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This paper studies generic and perturbation properties inside 
the linear space of m ×(m +n) polynomial matrices whose rows 
have degrees bounded by a given list d1, . . . , dm of natural 
numbers, which in the particular case d1 = · · · = dm = d is 
just the set of m × (m + n) polynomial matrices with degree 
at most d. Thus, the results in this paper extend to a much 
more general setting the results recently obtained in [29] only 
for polynomial matrices with degree at most d. Surprisingly, 
most of the properties proved in [29], as well as their proofs, 
remain to a large extent unchanged in this general setting 
of row degrees bounded by a list that can be arbitrarily 
inhomogeneous provided the well-known Sylvester matrices 
of polynomial matrices are replaced by the new trimmed 
Sylvester matrices introduced in this paper. The following 
results are presented, among many others, in this work: 
(1) generically the polynomial matrices in the considered set 
are minimal bases with their row degrees exactly equal to 
d1, . . . , dm, and with right minimal indices differing at most 
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Genericity by one and having a sum equal to 
∑m

i=1 di, and (2), under 
perturbations, these generic minimal bases are robust and 
their dual minimal bases can be chosen to vary smoothly.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Minimal bases of rational vector spaces, usually arranged as the rows of polynomial 
matrices, are a standard tool in control theory and in coding theory. Therefore, their 
definition, properties, and many of their practical applications can be found in classical 
references on these subjects, as, for instance, the ones by Wolovich [30], Kailath [23], and 
Forney [19], although the concept of minimal bases is much older and, as far as we know, 
it was introduced for the first time in the famous paper by Dedekind and Weber [5]. 
Recently, minimal bases, and the closely related notion of pairs of dual minimal bases, 
have been applied to some problems that have attracted considerable attention in the 
last years as, for instance, in the solution of inverse complete eigenstructure problems 
for polynomial matrices [10,11], in the development of new classes of linearizations and 
�-ifications of polynomial matrices [12,14,24,26], in the explicit construction of lineariza-
tions of rational matrices [1], and in the backward error analysis of complete polynomial 
eigenvalue problems solved via different classes of linearizations [14,25].

Some of the applications mentioned in the previous paragraph motivated the devel-
opment in the recent paper [29] of robustness and perturbation results of minimal bases, 
which had not been explored before in the literature. The study of any perturbation 
problem for polynomial matrices requires as a first step to fix the set of allowable per-
turbations and, with this purpose, the reference [29] considers perturbations whose only 
constraint is that they do not increase the degree d of the m ×(m +n) given minimal basis 
that is perturbed. These perturbations are natural and cover some relevant applications, 
as the backward error analysis of algorithms for solving polynomial eigenvalue problems 
with linearizations. In addition, a number of new results were also obtained in [29] as, 
for instance, a characterization of minimal bases in terms of their Sylvester matrices and 
the fact that the polynomial matrices of size m × (m + n) and degree at most d are 
generically minimal bases with the degrees of all their rows equal to d and with their 
right minimal indices satisfying two key properties. More precisely, such minimal indices 
are “almost homogeneous”, i.e., they differ at most by one, and their sum is equal to dm. 
The perturbation results in [29] are only valid for these generic minimal bases, which are 
“highly homogeneous” from the perspectives mentioned above.

In order to describe sets of polynomial matrices with bounded rank and degree in a 
more explicit way than the one presented in [15], one needs to consider perturbations of 
a minimal basis M(λ) with much stronger constraints than the one imposed in [29], since 
such perturbations cannot increase the individual degree of each of the rows of M(λ). 
More precisely, given an m × (m + n) minimal basis M(λ) whose rows have degrees 
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d1, d2, . . . , dm, which can be arbitrarily different from each other, or, in other words, 
“arbitrarily inhomogeneous”, the perturbed polynomial matrix M(λ) + ΔM(λ) must 
have rows with degrees at most d1, d2, . . . , dm. These perturbations must stay in the set 
of m × (m + n) polynomial matrices whose rows have degrees at most d1, d2, . . . , dm
and, therefore, this is the set studied in this paper. It is clear that the polynomial 
matrices in this set have generically rows with degrees exactly equal to d1, d2, . . . , dm
and, so, are very different from the generic polynomial matrices arising in [29], which 
have the degrees of their rows all equal to d, that is, completely homogeneous. Despite 
this important difference, the results presented in this work are to a large extent similar 
to those in [29], which at a first glance is rather surprising. Thus, we prove in this paper 
that the polynomial matrices of size m × (m + n) and with the degrees of their rows 
bounded by d1, d2, . . . , dm are generically minimal bases with the degrees of their rows 
exactly equal to d1, d2, . . . , dm and having “almost homogeneous” right minimal indices 
with sum equal to 

∑m
i=1 di. The “almost homogeneus” property of the right minimal 

indices means that the absolute value of the difference between any two of these n integer 
nonnegative numbers is less than or equal to one. In fact, the “almost homogeneus” right 
minimal indices are all equal if their sum 

∑m
i=1 di is a multiple of n. We remark that 

this “almost homogeneity” of the right minimal indices, or, equivalently, of the degrees 
of the dual minimal bases, is the key property that allows us to develop a perturbation 
theory analogous to the one presented in [29]. In order to prove these new results, we 
need to introduce a new tool that, although simple, we think it has not been used before 
in the literature: the trimmed Sylvester matrices associated with a polynomial matrix. 
Once this new tool and its properties are derived, most of the proofs in this paper are 
rather similar to those in [29] and only the relevant differences will be discussed.

Among all the results presented in this paper, perhaps the most remarkable one is 
the genericity of the property of “almost homogeneous” minimal indices in a set of 
polynomial matrices whose elements have generically rows with inhomogeneous degrees. 
We think that this is the first time that this phenomenon has been observed, since, until 
now, the genericity of “almost homogeneous” minimal indices is a well-known fact that 
has been proved only in scenarios where the generic situation is that the degrees of the 
rows are all equal. In the case of pencils, i.e., polynomial matrices with degree at most 
one, this property was observed for the first time in [28] and shown more rigorously in 
[4,13,17,18] for general pencils and in [6,7] for pencils satisfying certain properties. In 
the case of polynomial matrices with degree at most d, where d is an arbitrary positive 
integer, results on this generic property are much more recent and can be extracted from 
the general stratification results in [16,22] and are explicitly stated in [15,29].

As said before, the results and proofs in this paper are closely connected to those 
in [29] and, so, we will refer as much as possible to that paper for the proofs that 
can be found there. Nevertheless, for the sake of readability of the current paper, we will 
repeat here some definitions and crucial theorems that are needed to understand the new 
results. The rest of the paper is organized as follows. In Section 2 we recall some basic 
definitions and properties of minimal bases and introduce some concepts and notations 
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to be used throughout the paper. In Section 3 we introduce the so-called “trimmed” 
Sylvester matrices and show that they have similar properties as the classical Sylvester 
matrices. Section 4 establishes general properties of the minimal bases that belong to 
the set of m × (m + n) polynomial matrices whose rows have degrees bounded by a list 
of numbers. In Section 5 we introduce full-trimmed-Sylvester-rank matrices and show 
that they correspond to minimal bases with almost homogeneous right minimal indices. 
In Sections 6 and 7 we then show that these full-trimmed-Sylvester-rank matrices also 
correspond to the generic situation and that these minimal bases therefore also have good 
robustness properties. The perturbations of their dual minimal bases are then analyzed 
in Section 8. Finally, we revisit the classical conditions for minimal bases and show in 
Section 9 that the robustness of these conditions follows from the robustness properties 
of Section 7. In the concluding Section 10 we summarize the main results presented in the 
paper and discuss some of their possible applications. Except for Section 3, the remaining 
sections of this paper are counterparts of sections in [29] and the specific relationships 
will be commented in each section. However, [29, Section 9] has no counterpart here since 
it is based on a property that is not preserved for minimal bases with inhomogeneous 
row degrees: their reversal polynomial matrices are no longer minimal bases.

2. General preliminaries and the space F[λ]m×(m+n)
d

This section introduces notations, nomenclature, and basic concepts used in the rest of 
the paper. The first part of the section is a summary of [29, Section 2] and is included for 
convenience of the reader, who can find more complete information in [29]. The second 
part introduces the vector space F[λ]m×(m+n)

d of polynomial matrices whose rows have 
degrees bounded by the elements of a given list d, which is the space containing the 
polynomials studied in this paper. In addition, some basic properties of F[λ]m×(m+n)

d are 
established.

The results in Sections 3, 4, and 5 of this paper hold in any field F, while in the 
remaining sections F is the field of real numbers R or of complex numbers C. We adopt 
standard notation: F[λ] denotes the ring of polynomials in the variable λ with coefficients 
in F and F(λ) denotes the field of fractions of F[λ]. Vectors with entries in F[λ] are called 
polynomial vectors. In addition, F[λ]m×n stands for the set of m ×n polynomial matrices, 
and F(λ)m×n for the set of m × n rational matrices. The degree of a polynomial vector, 
v(λ), or matrix, P (λ), is the highest degree of all of its entries and is denoted by deg(v)
or deg(P ). Finally, F denotes the algebraic closure of F, In the n × n identity matrix, 
and 0m×n the m × n zero matrix, where the sizes are omitted when they are clear from 
the context.

The rank of P (λ) (sometimes called “normal rank”) is just the rank of P (λ) considered 
as a matrix over the field F(λ), and is denoted by rank(P ). Other concepts on polynomial 
matrices used in this paper can be found in the classical books [20,23], as well as in the 
summary included in [9, Sect. 2].
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Since “minimal basis” is the key concept of this paper, we revise its definition and 
characterization. It is well known that every rational vector subspace V, i.e., every sub-
space V ⊆ F(λ)n over the field F(λ), has bases consisting entirely of polynomial vectors. 
Among them, some are minimal in the following sense introduced by Forney [19]: a min-
imal basis of V is a basis of V consisting of polynomial vectors whose sum of degrees is 
minimal among all bases of V consisting of polynomial vectors. The fundamental prop-
erty [19,23] of such bases is that the ordered list of degrees of the polynomial vectors 
in any minimal basis of V is always the same. Therefore, these degrees are an intrinsic 
property of the subspace V and are called the minimal indices of V. This discussion leads 
us to the definition of the minimal bases and indices of a polynomial matrix. An m × n

polynomial matrix P (λ) with rank r smaller than m and/or n has non-trivial left and/or 
right rational null-spaces, respectively, over the field F(λ), which are denoted by N�(P )
and Nr(P ), respectively. Polynomial matrices with non-trivial N�(P ) and/or Nr(P ) are 
called singular polynomial matrices. If the rational subspace N�(P ) is non-trivial, it has 
minimal bases and minimal indices, which are called the left minimal bases and indices
of P (λ). Analogously, the right minimal bases and indices of P (λ) are those of Nr(P ), 
whenever this subspace is non-trivial.

