we present combines the scalings used in the first and second
experiments. That is, once the matrices {A, B,C, D0, D1, D2, D3} are generated with
randn, A is multiplied by the factor used in Experiment 1 and B,C, D1, D2, and
D3 are multiplied by the factors used in Experiment 2. Taking into account that the
function f1 appearing in the bound (4.31) includes a product of the norm of A times
the norm of B and a product of the norm of A times the norm ofC , we expect backward
errors for the unscaled system larger than those of Experiment 1. The results are plotted
in Fig. 3. The errors for the unscaled system (red line) are indeed larger than those in
Fig. 1, but just a bit larger. The possible reasons of this small increment of the errors
are the same as in the second experiment.
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Fig. 2 Experiment 2: behavior of absolute structured backward errors for increasing values of the norms of
B, C and D(λ)

Fig. 3 Experiment 3: behavior of absolute structured backward errors for increasing values of the norms of
A, B, C and D(λ)

The main conclusion of this section is that our main a priori structured backward
error bound (4.31) identifies correctly the sources of instability of computing the
eigenstructure of a rationalmatrix by applying the QZ algorithm to its blockKronecker
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linearizations and that the scaling proposed in Sect. 5 leads to structural backward
stability.

7 Conclusions and future work

We have developed the first structured backward error analysis for an algorithm that
computes the eigenstructure of a rational matrix. More precisely, the considered algo-
rithm starts from a rationalmatrix expressed as in (1.1) and computes its eigenstructure
by applying a backward stable generalized eigenproblem algorithm to its block Kro-
necker linearizations described in (1.2). As a consequence of this analysis, we have
identified the simple sufficient conditions (4.32) for structural backward stability. In
the case of rational matrices which do not satisfy these conditions, we have developed
a scaling procedure that transforms the original matrix in another one for which struc-
tural backward stability is guaranteed. A number of numerical experiments confirming
the predictions of the backward error analysis have been performed and discussed. The
results in this paper open new research problems in the area of structured backward
error analysis, since other representations used in applications of the given rational
matrix should be considered in the future, as well as other families of linearizations.

A Auxiliary result for Lemma 3.4

We prove in this appendix that the matrix

[
A B
C D

]
:=

[
ET
k ⊗ Ik I(k+1) ⊗ Ek

FT
k ⊗ Ik I(k+1) ⊗ Fk

]

appearing in the proof of Lemma 3.4 can be transformed by row and column permu-
tations to the direct sum of the following matrices:

M1 ⊕ M1 ⊕ M3 ⊕ M3 ⊕ · · · ⊕ M2k−1 ⊕ M2k−1 ⊕ N2k,

where the blocks Mk and Nk are as defined in (3.9). Let us take for example k = 3,
then the matrix looks like

[
A B
C D

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3 E3
I3 E3

I3 E3
E3

F3
I3 F3

I3 F3
I3 F3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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There are three submatrices M1, M3 and M5 that take elements a, b, c and d in the
respective blocks A, B, C and D, as indicated below

M1 = [
b
]
, M3 =

⎡
⎣
b a
c d
b

⎤
⎦ , M5 =

⎡
⎢⎢⎢⎢⎣

b a
c d
b a
c d
b

⎤
⎥⎥⎥⎥⎦

and they each start with a leading element in one of the E3 blocks. For instance,
M1 = [

b10,13
]
, M3 starts with the leading element b7,9 in the third E3 block, and M5

starts with the leading element in the second E3 block:

M1 = [
b10,13

]
,

M3 =
⎡
⎣
b7,9 a7,7

c10,7 d10,14
b11,14

⎤
⎦ , M5 =

⎡
⎢⎢⎢⎢⎣

b4,5 a4,4
c7,4 d7,10

b8,10 a8,8
c11,8 d11,15

b12,15

⎤
⎥⎥⎥⎥⎦

.

Notice that the
[
b a

]
and

[
c d

]
pairs have the same row index and that the

[
a
c

]
and

[
d
b

]
pairs have the same column index, which explains the permutation that has to

be constructed to extract the matrix. Also the transitions

b7,9 → b11,14, and b4,5 → b8,10 → b12,15

always go down to the next diagonal element in the next E3 block. In a similar fashion,
one finds another set of submatrices M1, M3 and M5 that take elements a, b, c and d
in the respective blocks A, B, C and D in a different order, as indicated below

M1 = [
d
]
, M3 =

⎡
⎣
d c
a b
d

⎤
⎦ , M5 =

⎡
⎢⎢⎢⎢⎣

d c
a b
d c
a b
d

⎤
⎥⎥⎥⎥⎦

and they each start with a trailing element in one of the first three F3 blocks. Finally,
the remaining matrix N6 takes elements in the blocks A, B, C and D in the following
order
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N6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

b a
c d
b a
c d
b a
c d

⎤
⎥⎥⎥⎥⎥⎥⎦

and starts with the leading element in the leading E3 block, and ends with the trailing
element in the trailing F3 block.
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