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Unitary transformations, performed on the system matrix of a linear system, 
provide numerically stable computations of its zeros. 
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Abstract--Several algorithms have been proposed in the 
literature for the computation of the zeros of a linear system 
described by a state-space model {A, B, C, D}. In this paper 
we discuss the numerical properties of a new algorithm and 
compare it with some earlier techniques of computing zeros. 
The method is a modified version of Silverman's structure 
algorithm and is shown to be backward stable in a rigorous 
sense. The approach is shown to handle both nonsquare 
and/or degenerate systems. Several numerical examples are 
also provided. 

delay operator. The transfer function of the 
system {A, B, C, D} given in (1), is the p x m 
rational matrix RUt) = D + C(AI, - A)-~B. Its 
system matrix is the (n + p )  x (n + m) pencil 

S(A)= [ A I c A  B D ]}n - } p "  

n m 

(2) 

1. INTRODUCTION 
DURINC the past decade, considerable attention 
has been paid to the computation of the zeros 
of a linear multivariable system and especially 
to the development of reliable numerical soft- 
ware for this problem. Zeros of a multivariable 
system play an important role in several prob- 
lems of control theory, such as the study of 
regulation, robust servomechanism design, and 
decoupling (Davison, 1976; Davison and Wang, 
1974; Desoer and Schulman, 1974; Francis and 
Wonham, 1975; Franklin, 1978). 

Consider the linear time invariant system 

Ax = Annx + Bnm u 

y = C~nx + D~mu (1) 

where x, u, and y are the state vector, control 
vector, and output vector, respectively, and 
where A can be the differential operator or the 
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The Smith zeros (Gantmacher, 1959; Rosen- 
brock, 1970) of (2) are commonly called the 
invariant zeros of the system (1). When p = 0, 
these are the input decoupling zeros of the sys- 
tem, and when m = 0, these are the output 
decoupling zeros of the system. When the sys- 
tem is minimal, these are the transmission zeros 
of the system (see MacFarlane and Karcanias, 
1976, for an elaborate discussion). 

Note that in Davison and Wang (1974, 1976, 
1978) and Laub and Moore (1978), the Smith 
zeros of (2) are called the transmission zeros of 
this system. Moreover these authors restrict 
themselves to what they call the nondegenerate 
case, i.e. where the normal rank r of R(A) 
equals rain (re, p), or equivalently, where the 
normal rank n + r of S(A) equals n + rain (m, p). 
Zeros have also been defined for the degenerate 
case (McMillan, 1952; Gantmacher, 1959; 
Rosenbrock, 1970; Moore and Silverman, 1974) 
and have been interpreted from a physical 
viewpoint as well (Desoer and Schulman, 1974; 
MacFarlane and Karcanias, 1976; Kouvaritakis 
and MacFarlane, 1976). The Smith zeros of S(A) 
are indeed the points where the rank of S(A) 
drops below its normal rank n + r, and this holds 
as well for the degenerate case as for the non- 
degenerate case. When S(A) is minimal these 
are also the McMUlan zeros of the transfer 
function R(A). In the sequel we make no special 
distinction anymore between the different types 
of zeros discussed above (decoupling, invariant, 
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416 A. EMAMI-NAEINI and P. VAN DOOREN 

transmission) since they are all the zeros of a 
specific type of system matrix (2). 

In this paper we give a 'fast' implementation 
of a method that was designed to tackle the 
computation of the zeros of an arbitrary state- 
space system (1). The algorithm borrows ideas 
from Silverman's structure algorithm as 
modified by Moylan (Silverman, 1976; Moylan, 
1977) and is based on the numerical principles 
discussed in Van Dooren (1979) (see also, 
Emami-Naeini, 1978; Van Dooren, Emami- 
Naeini and Silverman, 1979; Emami-Naeini, 
Van Dooren and Silverman, 1980; Van Dooren, 
1981). We also compare this algorithm with 
those of Davison and Wang (1974, 1976, 1978) 
and Moore and Laub (1978), two methods with 
'controlled numerical behavior'. We first briefly 
review the methods. 

The first technique (as described in Davison 
and Wang, 1978) uses the invariance property of 
zeros under high gain output feedback to 
determine their locations. Assume without loss 
of generality that m 1> p (a dual method is used 
in the other case) and let K be a 'random' m x p 
matrix. If the system {A, B, C, D} is non- 
degenerate, then for 'almost all' K, the system 
{A, BK, C, DK} is also nondegenerate and the 
zeros of the system {A, B, C, D} are a subset of 
the zeros of the system {A, BK, C, DK}. The 
matrix DK - I / p  is also invertible for 'almost all' 
K and the eigenvalues of the matrix A -  
BK (DK  - I/p)-~C are then the zeros of the sys- 
tem matrix 

_ B K  
Sp(A)= [ A I - c  A D K -  I[p]" (3) 

When p goes to infinity, Sp(A) converges to S(A) 
and the above eigenvalues thus converge to the 
zeros of the system {A, BK, C, DK} or to 
infinity. One then proceeds as follows: compute 
the limiting eigenvalues of A - 