The definition of minimal basis given above cannot be easily handled in practice. 
Therefore, we include in Theorem 2.2 a classical characterization introduced in [19, 
p. 495] that is more useful, although it requires to check the ranks of infinitely many 
constant matrices. We emphasize that, recently, a characterization in terms of the ranks 
of a finite number of constant matrices has been obtained in [29, Theorem 3.7] and that 
this alternative characterization is revisited later in Theorem 4.2. In order to characterize 
minimal bases we need the following definition, where we use the expression “column 
(resp., row) degrees” of a polynomial matrix to mean the degrees of its column (resp., 
row) vectors.

Definition 2.1. Let d′1, . . . , d′n be the column degrees of N(λ) ∈ F[λ]m×n. The highest-
column-degree coefficient matrix of N(λ), denoted by Nhc, is the m ×n constant matrix 
whose jth column is the vector coefficient of λd′

j in the jth column of N(λ). The poly-
nomial matrix N(λ) is said to be column reduced if Nhc has full column rank.

Similarly, let d1, . . . , dm be the row degrees of M(λ) ∈ F[λ]m×n. The highest-row-
degree coefficient matrix of M(λ), denoted by Mhr, is the m × n constant matrix whose
jth row is the vector coefficient of λdj in the jth row of M(λ). The polynomial matrix 
M(λ) is said to be row reduced if Mhr has full row rank.

Theorem 2.2 provides the announced characterization of minimal bases proved in [19].

Theorem 2.2. The columns (resp., rows) of a polynomial matrix N(λ) over a field F are 
a minimal basis of the subspace they span if and only if N(λ0) has full column (resp., 
row) rank for all λ0 ∈ F, and N(λ) is column (resp., row) reduced.
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Remark 2.3. In this paper we follow the convention in [19] and often say, for brevity, 
that a p × q polynomial matrix N(λ) is a minimal basis if the columns (when q < p) 
or rows (when p < q) of N(λ) form a minimal basis of the rational subspace they span. 
Most of the minimal bases considered in this paper are arranged as the rows of matrices. 
Recall also that if M(λ) ∈ F[λ]m×k is a row (resp. column) reduced polynomial matrix, 
then M(λ) has full row (resp. column) (normal) rank.

Next, we introduce the concept of dual minimal bases, whose origins can be found in 
[19, Section 6] and that has played a key role in a number of recent applications (see [29]
and [10] for more information).

Definition 2.4. Polynomial matrices M(λ) ∈ F[λ]m×k and N(λ) ∈ F[λ]n×k with full row 
ranks are said to be dual minimal bases if they are minimal bases satisfying m + n = k

and M(λ) N(λ)T = 0.

In the language of null-spaces of polynomial matrices, observe that M(λ) is a minimal 
basis of N�(N(λ)T ) and that N(λ)T is a minimal basis of Nr(M(λ)). As a consequence, 
the right minimal indices of M(λ) are the row degrees of N(λ) and the left minimal 
indices of N(λ)T are the row degrees of M(λ).

The next theorem reveals a fundamental relationship between the row degrees of dual 
minimal bases. Its first part was proven in [19], while the second (converse) part has 
been proven very recently in [10].

Theorem 2.5. Let M(λ) ∈ F[λ]m×(m+n) and N(λ) ∈ F[λ]n×(m+n) be dual minimal bases 
with row degrees (η1, . . . , ηm) and (ε1, . . . , εn), respectively. Then

m∑
i=1

ηi =
n∑

j=1
εj . (2.1)

Conversely, given any two lists of nonnegative integers (η1, . . . , ηm) and (ε1, . . . , εn)
satisfying (2.1), there exists a pair of dual minimal bases M(λ) ∈ F[λ]m×(m+n) and 
N(λ) ∈ F[λ]n×(m+n) with precisely these row degrees, respectively.

This paper studies the set of polynomial matrices of size m × (m + n) and with row 
degrees at most d1, d2, . . . , dm, where d1, d2, . . . , dm are given nonnegative integers which 
are stored in the list d := (d1, d2, . . . , dm). This set is formally defined as

F[λ]m×(m+n)
d :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
R1(λ)
R2(λ)

...
Rm(λ)

⎤⎥⎥⎥⎥⎦ :
Ri(λ) = Ri,0 + Ri,1λ + · · · + Ri,di

λdi ,

Ri,j ∈ F
1×(m+n), 1 ≤ i ≤ m, 0 ≤ j ≤ di

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (2.2)

Observe that F[λ]m×(m+n)
d is a linear space over the field F of dimension (m +n) 

∑m
i=1(di+

1). Note that deg(Ri(λ)) ≤ di and that deg(Ri(λ)) = di if and only if Ri,di
�= 0. Next, 
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we define, attached to each matrix in F[λ]m×(m+n)
d , a constant matrix that will be often 

used in this paper.

Definition 2.6. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, d2, . . . , dm), and let Ri,di

∈
F

1×(m+n) be the vector coefficient of λdi in the ith row of M(λ) for i = 1, . . . , m. The 
leading row-wise coefficient matrix of M(λ) is defined as

Md :=

⎡⎢⎢⎢⎢⎣
R1,d1

R2,d2
...

Rm,dm

⎤⎥⎥⎥⎥⎦ ∈ F
m×(m+n).

Note that Md is in general different from the highest-row-degree coefficient matrix 
Mhr of M(λ) introduced in Definition 2.1. This is related to the linear space structure of 
F[λ]m×(m+n)

d and is emphasized in the next simple lemma whose trivial proof is omitted.

Lemma 2.7. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, d2, . . . , dm), and let Ri(λ) be the

ith row of M(λ) for i = 1, . . . , m. Then:

(a) Md = Mhr if and only if deg(Ri(λ)) = di for i = 1, . . . , m.
(b) If rank(Md) = m, then Md = Mhr.

Part (b) of Lemma 2.7 follows from part (a) because rank(Md) = m implies that 
Ri,di

�= 0 for i = 1, . . . , m.
The linear space of polynomial matrices of size m × (m + n) and degree at most d is 

also used in this paper and is denoted and defined as follows:

F[λ]m×(m+n)
d :=

{
M0 + M1λ + · · · + Mdλ

d : Mi ∈ F
m×(m+n), 0 ≤ i ≤ d

}
. (2.3)

The set F[λ]m×(m+n)
d is also a linear space over F and its dimension is m(m + n)(d + 1). 

Given any M(λ) = M0 + M1λ + · · · + Mdλ
d ∈ F[λ]m×(m+n)

d , the matrix Md is called 
the leading coefficient matrix of M(λ). In the case d = max1≤i≤m di, it is clear that 
F[λ]m×(m+n)

d ⊆ F[λ]m×(m+n)
d , with equality if and only if d = d1 = · · · = dm. Therefore, 

F[λ]m×(m+n)
d is a linear subspace of F[λ]m×(m+n)

d . Throughout the paper we will assume 
that m > 0, n > 0, and d > 0 for avoiding trivialities.

Finally, we illustrate with an example the differences among Md, Mhr, and Md.

Example 2.8. Let m = 3, n = 1, d = (1, 3, 10), and d = 10. Consider

M(λ) =

⎡⎢⎣ 1 0 λ + 1 λ

λ2 2 λ 2λ2

−1 λ10 − λ9 1 λ8

⎤⎥⎦ ∈ F[λ]3×4
d .
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Then,

Mhr =

⎡⎣ 0 0 1 1
1 0 0 2
0 1 0 0

⎤⎦ , Md =

⎡⎣ 0 0 1 1
0 0 0 0
0 1 0 0

⎤⎦ , Md =

⎡⎣ 0 0 0 0
0 0 0 0
0 1 0 0

⎤⎦ .

So, in this case, the three matrices are different. If we had considered d = (1, 2, 10), then 
we would have obtained Md = Mhr.

It is interesting to remark, at the light of the previous example, that given a polynomial 
matrix M(λ), the matrix Mhr is intrinsically attached to M(λ), while Md and Md vary 
with the list d and the value d that are considered, i.e., with the sets containing M(λ)
that are considered.

3. Trimmed Sylvester matrices of polynomials in F[λ]m×(m+n)
d

In this section, we introduce and study certain constant matrices attached to the poly-
nomial matrices in F[λ]m×(m+n)

d . These matrices are called trimmed Sylvester matrices
and are essential for obtaining the results in this paper. They are built from the Sylvester 
matrices [2,3] associated to the polynomial matrices in F[λ]m×(m+n)

d , which were heavily 
used in [29] and whose definition is refreshed below.

Definition 3.1. Let M(λ) = M0 + M1λ + · · · + Mdλ
d ∈ F[λ]m×(m+n)

d . The kth Sylvester 
matrix of M(λ) is defined as

Sk(M) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0
M1 M0
... M1

. . .

Md

...
. . . M0

0 Md M1
...

. . . . . .
...

0 . . . 0 Md

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

k block columns

∈ F
(k+d)m×k(m+n) . (3.1)

When it is obvious from the context, we will drop the argument (M) and just use Sk

for denoting the kth Sylvester matrix of M(λ).
The Sylvester matrices of those M(λ) ∈ F[λ]m×(m+n)

d ⊆ F[λ]m×(m+n)
d , where d =

(d1, d2, . . . , dm) and d = max1≤i≤m di, have several rows that are zero for any M(λ) ∈
F[λ]m×(m+n)

d . These zero rows are identified in the next lemma, whose simple proof is 
omitted.

Lemma 3.2. Let M(λ) ∈ F[λ]m×(m+n)
d ⊆ F[λ]m×(m+n)

d , where d = (d1, d2, . . . , dm) and 
d = max1≤i≤m di, and let Ri,j ∈ F

1×(m+n) be the vector coefficient of λj in the ith row 
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Ri(λ) of M(λ), for i = 1, . . . , m and j = 0, 1, . . . , di, as in (2.2). Then the submatrix of 
Sk(M) that selects the ith row of each of the (k + d) block rows of Sk(M) is

Sk(Ri) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ri,0
Ri,1 Ri,0
... Ri,1

. . .

Ri,di

...
. . . Ri,0

01×(m+n) Ri,di
Ri,1

... 01×(m+n)
. . .

...
...

. . . Ri,di

0 . . . . . . 0(d−di)×(m+n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

k block columns

∈ F
(k+d)×k(m+n) , (3.2)

where the definition of Sk(Ri) assumes that Ri(λ) ∈ F[λ]1×(m+n)
d .

Observe that Lemma 3.2 identifies (d − di) zero rows at the bottom of each Sk(Ri)
and, so, a total of md −

∑m
i=1 di zero rows in Sk(M) for any M(λ) ∈ F[λ]m×(m+n)

d and 

for any k. We emphasize that there exist some matrices M̃(λ) ∈ F[λ]m×(m+n)
d such that 

Sk(R̃i) has more than d − di zero rows and, so, Sk(M̃) has more than md −
∑m

i=1 di
zero rows. Such additional zero rows appear, for instance, if R̃i,0 = 0 or if R̃i,di

= 0 or 
if R̃i,j = 0 for all 0 ≤ j ≤ (k − 1), for some i. Since the rows of Sk(M) that are zero 
for all M(λ) ∈ F[λ]m×(m+n)

d do not carry any information on the polynomial matrices 
of this set, we can remove them, which leaves k + di rows coming from each Sk(Ri) and 
a total of km +

∑m
i=1 di rows coming from the whole Sk(M). This process leads to the 

definition of the key constant matrices used in this paper.

Definition 3.3. Let M(λ) ∈ F[λ]m×(m+n)
d ⊆ F[λ]m×(m+n)

d , where d = (d1, d2, . . . , dm) and 
d = max1≤i≤m di, and let Sk(M) and Sk(Ri) be, respectively, the kth Sylvester matrices 
of M(λ) and of the ith row of M(λ). The kth trimmed Sylvester matrix of M(λ) is the 
submatrix of Sk(M) obtained by removing, for i = 1, . . . , m, the (d −di) zero rows at the 
bottom of the submatrix of Sk(M) corresponding to Sk(Ri). The kth trimmed Sylvester 
matrix of M(λ) is denoted as

Tk(M) ∈ F
(km+

∑m
i=1 di)×k(m+n).

As in the case of Sylvester matrices, we will drop the argument (M) and just use Tk

for denoting the kth trimmed Sylvester matrix of M(λ), when it is obvious from the 
context.

Trimmed Sylvester matrices satisfy the structural nesting property that is shown in 
Lemma 3.4. This nesting property differs from the one of Sylvester matrices that is 
displayed in the proof of [29, Lemma 3.2] in two aspects: first, it requires the use of a 
permutation and, second, it involves the matrix Md introduced in Definition 2.6, instead 
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of the matrix Md that appears in Sylvester matrices. Nevertheless, this nesting property 
will allow us to prove for the polynomial matrices in F[λ]m×(m+n)

d properties analogous 
to those proved in [29] for the matrices in F[λ]m×(m+n)

d using the same techniques, with 
changes just coming from the use of Md and from the fact that Tk(M) and Sk(M) have 
different sizes. In particular, we will prove in Section 6 that the right minimal indices of 
the matrices in F[λ]m×(m+n)

d are generically “almost homogeneous” (i.e., they differ at 
most by one), as also happens in F[λ]m×(m+n)

d . Such “almost homogeneity” may seem 

surprising at a first glance, since the row degrees of the matrices in F[λ]m×(m+n)
d are 

generically equal to the entries of d and, so, they are extremely unbalanced if the entries 
of d are, in contrast with those of the matrices in F[λ]m×(m+n)

d , which are generically all 
equal to d.

Lemma 3.4. Let M(λ) ∈ F[λ]m×(m+n)
d , let Tk be the trimmed Sylvester matrices of M(λ)

for k = 1, 2, . . ., and let Md be the leading row-wise coefficient matrix of M(λ) as in 
Definition 2.6. Then, there exist permutation matrices Pk, for k = 1, 2, . . ., such that

P1 T1 =
[
X1
Md

]
and Pk+1 Tk+1 =

[
Tk Xk+1

0 Md

]
for k = 1, 2, ....

Moreover, Pk depends on k and d but not on M(λ).

Proof. The existence of P1 satisfying the first equality is obvious because T1 contains 
the rows of Md. For the second equality, note that the way in which Tk+1 is obtained by 
removing zero rows from the Sylvester matrix Sk+1 of M(λ) and equation (3.2) guarantee 
that

Tk+1(Ri) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ri,0
Ri,1 Ri,0

... Ri,1
. . .

Ri,di

...
. . . Ri,0

0 Ri,di
Ri,1

...
. . . . . .

...
0 . . . 0 Ri,di

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
Tk(Ri) X

(i)
k+1

0 Ri,di

]

is a submatrix of Tk+1 for i = 1, . . . , m. If Pk+1 is the permutation matrix that moves 
the rows of Tk+1 corresponding to the last row of each of its submatrices Tk+1(Ri) to 
the m bottom positions, then Pk+1Tk+1 has the desired expression. �

Next, we illustrate the definition of trimmed Sylvester matrices and the nesting struc-
ture revealed in Lemma 3.4 with two examples.

Example 3.5. In this example, we consider m = 3 and d = (0, 1, 2), i.e., d1 = 0, d2 = 1 and 
d3 = 2, and write explicitly the 3rd trimmed Sylvester matrix of any M(λ) ∈ F[λ]3×(3+n)

d , 
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using the notation in (2.2), as well as the nesting structure of P3T3 involving T2:

T3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1,0
R2,0
R3,0

0 R1,0
R2,1 R2,0
R3,1 R3,0

0 0 R1,0
0 R2,1 R2,0

R3,2 R3,1 R3,0

0 R2,1
R3,2 R3,1

R3,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P3T3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1,0
R2,0
R3,0

0 R1,0
R2,1 R2,0
R3,1 R3,0

0 R2,1 R2,0
R3,2 R3,1 R3,0

R3,2 R3,1

R1,0
R2,1
R3,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
T2 X3

0 Md

]
.

The lines partitioning T3 correspond to the partition of the Sylvester matrix S3 and show 
that the last two block rows of S3 were “trimmed” to get T3, since all the block rows of 
S3 have 3 rows and the last two block rows of T3 displayed above by the lines have 2
rows and 1 row, respectively.

Example 3.6. In this example, we take m = 4, n = 3, d = (0, 1, 1, 2), i.e., d1 = 0, 
d2 = d3 = 1 and d4 = 2, and consider the following matrix M(λ) ∈ F[λ]4×7

d :

M(λ) =

⎡⎢⎢⎢⎣
1 0

−1 λ 0
0 −1 λ

−1 λ2

⎤⎥⎥⎥⎦ .
It can be easily checked that the 2nd trimmed Sylvester matrix of M(λ) is given by

T2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 0 0
0 −1 0

−1 0
1 0

0 1 0 −1 0 0
0 0 1 0 −1 0

0 0 −1 0
0 1 0
0 0 1

0 1 0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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In addition, it can be checked that in this case T2 has full row rank. As in Example 3.5, 
the lines partitioning T2 correspond to the partition of the Sylvester matrix S2 and show 
that the last two block rows of S2 were “trimmed” to get T2, since all the block rows of 
S2 have 4 rows and the last two block rows of T2 have 3 rows and 1 row respectively. 
Moreover, the rows in the second block column of T2 that are indicated in bold face 
are the leading row-wise coefficient matrix Md of M(λ), which in this example coincides 
with the highest-row-degree coefficient matrix Mhr of M(λ). The permuted matrix P2T2

in Lemma 3.4 is given in this example by

P2T2 =
[
T1 X2

0 Md

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 0 0
0 −1 0

−1 0
0 1 0 −1 0 0
0 0 1 0 −1 0

0 0 −1 0
0 1 0 0

1 0
0 1 0
0 0 1

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the dashed lines partitioning T1 allow us to see that the last two block rows 
of S1 were “trimmed” for obtaining T1. Notice also that the rows of T1 are exactly the ∑m

i=1(di+1) constant row coefficients Ri,j of the polynomial matrix M(λ) ∈ F[λ]m×(m+n)
d

appearing in (2.2).

The last result in this section establishes a number of basic properties about the ranks 
and right nullities of trimmed Sylvester matrices and Sylvester matrices and is partly 
based on Lemma 3.4.

Lemma 3.7. Let M(λ) ∈ F[λ]m×(m+n)
d ⊆ F[λ]m×(m+n)

d , where d = (d1, d2, . . . , dm) and 
d = max1≤i≤m di, let Sk be the kth Sylvester matrix of M(λ), and let Tk be the kth 
trimmed Sylvester matrix of M(λ), for k = 1, 2, . . .. Then, the following statements hold.

(1) rank(Sk) = rank(Tk).
(2) right-nullity(Sk) = right-nullity(Tk), where the right nullity of a matrix is the di-

mension of its right null space.
(3) If Sk has full column rank for some k > 1, then S� has full column rank for all 

1 ≤ � < k.
(4) If Tk has full column rank for some k > 1, then T� has full column rank for all 

1 ≤ � < k.
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(5) If d > dj for some j, then Sk does not have full row rank.
(6) If Tk has full row rank, then T� has full row rank for all k < �.
(7) If Tk has full row rank for some k, then rank(Md) = m, Md = Mhr, and di =

deg(rowi(M(λ)), for i = 1, . . . , m, where Md and Mhr are the matrices introduced 
in Definitions 2.6 and 2.1, respectively.

Proof. Recall that Tk is obtained from Sk by removing zero rows, an operation that 
does not change the rank and the right nullity. This proves parts (1) and (2). Part (3) 
is [29, Lemma 3.1] and holds because each matrix S�, with 1 ≤ � < k, properly padded 
with zeros forms the first � block columns of Sk. Part (4) follows from parts (1) and 
(3), although can also be obtained from the second equality in Lemma 3.4, with k + 1
replaced by k, through an induction argument since rank(PkTk) = rank(Tk). Part (5) 
holds because if d > dj , then the matrix Md appearing in the definition of Sk in (3.1)
has its jth row equal to zero and, then, the jth row of the last block row of Sk is zero.

We only prove part (6) for � = k+1, since then the result for larger values of � follows 
easily by induction. The proof requires some minor changes with respect to that of [29, 
Lemma 3.2], which states the same property for Sylvester matrices. The proof of (6) 
for � = k + 1 is as follows: use first the equalities in Lemma 3.4 (the second one with 
k + 1 replaced by k, if k > 1) and rank(PkTk) = rank(Tk) to see that if Tk has full row 
rank, then Md has also full row rank; then, in a second step, use the second equality in 
Lemma 3.4, the fact that rank(Pk+1Tk+1) = rank(Tk+1), and the facts that Tk and Md

have both full row rank to get that Tk+1 has also full row rank.
Finally, to prove part (7) note that, as above, if Tk has full row rank, then Md has 

also full row rank. The application of Lemma 2.7 completes the proof. �
We emphasize that part (5) in Lemma 3.7 is the reason why the Sylvester matrices 

Sk are not an adequate tool to study generic properties in F[λ]m×(m+n)
d .