B K ( D K - I / p ) - I C  by running an eigenvalue 
routine (Garbow and co-workers, 1977) on this 
matrix for several values of p; repeat this for 
another 'random' matrix K, and select the 
eigenvalues that are common to both runs. The 
other eigenvalues (so called 'extraneous zeros') 
do not correspond to zeros of the system {A, B, 
C, D}. The advantage of this method is its basic 
simplicity and the availability of reliable soft- 
ware to implement the method. Its possible dis- 
advantages are (i) the sorting of true zeros and 
extraneous zeros which may be unclear in some 
situations and (ii) the possible ill conditioning 
introduced by the inversion of D K -  I/p (see 
Laub and Moore, 1978, for a discussion of this 
phenomenon). Moreover the method only works 

for nondegenerate systems; a test is built in to 
check this property (see Davison and Wang, 
1978, for more details). For the computation of 
decoupling zeros a different but related method 
is given by Davison, Gesing and Wang (1978) 
which does not suffer from the second disad- 
vantage. The second method is discussed in 
Laub and Moore (1978), and also works only for 
nondegenerate systems. In the square case, the 
QZ algorithm (Moler and Stewart, 1973) is used 
to determine the generalized eigenvalues of the 
square invertible system matrix 

Since this system matrix is a regular matrix 
pencil, its generalized eigenvalues are also the  
zeros of the system (Laub and Moore, 1978). 
For the nonsquare case, random rows (columns) 
are added to the matrices C and D (B and D) if 
m > p (m < p), in order to obtain a modified but 
square pencil of the type (4). This random 'bor- 
dering' is performed twice and the common 
generalized eigenvalues of both runs can be 
shown to be the zeros of the system {A, B, C, 
D}. The others are again extraneous zeros. The 
method only works for nondegenerate systems 
and a test for this is provided by the QZ al- 
gorithm (Moler and Stewart, 1973). The ad- 
vantage of this method over the first one is the 
numerical stability of the QZ algorithm in con- 
trast with the possible instability introduced by 
the inversion of D K -  I]p. However, the sorting 
has still to be performed and the 'squaring up' 
via bordering should rather be replaced by the 
multiplication trick of the previous method 
since this results in a generalized eigenvalue 
problem of dimension n + min (m, p) instead of 
n + m a x  (m,p). Another simple method of 
'squaring up' the system matrix is reported by 
Porter (1979), but it increases the size of the 
pencil to be processed. 

The third technique of computing zeros is 
based on the Kronecker canonical form (Gant- 
macher, 1959) of the system matrix S(A) and on 
recent methods for computing it (Emami- 
Naeini, 1978, Van Dooren, 1979; Van Dooren, 
Emami-Naeini and Silverman, 1979; Emami- 
Naeini, Van Dooren and Silverman, 1980; Van 
Dooren, 1981). The system matrix (4) can al- 
ways be transformed by unitary transformations 
P and Q to the generalized (upper) Schur form 

PS(A)Q = 0 Af - AB f * 
0 0 A i - ABi 
0 0 0 At - ABI 

(5) 
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where (i) ( A r - A B r )  and (AI-ABt) are non- 
square pencils with no zeros and revealing the 
right and left minimal indices of S(A), respec- 
tively; (ii) ( A t -  ABi) is a regular pencil with no 
finite zeros and revealing the infinite zeros of 
S(A); and (iii) ( A I - A B  ~) is a regular pencil 
whose generalized eigenvalues are the finite 
zeros of S(A). 

After this preliminary reduction, the QZ al- 
gorithm is applied to the 'finite structure' pencil 
A t - AB r, which contains the zeros of the system 
matrix S(A) (Van Dooren, 1979). The overall 
procedure is proved to be numerically backward 
stable in a strict sense, namely that the com- 
puted zeros correspond exactly to a slightly 

perturbed system {,4, /3, C, /)}, with [C DJ 

being ¢r • ,-close to [C  D] ,  and where , is the 

machine precision of the computer and ~- is a 
polynomial expression in the dimensions of the 
system. This does not hold for the method of 
Davison and Wang. While the left and right 
minimal indices and the multiple infinite zeros 
are also determined by the decomposition (5), 
they are exact ly the cause of some problems 
encountered by the two previous methods. Note 
that the pencils A r -  ABr, A t -  ABt and A t -  ABt 
also contain valuable information about the 
system {A, B, C, D} (Verghese, Van Dooren and 
Kailath, 1979; Van Dooren, 1981). 

This third method is also related to earlier 
(sometimes implicit) methods to compute the 
information contained in the Kronecker 
canonical form of S(A): Aplevich (1979); Jordan 
and Godbout (1977); Molinari (1978); Moore and 
Silverman (1974); Moylan (1977); Silverman 
(1976); Thompson and Weil (1972). These al- 
gorithms are more conceptual methods and may 
run into numerical difficulties since they use 
possibly unstable transformations. We therefore 
did not include them in our comparison. 