4. Minimal bases in F[λ]m×(m+n)
d

This section characterizes the minimal bases in the linear space F[λ]m×(m+n)
d of m ×

(m +n) polynomial matrices whose row degrees are smaller than or equal to the elements 
of the list d = (d1, d2, . . . , dm) in terms of their trimmed Sylvester matrices. Corollary 4.3
is the main result in this section, while the remaining results are just some of the results 
in [29, Section 3] written in terms of the new trimmed Sylvester matrices instead of 
the Sylvester matrices. Thus, they follow immediately from Lemma 3.7-(1)–(2) and the 
corresponding results in [29], and their proofs are omitted. We include these results 
since they are used in this paper and also to emphasize that the concept of trimmed 
Sylvester matrices is more natural in this context since they have less rows than the 
corresponding Sylvester matrices, and, in fact, they can have many less rows if the 
elements of d = (d1, d2, . . . , dm) are highly unbalanced (think, for instance, in m = 4, 
d = (1, 1, 1, 104), d = 104).
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Theorem 4.1 follows from Theorem 3.3 and Corollaries 3.4 and 3.5 in [29]. Recall also 
that Theorem 3.3 and Corollary 3.4 in [29] were originally proved in [3].

Theorem 4.1. Let M(λ) ∈ F[λ]m×(m+n)
d be a polynomial matrix of full row rank, where 

d = (d1, d2, . . . , dm), let Tk be the kth trimmed Sylvester matrix of M(λ), let rk and 
nk be the rank and the right nullity of Tk, respectively, for k = 1, 2, . . ., and let αk be 
the number of right minimal indices of M(λ) equal to k, for k = 0, 1, 2, . . .. Then, the 
following statements hold.

(a) α0 = m + n − r1 = n1 and

αk = (nk+1 − nk) − (nk − nk−1) = (rk − rk−1) − (rk+1 − rk), k = 1, 2, . . . , (4.1)

where r0 and n0 are defined as r0 = n0 = 0.
(b) If d′ is the smallest index k for which

nk+1 − nk = n, or equivalently rk+1 − rk = m, (4.2)

then d′ is the maximum right minimal index of M(λ) or, equivalently, the maxi-
mum column degree of any minimal basis of the rational right null space of M(λ). 
Moreover, for all k larger than d′, the equalities (4.2) still hold.

(c) If d′ is defined as in (b) and ε1, . . . , εn are the right minimal indices of M(λ), then

n∑
j=1

εj =
d′∑

k=1

kαk =
d′∑

k=1

k(nk−1 − 2nk + nk+1) = n · d′ − nd′ = rd′ −m · d′. (4.3)

We can summarize all the relations in Theorem 4.1 as follows:

n0 = 0, rk + nk = k(m + n), 0 ≤ k

and⎡⎢⎢⎢⎢⎢⎢⎣
α0
α1
α2
...

αd′

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1
−2 1
1 −2 1

. . . . . . . . .
1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
n1
n2
...

nd′

nd′+1

⎤⎥⎥⎥⎥⎥⎥⎦,
d′∑

k=1

kαk =
n∑

j=1
εj ,

d′∑
k=0

αk = n, (4.4)

where the numbers αi’s must be nonnegative integers. Observe that the matrix in the first 
equality in (4.4) is invertible, which reveals that the values α0, α1, . . . , αd′ and αk = 0
for k > d′ determine uniquely the sequence n1, n2, . . ., since nk = 2nk−1 − nk−2 for 
k > d′ + 1 from (4.1), and, so, also determine uniquely the sequence r1, r2, . . . through 
the constraint rk + nk = k(m + n).
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The next theorem is [29, Theorem 3.7] expressed in terms of trimmed Sylvester ma-
trices for matrices in F[λ]m×(m+n)

d . It provides a first characterization of minimal bases 
in terms of trimmed Sylvester matrices.

Theorem 4.2. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, d2, . . . , dm), let d̃i ≤ di, i =

1, . . . , m, be the row degrees of M(λ), and let Mhr be its highest-row-degree coefficient 
matrix. Let Tk be the trimmed Sylvester matrices of M(λ) for k = 1, 2, . . ., and let rk
and nk be the rank and the right nullity of Tk, respectively. Let d′ be the smallest index 
k for which nk+1 = nk + n, or equivalently, rk+1 = rk + m. Then M(λ) is a minimal 
basis if and only if the following rank conditions are satisfied

rank(Mhr) = m and rd′ −m · d′ =
m∑
i=1

d̃i . (4.5)

As a consequence of Theorem 4.2, we prove in Corollary 4.3 the main result of this 
section that characterizes the minimal bases in F[λ]m×(m+n)

d with full row rank leading 

row-wise coefficient matrices Md as those polynomial matrices of F[λ]m×(m+n)
d with a full 

row rank trimmed Sylvester matrix. Since the condition rank(Md) = m is clearly generic 
in F[λ]m×(m+n)

d , Corollary 4.3 is key in the next sections and, therefore, we include its 
proof. The proof is similar to that of [29, Corollary 3.9], although there are also some 
differences related to the use of Md instead of Md.

Corollary 4.3. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, d2, . . . , dm), let Md be its lead-

ing row-wise coefficient matrix introduced in Definition 2.6, and let Tk be the trimmed 
Sylvester matrices of M(λ) for k = 1, 2, . . .. Then, M(λ) is a minimal basis with 
rank(Md) = m if and only if there exists an index k such that Tk has full row rank. 
In this case, if d′ is the smallest index k for which Tk has full row rank, then d′ is the 
largest right minimal index of M(λ). Moreover, all trimmed Sylvester matrices Tk for 
k > d′ also have full row rank.

Proof. If M(λ) is a minimal basis with rank(Md) = m, then the row degrees of M(λ) are 
precisely d1, d2, . . . , dm by Lemma 2.7, and Theorem 4.2 implies that rd′ =

∑m
i=1 di+md′, 

which is the number of rows of Td′ according to Definition 3.3. Therefore Td′ has full row 
rank. Then Lemma 3.7-(6) implies that all Tk for k > d′ have also full row rank.

Conversely, if there exists an index k such that Tk has full row rank, then Md = Mhr, 
rank(Mhr) = m, and the row degrees of M(λ) are precisely d1, . . . , dm by Lemma 3.7-(7). 
This also implies that M(λ) has full row normal rank (recall Remark 2.3). Let k0 be the 
smallest index k such that Tk has full row rank and denote by rk the rank of any trimmed 
Sylvester matrix Tk. Then, according to Lemma 3.7-(6), Tk0+1 also has full row rank, 
which implies

rk0+1 − rk0 = m (4.6)
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since the number of rows of Tk0 and Tk0+1 differ by m. However, rk0−1 < (k0 − 1)m +∑m
i=1 di, because Tk0−1 does not have full row rank. Therefore, rk0 − rk0−1 > m and, so, 

rk+1 − rk > m for all k ≤ k0 − 1, since Theorem 4.1-(a) implies rj − rj−1 ≥ rj+1 − rj for 
all j ≥ 1 because αj ≥ 0. Therefore, k0 is the smallest index k such that rk+1 = rk +m, 
that is, k0 = d′ in Theorem 4.2 and rd′ = m d′ +

∑m
i=1 di, since Tk0 = Td′ has full row 

rank. Theorem 4.2 then implies that M(λ) is a minimal basis and Theorem 4.1-(b) that 
k0 = d′ is the largest right minimal index of M(λ). The fact that all Tk have full row 
rank for k > d′ is again a consequence of Lemma 3.7-(6). �

In order to illustrate Corollary 4.3, we revisit Example 3.6.

Example 4.4. Let m = 4, n = 3, d = (0, 1, 1, 2), and let M(λ) ∈ F[λ]4×7
d be the matrix in 

Example 3.6. For the purpose of comparison, we consider also the following polynomial 
matrix N(λ) ∈ F[λ]3×7:

M(λ) =

⎡⎢⎢⎢⎣
1 0

−1 λ 0
0 −1 λ

−1 λ2

⎤⎥⎥⎥⎦ , N(λ) =

⎡⎢⎣ 0 1
λ2 λ 1

λ2 1

⎤⎥⎦ .

Then, clearly M(λ) and N(λ) are minimal bases by Theorem 2.2 and M(λ)N(λ)T = 0. 
Therefore, they are dual minimal bases and the right minimal indices of M(λ) are 0, 2, 2. 
Let us deduce these properties from the results in this section. Let T1, T2, and T3 be the 
first three trimmed Sylvester matrices of M(λ). As commented in Example 3.6, T2 has 
full row rank, therefore Corollary 4.3 implies that M(λ) is a minimal basis. Moreover, 
T1 has more rows than columns (see Example 3.6) and, so, it does not have full row 
rank. In fact, from Example 3.6, it is obvious that rank(T1) = 6. Then, it follows from 
Corollary 4.3 that d′ = 2 is the highest right minimal index of M(λ), as well as that T3
has full row rank. Therefore, taking into account which are the number of rows of the 
trimmed Sylvester matrices described in Definition 3.3, the ranks r1, r2, r3 of T1, T2, T3
are,

r1 = 6, r2 = 12, r3 = 16,

and (4.1) gives (α0, α1, α2) = (1, 0, 2) (which agrees with the row degrees of N(λ)).

5. Full-trimmed-Sylvester-rank polynomial matrices

Section 4 in [29] characterized those matrices in F[λ]m×(m+n)
d , i.e., in the linear space of 

m ×(m +n) polynomial matrices with degree at most d, whose Sylvester matrices all have 
full rank. Following a similar approach, in this section we characterize the polynomial 
matrices in F[λ]m×(m+n)

d , i.e., in the linear space of m ×(m +n) polynomial matrices with 
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row degrees bounded by the entries of d, whose trimmed Sylvester matrices, introduced 
in Definition 3.3, all have full rank. We will show that such matrices share many of 
the properties of the full-Sylvester-rank polynomial matrices studied in [29, Section 4]. 
For instance, that they are always minimal bases, that their right minimal indices are 
“almost homogeneous”, i.e., these indices differ at most by one, although their values 
are (very) different from those of the matrices in [29, Section 4]. We emphasize that this 
“almost homogeneous” property happens for any list d, independently of the elements 
of that list. Since the proofs in this section are very similar to those in [29, Section 4], 
most of them are omitted and only some comments on the differences are provided.

Definition 5.1 introduces the class of polynomial matrices that is studied in the rest 
of the paper.

Definition 5.1. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, d2, . . . , dm), be a polynomial 

matrix with row degrees at most d1, d2, . . . , dm, let Tk for k = 1, 2, . . . be the trimmed 
Sylvester matrices of M(λ), and let rk be their ranks. The polynomial matrix M(λ)
is said to have full-trimmed-Sylvester-rank if all the matrices Tk have full rank, i.e., if 
rk = min{(km +

∑m
i=1 di) , k(m + n)} for k = 1, 2, . . ..

The rank properties described in Lemma 3.7-(4)–(6) imply that it is necessary and 
sufficient to check at most two ranks for determining whether a polynomial matrix has 
full-trimmed-Sylvester-rank or not. This is stated in Lemma 5.2. The proof of this lemma 
is very similar to that of Lemma 4.2 in [29] and, therefore, is omitted. The only difference 
is that the number of rows of the trimmed Sylvester matrices described in Definition 3.3
is different from of the Sylvester matrices appearing in [29, Lemma 4.2], which results 
in a different value for the integer k′ in (5.1). This integer k′ depends on what could be 
called the maximum total degree (i.e., the maximum value of the sum of the row degrees) 
which in [29] was dm for matrices in F[λ]m×(m+n)

d and is now replaced by 
∑m

i=1 di for 
matrices in F[λ]m×(m+n)

d . Note that in Lemma 5.2, as well as in the rest of this paper, 
the ceiling function of a real number x is often used and is denoted by �x�. Recall that 
�x� is the smallest integer that is larger than or equal to x.

Lemma 5.2. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, d2, . . . , dm), let Tk for k = 1, 2, . . .

be the trimmed Sylvester matrices of M(λ), and let

k′ :=
⌈∑m

i=1 di
n

⌉
and nk′ =

m∑
i=1

di + t, where 0 ≤ t < n. (5.1)

Then the following statements hold.

(a) k′ is the smallest index k for which the number of columns of Tk is larger than or 
equal to the number of rows of Tk.

(b) If k′ > 1 and t > 0, then M(λ) has full-trimmed-Sylvester-rank if and only if Tk′−1
has full column rank and Tk′ has full row rank.
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(c) If k′ = 1 or t = 0, then M(λ) has full-trimmed-Sylvester-rank if and only if Tk′ has 
full row rank.

Once full-trimmed-Sylvester-rank polynomial matrices have been characterized, we 
establish some of their properties. First, according to Corollary 4.3, polynomial matrices 
with full-trimmed-Sylvester-rank are minimal bases whose leading row-wise coefficient 
matrices Md have full rank and with row degrees exactly equal to d1, d2, . . . , dm, as a 
consequence of Lemma 2.7. This is stated in Theorem 5.3-(b). In addition, Lemma 5.2
implies that k′ in (5.1) is the smallest index k for which Tk has full row rank for any full-
trimmed-Sylvester-rank matrix. Combining this fact with Corollary 4.3, we obtain that 
k′ is the largest right minimal index of any full-trimmed-Sylvester-rank matrix, or, equiv-
alently, the degree of any of its dual minimal bases. This is stated in Theorem 5.3-(c). 
Finally, by definition, M(λ) has full-trimmed-Sylvester rank if and only if the ranks rk of 
their trimmed Sylvester matrices Tk are given by rk = min{(km +

∑m
i=1 di) , k(m +n)}. 

Then, the right minimal indices of any full-trimmed-Sylvester-rank polynomial matrix 
are fixed by the recurrence in (4.1) and they are given by (5.2), as can be checked through 
some algebraic manipulations (the reader can find in the proof of [29, Theorem 4.3] the 
details of similar manipulations). Conversely, as remarked in the paragraph just below 
Theorem 4.1, the right minimal indices in (5.2) also determine that the ranks of the 
trimmed Sylvester matrices are rk = min{(km +

∑m
i=1 di) , k(m + n)}. This discussion 

leads to the characterization of full-trimmed-Sylvester-rank matrices in terms of their 
right minimal indices given in Theorem 5.3-(a).

Theorem 5.3. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, d2, . . . , dm), let αk be the number 

of right minimal indices of M(λ) equal to k, let k′ and t be defined as in (5.1), and let 
Md be the leading row-wise coefficient matrix of M(λ) introduced in Definition 2.6. Then 
the following statements hold.

(a) M(λ) has full-trimmed-Sylvester-rank if and only if the right minimal indices of 
M(λ) are

αk′−1 = t, αk′ = n− t, and αj = 0 for j /∈ {k′ − 1, k′}. (5.2)

(b) If M(λ) has full-trimmed-Sylvester-rank, then M(λ) is a minimal basis with 
rank(Md) = m, and with row degrees exactly equal to d1, d2, . . . , dm.

(c) If M(λ) has full-trimmed-Sylvester-rank, then the degree of any minimal basis dual 
to M(λ) is k′.

If Theorem 5.3 is compared with [29, Theorem 4.3], then we observe that parts-(a) are 
different in both results since Theorem 4.3-(a) in [29] states in addition that the complete 
eigenstructure of full-Sylvester-rank matrices consists only of right minimal indices. In 
contrast, full-trimmed-Sylvester-rank matrices in F[λ]m×(m+n)

d have also infinite elemen-
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tary divisors, except in the case that all the entries in d are equal. This is proved in the 
next theorem, where the infinite elementary divisors of M(λ) are the elementary divisors 
associated to the zero eigenvalue of revd M(λ) = λd M(1/λ).

Theorem 5.4. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, d2, . . . , dm), let αk be the number 

of right minimal indices of M(λ) equal to k, let k′ and t be defined as in (5.1), and 
let d = max1≤i≤m di. Then, M(λ) has full-trimmed-Sylvester-rank if and only if the 
complete eigenstructure of M(λ) consists of

(1) the right minimal indices described by

αk′−1 = t, αk′ = n− t, and αj = 0 for j /∈ {k′ − 1, k′},

(2) and one infinite elementary divisor of degree d − di for each di < d, i = 1, 2, . . . , m.

Proof. It is clear that if (1) and (2) hold, then M(λ) has full-trimmed-Sylvester-rank as 
a consequence of Theorem 5.3-(a).

Conversely, if M(λ) has full-trimmed-Sylvester-rank, then its right minimal indices are 
the ones described in (1) by Theorem 5.3-(a). Moreover, M(λ) is a minimal basis with row 
degrees exactly equal to d1, d2, . . . , dm by Theorem 5.3-(b). Therefore, M(λ) has no left 
minimal indices, since it has full row (normal) rank, and M(λ) has no finite elementary 
divisors by Theorem 2.2. The only remaining part of the complete eigenstructure of M(λ)
to be determined are the infinite elementary divisors. For this purpose, let Ri(λ) be the 
rows of M(λ), for i = 1, . . . , m, and note that

revd M(λ) =

⎡⎢⎣ λ
d−d1

. . .
λd−dm

⎤⎥⎦
⎡⎢⎣ revd1 R1(λ)

...
revdm

Rm(λ)

⎤⎥⎦ =: D(λ)H(λ).

The matrix H(λ) whose rows are the reversals of the rows of M(λ) is also a minimal 
basis by [8, Theorem 3.2] and, therefore, has no finite elementary divisors. This means 
that it can be extended to a unimodular matrix by adding rows [23, Chapter 6] and, 
so, [D(λ) 0m×n] is, modulo a permutation of its diagonal entries, the Smith form of 
revd M(λ) and those λd−di such that d − di > 0 are the infinite elementary divisors of 
M(λ). �
6. Genericity of full-trimmed-Sylvester-rank matrices in F[λ]m×(m+n)

d

In this section we extend the genericity results of [29, Section 5] from the linear space 
F[λ]m×(m+n)

d to the linear space F[λ]m×(m+n)
d . The results are stated both in terms of 

algebraic sets and of open and dense sets with respect to a standard Euclidean metric in 
F[λ]m×(m+n)

d . This second view was not developed in [29], and is included here because 
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it completes the genericity results in a natural way and because it will be applied in 
the future for describing the sets of polynomial matrices with bounded rank and degree 
from a different perspective than the one presented in [15]. The first part of this section 
introduces some general concepts and basic results that are needed to state the main 
results.

As explained in Section 2, F[λ]m×(m+n)
d , where d = (d1, d2, . . . , dm), is a linear space of 

dimension (m +n) 
∑m

i=1(di +1) over the field F, which we restrict here and in the rest of 
this paper to R or C. We identify F[λ]m×(m+n)

d with F(m+n)
∑m

i=1(di+1). Such identification 

can be made, for instance, by mapping each polynomial matrix M(λ) ∈ F[λ]m×(m+n)
d

with rows Ri(λ) = Ri,0 + Ri,1λ + · · · + Ri,di
λdi , i = 1, 2, . . .m, into a long row vec-

tor V (M) := [R1,0 R1,1 · · · R1,d1 · · · Rm,0 Rm,1 · · · Rm,dm
] ∈ F

(m+n)
∑m

i=1(di+1). 
The mapping M(λ) 	→ V (M) is clearly a linear bijection between F[λ]m×(m+n)

d

and F(m+n)
∑m

i=1(di+1). In addition, this linear mapping V is a bijective isometry if 
F

(m+n)
∑m

i=1(di+1) is endowed with the standard Euclidean distance and F[λ]m×(m+n)
d

with the following distance: for any M(λ), M̃(λ) ∈ F[λ]m×(m+n)
d with rows given, respec-

tively, by Ri(λ) = Ri,0 +Ri,1λ + · · ·+Ri,di
λdi and R̃i(λ) = R̃i,0 + R̃i,1λ + · · ·+ R̃i,di

λdi

for i = 1, 2, . . . , m, the distance between M(λ) and M̃(λ) is defined as

ρ(M, M̃) :=

√√√√ m∑
i=1

di∑
j=0

‖Ri,j − R̃i,j‖2
2 , (6.1)

where ‖ · ‖2 is the standard Euclidean vector norm. It is obvious that ρ(M, M̃) is 
equal to the standard Euclidean distance between the vectors V (M) and V (M̃) in 
F

(m+n)
∑m

i=1(di+1), i.e., ρ(M, M̃) = ‖V (M) −V (M̃)‖2. The distance (6.1) can be expressed 
more compactly in terms of the matrix coefficients of M(λ) and M̃(λ), as well as in terms 
of their first Sylvester and first trimmed Sylvester matrices, because if d = max1≤i≤m di, 
M(λ) = M0 + M1λ + · · · + Mdλ

d, and M̃(λ) = M̃0 + M̃1λ + · · · + M̃dλ
d, then

ρ(M, M̃) =

√√√√ d∑
i=0

‖Mi − M̃i‖2
F = ‖S1(M) − S1(M̃)‖F = ‖T1(M) − T1(M̃)‖F , (6.2)

where ‖ · ‖F is the matrix Frobenius norm [27] and the last equality holds because 
trimmed Sylvester matrices are obtained from Sylvester matrices by removing rows that 
are zero for every polynomial matrix in F[λ]m×(m+n)

d . The distance (6.1) allows us to 

consider F[λ]m×(m+n)
d as a metric space, and, so, to define in it open and closed sets, 

as well as closures and any other topological concept. Moreover, the linear bijective 
isometry M(λ) 	→ V (M) allows us to see that such concepts are fully equivalent to the 
corresponding ones in the standard Euclidean metric in F[λ]m×(m+n)

d .
Sometimes in this section we need to consider C[λ]m×(m+n)

d as a linear space over 
R and to identify C[λ]m×(m+n)

d with R2(m+n)
∑m

i=1(di+1) through the linear bijection 
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M(λ) 	→ W (M) := [Re(V (M)) Im(V (M))], where V (M) is the row vector defined 
above for any M(λ) ∈ C[λ]m×(m+n)

d and Re(V (M)) and Im(V (M)) are its entry-wise real 
and imaginary vector parts. In addition, note that for any M(λ), M̃(λ) ∈ C[λ]m×(m+n)

d , 
ρ(M, M̃) = ‖V (M) − V (M̃)‖2 = ‖W (M) −W (M̃)‖2. Therefore, W is a linear bijective 
isometry between C[λ]m×(m+n)

d endowed with the distance (6.1) and R2(m+n)
∑m

i=1(di+1)

endowed with the standard Euclidean distance, which allows us to identify open, closed 
sets, and any other topological concepts, in these two metric spaces.

Next, we recall that an algebraic set in Fp (here F = R or F = C) is the set of common 
zeros of a finite number of multivariable polynomials with p variables and coefficients in F, 
and that an algebraic set is proper if it is not the whole set Fp. With these concepts at 
hand, the standard definition of genericity of Algebraic Geometry is as follows: a generic 
set of Fp is a subset of Fp whose complement is contained in a proper algebraic set. This 
definition extends to the corresponding one of generic set of R[λ]m×(m+n)

d through the 

bijection M(λ) 	→ V (M), and to the corresponding one of generic set of C[λ]m×(m+n)
d

through the bijection M(λ) 	→ W (M). Note that one can also define generic sets of 
C[λ]m×(m+n)

d through the bijection M(λ) 	→ V (M), but this is not the definition that we 
need in this paper, although it may be of interest in other contexts, since for algebraic 
genericity purposes, we need to consider C[λ]m×(m+n)

d as a linear space over R.
Generic sets in Fp satisfy the important property stated in Theorem 6.1, which is 

well-known but that we have not found explicitly stated anywhere. Therefore, we include 
a proof that relies only on the following two very basic results of Euclidean Topology 
in Fp: a closed set is a set whose complement is an open set, and vice versa, and a set 
is closed if and only if it contains all of its limit points. It is interesting to observe that 
another definition of “generic set” in Fp, which is also often used, is that a set is generic if 
it contains a subset that is open and dense in Fp with respect to the standard Euclidean 
topology. Therefore, Theorem 6.1 proves that the generic sets in the sense of Algebraic 
Geometry are also generic in this topological sense. However, the reverse implication is 
not true.

Theorem 6.1. Let F = R or F = C and let A be a generic set of Fp. Then, there exists a 
subset B ⊆ A such that B is open and dense in Fp with respect to the standard Euclidean 
topology. Moreover, if the complement of A in Fp is a proper algebraic set, then A itself 
is open and dense in Fp.

Proof. If A = F
p, then take B = A and the proof is finished. So, we assume throughout 

the rest of the proof that A �= F
p. Let Ac (�= ∅) be the complement of A in Fp. Then, by 

definition of genericity, there exists a proper algebraic set C of Fp such that Ac ⊆ C �= ∅, 
or, equivalently, Cc ⊆ A �= F

p. The goal is to prove that Cc is open and dense in Fp. 
Therefore, Cc can be taken as the set B mentioned in the statement. By definition, there 
exist some multivariable polynomials p1(x1, . . . , xp), . . . , pq(x1, . . . , xp) such that

C = {x ∈ F
p : pi(x) = 0 for i = 1, . . . , q},
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where at least one of the polynomials pi is not identically zero because C is proper. 
Next, we prove that C is closed, i.e., that Cc is open. For this purpose, let {y(k)}∞k=0 ⊆ C
be a sequence such that limk→∞ y(k) = y. Then, since multivariable polynomials are 
continuous functions and pi(y(k)) = 0 for all k and for i = 1, . . . , q,

0 = lim
k→∞

pi(y(k)) = pi( lim
k→∞

y(k)) = pi(y),

which proves that y ∈ C and, so, that C is closed. Next, we prove that Cc is dense in 
F
p. Let z /∈ Cc. Then, z ∈ C. Let pj(x) be one of the polynomials defining C that is not 

identically zero and let x� be a variable appearing in such polynomial. Then, pj(z) = 0. 
Define the univariate polynomial q(s) = pj(z1, . . . , z�−1, s, z�+1, . . . , zp), where s ∈ F, 
which satisfies q(z�) = 0. Since the number of roots of q(s) is finite we can construct a 
sequence {s(k)}∞k=0 ⊆ F such that q(s(k)) �= 0 and limk→∞ s(k) = z�. Finally, we define the 
sequence {z(k) = (z1, . . . , z�−1, s(k), z�+1, . . . , zp)}∞k=0 ⊆ F

p, which satisfies pj(z(k)) �= 0
and limk→∞ z(k) = z. Thus, {z(k)}∞k=0 ⊂ Cc and z is a limit point of Cc. The “moreover 
part” of the theorem follows by taking in that case Ac = C. �

The basic concepts on “genericity” that have been refreshed above allow us to in-
troduce some nomenclature. In the rest of the paper, expressions as “generically the 
polynomial matrices in F[λ]m×(m+n)

d have the property P” have the precise meaning of 
“the polynomial matrices of F[λ]m×(m+n)

d that satisfy property P are a generic set of 
F[λ]m×(m+n)

d ”.
We can now state the main result of this section.

Theorem 6.2. Let TSyl[λ]m×(m+n)
d be the set of polynomial matrices that have full-

trimmed-Sylvester-rank in F[λ]m×(m+n)
d . Then, the complement of TSyl[λ]m×(m+n)

d is 
a proper algebraic set of F[λ]m×(m+n)

d and, so, TSyl[λ]m×(m+n)
d is a generic set of 

F[λ]m×(m+n)
d . Moreover, TSyl[λ]m×(m+n)

d is an open and dense subset of F[λ]m×(m+n)
d

with respect to the Euclidean metric defined in (6.1).

Proof. The proof of that the complement of TSyl[λ]m×(m+n)
d is a proper algebraic set of 

F[λ]m×(m+n)
d is very similar to that of Theorem 5.1 in [29] and only requires to replace 

the Sylvester matrices used in [29] by the trimmed Sylvester matrices. More precisely, 
assume that k′ and t in (5.1) satisfy k′ > 1 and t > 0, since the proof in other cases is 
similar. Then, the complement of TSyl[λ]m×(m+n)

d is the set of matrices of F[λ]m×(m+n)
d

that satisfy det(T ∗
k′−1Tk′−1) · det(Tk′T ∗

k′) = 0, according to Lemma 5.2-(b). Next, the 
same arguments presented in [29, Theorem 5.1] prove that this set is a proper algebraic 
set of F[λ]m×(m+n)

d , where the proof of the “properness” relies on Theorem 2.5. Once 
this is established, Theorem 6.1 can be combined with the linear bijective isometries 
M(λ) 	→ V (M), when F = R, or M(λ) 	→ W (M), when F = C, defined in the first part 
of this section to prove immediately that TSyl[λ]m×(m+n)

d is an open and dense subset 
of F[λ]m×(m+n)

d with respect to the metric in (6.1). �
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An immediate consequence of Theorem 6.2 is that generically the polynomial matrices 
in F[λ]m×(m+n)

d have all the properties satisfied by full-trimmed-Sylvester-rank matrices, 
in particular those established in Theorems 5.3 and 5.4. Moreover, the fact, proved in 
Theorem 6.2, that TSyl[λ]m×(m+n)

d is open and dense and the definition of these concepts 
allow us to state the following corollary, whose simple proof is omitted.

Corollary 6.3. Let d = (d1, d2, . . . , dm), k′ and t be defined as in (5.1), ρ be the dis-
tance in F[λ]m×(m+n)

d defined in (6.1), and TSyl[λ]m×(m+n)
d ⊂ F[λ]m×(m+n)

d be the set of 
full-trimmed-Sylvester-rank polynomial matrices. Then, the following statements hold.

(a) For every M(λ) ∈ F[λ]m×(m+n)
d and every ε > 0, there exists a polynomial matrix 

M̃(λ) ∈ TSyl[λ]m×(m+n)
d such that ρ(M, M̃) < ε, which, therefore, satisfies

(a1) M̃(λ) is a minimal basis with full row rank leading row-wise coefficient matrix, 
and with row degrees exactly equal to d1, d2, . . . , dm,

(a2) M̃(λ) has n right minimal indices, t of them equal to k′ − 1 and n − t equal to 
k′.

(b) For every M̃(λ) ∈ TSyl[λ]m×(m+n)
d , there exists a number ε > 0 such that every 

polynomial matrix M(λ) ∈ F[λ]m×(m+n)
d satisfying ρ(M, M̃) < ε has full-trimmed-

Sylvester-rank.

Among the generic properties of the polynomial matrices in F[λ]m×(m+n)
d perhaps the 

most remarkable one is the “almost homogeneity” of their right minimal indices (recall 
that this means that they differ at most by one) displayed in Corollary 6.3-(a2). The sur-
prising fact is that this generic property holds for any values of the generic row degrees 
d1, d2, . . . , dm of the matrices in F[λ]m×(m+n)

d , which can be arbitrarily “inhomogeneous”. 
We emphasize that the generic values of these “almost homogeneous right minimal in-
dices” are fully determined by the constraint that their sum is equal to 

∑m
i=1 di. The 

genericity of this property was proved in [29, Section 5] only in the space of m × (m +n)
polynomial matrices with degree at most d, which generically have all their row degrees 
equal to d.

Finally, note that, taking into account (6.2), the distance ρ(M, M̃) in F[λ]m×(m+n)
d is 

equivalent to the distance

ρ2(M, M̃) := ‖T1(M) − T1(M̃)‖2, (6.3)

where ‖ · ‖2 is the standard matrix spectral norm or maximum singular value
of the considered matrix. This equivalence follows from ‖T1(M) − T1(M̃)‖F /√

min{m +
∑m

i=1 di,m + n} ≤ ‖T1(M) − T1(M̃)‖2 ≤ ‖T1(M) − T1(M̃)‖F [27]. The 
distance ‖T1(M) − T1(M̃)‖2 will be also used in some of the results of the rest of the 
paper since it leads to sharper bounds.
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7. Robustness of full-trimmed-Sylvester-rank matrices in F[λ]m×(m+n)
d

Corollary 6.3-(b) establishes that every full-trimmed-Sylvester-rank matrix M(λ) is 
robust under perturbations in the sense that all the polynomial matrices of F[λ]m×(m+n)

d

in a neighborhood of M(λ) are also full-trimmed-Sylvester-rank matrices. In this section, 
we estimate the size of the corresponding neighborhood of robustness. In addition, we 
also characterize when any minimal basis M(λ) ∈ F[λ]m×(m+n)

d , which may have not 
full-trimmed-Sylvester-rank, is robust under perturbations, again in the sense that all 
the polynomial matrices in a neighborhood of M(λ) are also minimal bases. The proofs 
of the results in this section are omitted, since they are essentially equal to the proofs in 
[29, Section 6], with the main differences coming from replacing Sylvester matrices and 
their properties by trimmed Sylvester matrices and their properties.

Recall that for any polynomial matrix P (λ) ∈ F[λ]m×(m+n)
d , its kth trimmed Sylvester 

matrix is denoted by Tk(P ). In this section, we use the distance ‖T1(P ) − T1(P̃ )‖2 =
‖T1(P − P̃ )‖2 between any two polynomial matrices P (λ), P̃ (λ) ∈ F[λ]m×(m+n)

d , which 
was already introduced in (6.3). The singular values of any constant matrix A ∈ F

p×q

are denoted by σ1(A) ≥ · · · ≥ σmin{p,q}(A), here and in the rest of the paper. In order 
to avoid very long subscripts in the singular values appearing below, the number of rows 
and columns of Tk(P ) are denoted respectively by

pk := km +
m∑
i=1

di and qk := k(m + n) .

We first prove the next simple result that follows from [29, Lemma 6.2].

Lemma 7.1. Let P (λ) ∈ F[λ]m×(m+n)
d . Then the following inequalities hold for the 

trimmed Sylvester matrices of P (λ):

‖T1(P )‖2 ≤ ‖Tk(P )‖2 ≤
√
k · ‖T1(P )‖2.

Proof. Lemma 6.2 in [29] proves that ‖S1(P )‖2 ≤ ‖Sk(P )‖2 ≤
√
k · ‖S1(P )‖2 for the 

Sylvester matrices of P (λ). Then, note that ‖Tk(P )‖2 = ‖Sk(P )‖2 for any k, because 
Tk(P ) is obtained from Sk(P ) by removing zero rows, which does not change the largest 
singular value. �

The next theorem proves that a minimal basis with row degrees at most di, i =
1, . . . , m, is robust inside F[λ]m×(m+n)

d if and only if its row degrees are all maximal or, 
equivalently, according to Lemma 2.7, if and only if its leading row-wise coefficient matrix 
introduced in Definition 2.6 has full rank. Theorem 7.2 is the counterpart in F[λ]m×(m+n)

d

of [29, Theorem 6.3] in F[λ]m×(m+n)
d . The omitted proof is based on Corollary 4.3 and 

Lemma 7.1.
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Theorem 7.2. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, . . . , dm), be a minimal basis and 

let Md be its leading row-wise coefficient matrix introduced in Definition 2.6. Then the 
following statements hold:

(a) If rank(Md) < m, then for all ε > 0 there exists a polynomial matrix M̃(λ) ∈
F[λ]m×(m+n)

d that is not a minimal basis and satisfies ‖T1(M) − T1(M̃)‖2 < ε. That 
is, there exist polynomial matrices arbitrarily close to M(λ) that are not minimal 
bases.

(b) If rank(Md) = m, then there exists an index k such that Tk(M) has full row rank 
and every polynomial matrix M̃(λ) ∈ F[λ]m×(m+n)

d that satisfies

‖T1(M) − T1(M̃)‖2 <
σpk

(Tk(M))√
k

(7.1)

is a minimal basis with rank(M̃d) = m. That is, all the polynomial matrices suffi-
ciently close to M(λ) are minimal bases with full rank leading row-wise coefficient 
matrix.

We now give bounds on the size of the robustness neighborhoods for the full-trimmed-
Sylvester-rank property. Theorem 7.3 is the counterpart of [29, Theorem 6.6] and its 
omitted proof is based on Lemmas 5.2 and 7.1.

Theorem 7.3. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, . . . , dm), be a polynomial matrix 

with full-trimmed-Sylvester-rank and let k′ and t be defined as in (5.1). Then the following 
statements hold:

(a) If k′ > 1 and t > 0, then every M̃(λ) ∈ F[λ]m×(m+n)
d such that

‖T1(M) − T1(M̃)‖2 < min
{
σqk′−1(Tk′−1(M))

√
k′ − 1

,
σpk′ (Tk′(M))√

k′

}
has full-trimmed-Sylvester-rank.

(b) If k′ = 1 or t = 0, then every M̃(λ) ∈ F[λ]m×(m+n)
d such that

‖T1(M) − T1(M̃)‖2 <
σpk′ (Tk′(M))√

k′

has full-trimmed-Sylvester-rank.

In the special case that 
∑m

i=1 di ≤ n, the first trimmed Sylvester matrix T1(M) is 
“flat” and Theorem 7.3 can be slightly improved by showing that the estimation of the 
size of the robustness neighborhood of the full-trimmed-Sylvester-rank property is sharp, 
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i.e., it cannot be extended. This is presented in Corollary 7.4, which is the counterpart 
in F[λ]m×(m+n)

d of [29, Corollary 6.8] and has a similar proof that is omitted.

Corollary 7.4. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, . . . , dm). If 

∑m
i=1 di ≤ n, then 

the following statements hold:

(a) M(λ) has full-trimmed-Sylvester-rank if and only if T1(M) has full row rank.
(b) Every M̃(λ) ∈ F[λ]m×(m+n)

d such that ‖T1(M) − T1(M̃)‖2 < σp1(T1(M)) has full-
trimmed-Sylvester-rank.

(c) There exists a polynomial matrix M̃(λ) ∈ F[λ]m×(m+n)
d that does not have full-

trimmed-Sylvester-rank and satisfies ‖T1(M) − T1(M̃)‖2 = σp1(T1(M)) .

8. Perturbations of minimal bases dual to full-trimmed-Sylvester-rank matrices

In this section we show that full-trimmed-Sylvester-rank polynomial matrices M(λ)
share an important property with the full-Sylvester-rank polynomial matrices described 
in [29]. As a consequence of Theorems 7.3 and 5.3, the row degrees of the minimal bases 
dual to full-trimmed-Sylvester-rank matrices remain constant (up to permutations) in 
a robustness neighborhood of M(λ), and their values are given in (5.2). This allows 
us to show that one can always choose a basis for the perturbed dual space that varies 
smoothly with the perturbations of M(λ), as long as the perturbations M(λ) +ΔM(λ) are 
restricted to stay in F[λ]m×(m+n)

d and one chooses correctly the degrees of freedom of the 
perturbed dual basis. We refer to [29, Section 7] for a more elaborate discussion of these 
ideas in the context of F[λ]m×(m+n)

d and we limit ourselves here to state Theorem 8.1. The 
proof of Theorem 8.1 is similar to that of [29, Theorem 7.1] except by some differences 
that we emphasize in the proof sketched below.

Theorem 8.1. Let M(λ) ∈ F[λ]m×(m+n)
d , where d = (d1, . . . , dm), be a polynomial matrix 

with full-trimmed-Sylvester-rank, let k′ and t be defined as in (5.1), and let N(λ) ∈
F[λ]n×(m+n)

k′ be a minimal basis dual to M(λ) with highest-row-degree coefficient matrix 
Nhr ∈ F

n×(m+n). Moreover, let us define the quantities θ1(M) and θ2(M) as follows:

(a) If k′ > 1 and t > 0

θ1(M) := min
{
σqk′−1(Tk′−1(M))

√
k′ − 1

,
σpk′ (Tk′(M))√

k′
,
σpk′+1(Tk′+1(M))

√
k′ + 1

}
,

θ2(M):= min
{
σpk′ (Tk′(M))√

k′
,
σpk′+1(Tk′+1(M))

√
k′ + 1

}
;

(b) If k′ = 1 and t > 0

θ1(M) = θ2(M) := min
{
σp1(T1(M)) , σp2(T2(M))√

}
;

2
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(c) If t = 0

θ1(M) := min
{
σpk′ (Tk′(M))√

k′
,
σpk′+1(Tk′+1(M))

√
k′ + 1

}
,

θ2(M) :=
σpk′+1(Tk′+1(M))

√
k′ + 1

.

Then, every M̃(λ) ∈ F[λ]m×(m+n)
d such that

‖T1(M) − T1(M̃)‖2 <
1
2 · θ1(M) · σn(Nhr)

‖S1(N)‖F
(8.1)

has full-trimmed-Sylvester-rank and has a dual minimal basis Ñ(λ) ∈ F[λ]n×(m+n)
k′ that 

satisfies

‖S1(N) − S1(Ñ)‖F
‖S1(N)‖F

≤ 2
θ2(M) · ‖T1(M) − T1(M̃)‖2 . (8.2)

In addition, if t = 0, then all the row degrees of Ñ(λ) and N(λ) are equal to k′.

Proof. We only sketch the proof of part (a), i.e., when k′ > 1 and t > 0. The reader is in-
vited to follow the proof of [29, Theorem 7.1] for those details that are omitted here. Since 
Nhr is a submatrix of S1(N), we get that σn(Nhr)/‖S1(N)‖F ≤ σn(Nhr)/‖Nhr‖2 ≤ 1 .
This inequality and (8.1) imply that ‖T1(M) −T1(M̃)‖2 is bounded as in Theorem 7.3-(a). 
Therefore, M̃(λ) has full-trimmed-Sylvester-rank and every of its dual minimal bases 
Ñ(λ) has t row degrees equal to k′ − 1, and n − t row degrees equal to k′, as it also hap-
pens for the minimal basis N(λ) dual to M(λ) (recall Theorem 5.3). As a consequence 
we can write, modulo row permutations,

N(λ) =
[
X(λ)
Y (λ)

]
and Ñ(λ) =

[
X(λ)
Y (λ)

]
+
[

ΔX(λ)
ΔY (λ)

]
, (8.3)

where X(λ), X(λ) +ΔX(λ) ∈ F[λ]t×(m+n)
k′−1 have both all their row degrees equal to k′−1, 

and Y (λ), Y (λ) + ΔY (λ) ∈ F[λ](n−t)×(m+n)
k′ have both all their row degrees equal to k′. 

In the rest of the proof, among the infinitely many minimal bases Ñ(λ) dual to M̃(λ), 
we will determine one that satisfies (8.2) by determining the corresponding ΔX(λ) and 
ΔY (λ). To this purpose, note that the equation M̃(λ) Ñ(λ)T = 0 defining dual minimal 
bases is equivalent, with the notation in (8.3), to the pair of equations

M̃(λ) (X(λ)T + ΔX(λ)T ) = 0 and M̃(λ) (Y (λ)T + ΔY (λ)T ) = 0 . (8.4)
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By introducing the notation M̃(λ) = M(λ) + ΔM(λ) and by using M(λ)N(λ)T =
[M(λ)X(λ)T M(λ)Y (λ)T ] = 0, the equations in (8.4) can be written in the following 
equivalent form

M̃(λ) ΔX(λ)T = −ΔM(λ)X(λ)T and M̃(λ) ΔY (λ)T = −ΔM(λ)Y (λ)T ,

which in terms of the corresponding Sylvester matrices are equivalent to the equations

Sk′(M̃)S1(ΔXT ) = −Sk′(ΔM)S1(XT ) and (8.5)

Sk′+1(M̃)S1(ΔY T ) = −Sk′+1(ΔM)S1(Y T ) , (8.6)

where the Sylvester matrices are constructed taking into account that M̃(λ), ΔM(λ) ∈
F[λ]m×(m+n)

d , where d = max1≤i≤m di. The key point is that Sk′(M̃) and Sk′(ΔM)
(respectively, Sk′+1(M̃) and Sk′+1(ΔM)) have both some zero rows in the same positions 
that one can remove and obtain the trimmed Sylvester matrices Tk′(M̃) and Tk′(ΔM)
(respectively, Tk′+1(M̃) and Tk′+1(ΔM)). Therefore, (8.5)–(8.6) are equivalent to the 
following equations for the unknown polynomial matrices ΔX(λ) and ΔY (λ)

Tk′(M̃)S1(ΔXT ) = −Tk′(ΔM)S1(XT ) and (8.7)

Tk′+1(M̃)S1(ΔY T ) = −Tk′+1(ΔM)S1(Y T ) , (8.8)

which are consistent because Tk′(M̃) and Tk′+1(M̃) have both full row rank. The mini-
mum Frobenius norm solutions of these equations are

S1(ΔXT ) = −Tk′(M̃)† Tk′(ΔM)S1(XT ) and (8.9)

S1(ΔY T ) = −Tk′+1(M̃)† Tk′+1(ΔM)S1(Y T ) , (8.10)

where (·)† stands for the Moore–Penrose pseudoinverse of a matrix. From (8.9), 
Lemma 7.1, Weyl’s perturbation theorem for singular values, and (8.1), we get

‖S1(ΔXT )‖F ≤ ‖Tk′(ΔM)‖2

σpk′ (Tk′(M̃))
‖S1(XT )‖F ≤ 2 ‖T1(ΔM)‖2

1√
k′ σpk′ (Tk′(M))

‖S1(XT )‖F . (8.11)

Analogously, we get from (8.10)

‖S1(ΔY T )‖F ≤ 2 ‖T1(ΔM)‖2
1√
k′+1 σpk′+1(Tk′+1(M))

‖S1(Y T )‖F . (8.12)

The equality

‖S1(NT ) − S1(ÑT )‖F = ‖S1([ΔX(λ)T ΔY (λ)T ])‖F =
√

‖S1(ΔXT )‖2
F + ‖S1(ΔY T )‖2

F
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can be combined with (8.11) and (8.12) for obtaining

‖S1(NT ) − S1(ÑT )‖F ≤ 2 ‖T1(ΔM)‖2

θ2(M)

√
‖S1(XT )‖2

F + ‖S1(Y T )‖2
F

= 2 ‖T1(ΔM)‖2

θ2(M) ‖S1(NT )‖F ,

which is (8.2). It still remains to prove that Ñ(λ) is a minimal basis, since we have only 
proved so far that M̃(λ) Ñ(λ)T = 0. The proof of this last step is exactly the same as 
the one in [29, Theorem 7.1]. �
Remark 8.2. Note that, according to Theorem 5.3-(a), the minimal bases N(λ) and Ñ(λ)
dual to, respectively, M(λ) and M̃(λ) appearing in Theorem 8.1 have both t row degrees 
equal to k′−1 and n −t equal to k′. Therefore, if t �= 0, we can order adequately the rows of 
N(λ) and Ñ(λ) and consider, without loss of generality, that N(λ), Ñ(λ) ∈ F[λ]n×(m+n)

k′ , 
where

k′ = (k′ − 1, . . . , k′ − 1︸ ︷︷ ︸
t

, k′, . . . k′︸ ︷︷ ︸
n−t

) .

Then, we can use the trimmed Sylvester matrices of N(λ), Ñ(λ) ∈ F[λ]n×(m+n)
k′ to express 

the results in Theorem 8.1, since the corresponding spectral and Frobenius norms are 
equal to those of the Sylvester matrices. More precisely, (8.1) and (8.2) can be written 
as

‖T1(M) − T1(M̃)‖2 <
1
2 · θ1(M) · σn(Nhr)

‖T1(N)‖F

and

‖T1(N) − T1(Ñ)‖F
‖T1(N)‖F

≤ 2
θ2(M) · ‖T1(M) − T1(M̃)‖2 .

However, we emphasize that, in general, T1(M) and T1(M̃) have different structures than 
T1(N) and T1(Ñ), which might make the previous equations somewhat confusing.

9. On the classical rank conditions for robust minimal bases

This section considers those minimal bases in C[λ]m×(m+n)
d that are robust under 

perturbations, which are those with full row rank leading row-wise coefficient matrix, 
according to Theorem 7.2. For these minimal bases, we prove that the infinitely many 
constant matrices whose ranks are involved in the classical Theorem 2.2 have mini-
mum singular values bounded below by a common number determined by one of the 
trimmed Sylvester matrices of the considered minimal basis. This result generalizes to 
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C[λ]m×(m+n)
d the result proved in [29, Theorem 8.1] for polynomial matrices of degree 

at most d. In contrast with the results included in Sections 5, 7, and 8, the proof of 
Theorem 9.1 is more involved than the one of [29, Theorem 8.1], and, therefore, is fully 
included below. It is important to recall in the statement of Theorem 9.1 that, in order to 
avoid trivialities, we are assuming since Section 2 that max1≤i≤m di > 0, which implies 
that d′ > 0 as a consequence of Theorem 2.5.

Theorem 9.1. Let M(λ) ∈ C[λ]m×(m+n)
d be a minimal basis with rank(Md) = m, where 

Md is the leading row-wise coefficient matrix of M(λ) introduced in Definition 2.6 and 
d = (d1, . . . , dm). Let d′ be the largest right minimal index of M(λ) and Td′ be its d′th 
trimmed Sylvester matrix. Then

σpd′ (Td′) ≤ inf
λ0∈C

σm(M(λ0)) and σpd′ (Td′) ≤ σm(Md) .

Proof. From Corollary 4.3, we obtain that Td′ has full row rank. Therefore, its smallest 
singular value is larger than zero, i.e., σpd′ (Td′) > 0. We use in this proof the well known 
fact [21,27] that any matrix A ∈ C

p×q with p ≤ q satisfies

σp(A) = min
0	=x∈Cp

‖A∗x‖2

‖x‖2
= min

0	=x∈Cp

‖x∗A‖2

‖x‖2
. (9.1)

This result applied to A = Td′ , together with Lemma 3.4, implies that σpd′ (Td′) ≤
σm(Md), since the block row [0 Md] is a submatrix of Td′ and one can choose in (9.1)
vectors x with entries not corresponding to this submatrix equal to zero. To prove the 
first inequality in Theorem 9.1, we assume that M(λ) is described through its rows as in 
(2.2). Then, note that the ith row Ri(λ) ∈ F[λ]1×(m+n) of M(λ) satisfies the following 
equality between polynomial matrices:

Πdi+d′(λ)Td′(Ri) = Ri(λ) [Πd′(λ) ⊗ Im+n] , (9.2)

where

Πk(λ) :=
[

1 λ λ2 . . . λk−1
]

and

Td′(Ri) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ri,0
Ri,1 Ri,0

... Ri,1
. . .

Ri,di

...
. . . Ri,0

0 Ri,di
Ri,1

...
. . . . . .

...
0 . . . 0 Ri,di

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

∈ C
(di+d′)×d′(m+n) .
d′ blocks
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Theorem 2.2 implies that σ0 := σm(M(λ0)) > 0 for any λ0 ∈ C. Let u0 ∈ C
m and 

v0 ∈ C
(m+n) be left and right singular vectors of M(λ0) corresponding to σ0, that is 

‖u0‖2 = ‖v0‖2 = 1 and u∗
0 M(λ0) = σ0 v

∗
0 . Then it follows from (9.2) that

u∗
0

⎡⎢⎣Πd1+d′(λ0)
. . .

Πdm+d′(λ0)

⎤⎥⎦
⎡⎢⎣ Td′(R1)

...
Td′(Rm)

⎤⎥⎦ = σ0(
[

1 λ0 λ2
0 . . . λd′−1

0

]
⊗ v∗0).

(9.3)

Notice that the block arrangement with the matrices Td′(Ri) is nothing but a row per-
mutation of Td′(M), and that the vector multiplying it on the left has 2-norm larger 
than or equal to ‖Πds+d′(λ0)‖2 =

√∑ds+d′

i=1 |λ0|2(i−1), where ds = min1≤i≤m di. From 
(9.3) and (9.1) applied to the row permutation of Td′(M), we get

σpd′ (Td′) ≤ σ0

√√√√ ∑d′

i=1 |λ0|2(i−1)∑ds+d′

i=1 |λ0|2(i−1)
≤ σ0 = σm(M(λ0)).

Since this holds for all λ0 ∈ C, the result is proved. �
10. Conclusions

In this paper we have extended the results previously obtained in [29] for the set of 
polynomial matrices with degree at most d, i.e., the set F[λ]m×(m+n)

d , to the set of poly-
nomial matrices whose row degrees are at most d1, d2, . . . , dm, i.e., the set F[λ]m×(m+n)

d , 
where d = (d1, d2, . . . , dm). In [29] we proved, among many other results, that generically 
the polynomial matrices in F[λ]m×(m+n)

d are minimal bases with all its row degrees equal 
to d, i.e., with homogeneous row degrees, and with “almost homogeneous” right minimal 
indices, i.e., right minimal indices differing at most by one, determined by the constraint 
that their sum is equal to md. Analogously, we have shown in this paper that generically 
the polynomial matrices in F[λ]m×(m+n)

d are also minimal bases, in this case with their 
row degrees equal to d1, d2, . . . , dm, and again with “almost homogeneous” right minimal 
indices, which are determined now by the constraint that their sum is equal to 

∑m
i=1 di. 

Thus, we have proved that the “almost homogeneity” of the right minimal indices is a 
general phenomenon that is independent of the values of the row degrees d1, d2, . . . , dm, 
which can be arbitrarily different, or, in other words arbitrarily inhomogeneous. Many 
other properties have been also extended from F[λ]m×(m+n)

d to F[λ]m×(m+n)
d just by in-

troducing minor changes to formulas, theorems, and proofs coming mainly from replacing 
the notion of Sylvester matrices by the new notion of trimmed Sylvester matrices. This 
allowed us to broaden the class of full-Sylvester-rank matrices to that of full-trimmed-
Sylvester-rank matrices as a class of polynomial matrices that are robust minimal bases 
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and have a dual minimal basis with similar robustness properties. One important prop-
erty that is not preserved for this extended set is that its reversed polynomial matrix is 
not necessarily a minimal basis anymore. This last property is important when dealing 
with so-called strong linearizations or �-ifications of polynomial matrices, but we expect 
that the extended set will play an important role for problems where strongness is not 
an issue. Moreover, we emphasize that we are currently using some of the results in 
this paper for describing the sets of polynomial matrices with bounded rank and degree 
from a different perspective that the one recently introduced in [15], which will be more 
convenient in certain applications.
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