The organization of this paper is as follows. 
In Section 2 the new algorithm for computing 
zeros is presented. In Section 3 we discuss the 
properties of the algorithm and compare it with 
other methods. In Section 4 several numerical 
examples are presented. Some concluding 
remarks appear in Section 5. The data used in 
some of the numerical examples as well as a 
listing of the implementation of the algorithm in 
FORTRAN, can be found in Emami-Naeini and 
Van Dooren (1980). A listing of the subroutine 
codes is also included in the appendix of this 
paper. 

2. THE NEW ALGORITHM: SYSTEM MATRIX 
REDUCTION 

In this section all matrices are assumed to be 

complex. For the real case the algorithms 
require only minor modifications. A* denotes 
the conjugate transpose of A, and A r denotes 
the transpose of A. 

2.1. Reduction method 
In this section we present a method to con- 

struct a reduced order system matrix 

[_*2:A,__..i.2d 
S, (A)=[  - C r  , D,J (6) 

with Dr invertible and with St(a) having the 
same (finite) zeros as a given system matrix 

rXI-A .i_B] 
SOt) = L-----C . . . .  , D J  (7) 

with no restictions on {A, B, C, D}. This al- 
gorithm is then used as the heart of the al- 
gorithm for the computation of multivariable 
zeros. The latter is based on the generalized 
Schur form of the pencil S(A) as discussed 
above, but differs from it in that the special 
structure of the pencil is exploited to the fullest 
in all the necessary computations. 

The algorithms only use matrix reductions of 
the type 

U * A = - ~p; A V =  [Ac 0] (8) 

P 

where A is an arbitrary matrix of rank p and U 
and V are unitary matrices compressing A to a 
full row rank matrix Ar and lull  column rank 
matrix Ac, respectively. Several techniques can 
be used for this purpose; more details are given 
in Section 2.2. The algorithm is stated in an 
ALGOL type language: 

Algorithm R E D U C E  (A, B, C, D, m, n, p) result 
(A~, B,, C,, D,, m,, n,, p,) 

comment  initialization; 

A0:=A; B 0 : = B ;  C0 :=C;  D 0 : = D ;  v0:=n;  
80: =0;/z0: = p ;  ]: = 1; 

step_]: comment  compress the rows of Dj-t 
with U ~] and transform simultaneously 
the rows of Ci_,; 

= U,rC,,ID,,]; 

if ¢i = 0 then go to exit_l; 

comment  compress the columns of Cj_~ 
with V/(~j_. = C~_~ if tr~ = 0); 
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/ ] 'pj = 0  
then go to exit_l; [o sd: = C~_, ~; 

~ i f v j = O  
v~ pj then go to exit_2; 

comment update; 

~ j :  = pi + ~rs; as: = a j - i  + pj ;  

,'A[~{ :1~i] :=[v-l~l[aj-' I B'-I1 
la~{ t 0 II,, s J L C i _  I i • D i _ z J  

~,j pj m x LO lira J; 

j: = ] +  1; go to step. j;  
exit_l: comment {A, B, C, D} and {Ar, Br, Cr, 

Dr} have the same zeros; 

k : = ] - l ;  Ar:=Ak;  Br:=Bk;  C~:=Ck; 
Dr: = Dk ; nr: = vk ; P,: = O'j: mr: = m; 

stop ; 
exit_2: comment {A, B, C, D} has no zeros; 

k: = ]; nr: = 0; stop. 

Theorem 1. The systems {A, B, C, D} and {Ar, 
Br, Cr, Dr} have the same (finite) zeros. 

Proof: We prove the result by induction. 
Step j of the above algorithm reduces the 

system matrix of 

C, D}. In order to compute the zeros, we then 
use the QZ algorithm on ()tB t - At). 

Algorithm Z E R O S  (A, B, C, D, m, n, p) result 
(A t, B r, n i, rank) 
step_l: comment reduce the system {A, B, C, 

D} to a new system {A, Br, Cr, Dr} with 
the same zeros and with Dr of full row 
rank; call REDUCE (A, B, C, D, m, n, 
p) result (Ar, Br, Cr, Dr, mr, nr, P,); 
rank: = mr; if nr = 0 then begin nr: = 0; 
go to exit end; 

step_2: comment reduce the transposed system 
{A r, C ,  r, B r, D r} to a new system {Arc, 
Brc, Cro Drc} with the same zeros and 
with Drc invertible; call REDUCE (At  r, 
Cr r, B ,  r, D r, pr, nr, m,) result (Arc, Brc, 
Crc, Drc, mrc, nrc, Prc); if n rc ~---0 t h e n  

begin nt: = 0; go to exit end; 
step_3: comment compress the columns of 

[C,~ Dry] to [0 DI] and apply the 
transformation to the system matrix; 
nt: = nrc; if rank = 0 then go to exit; 

-A..'-Z:-I.= 
o tDtJ" 

Arc ' Brc 1 

1 , 0  

exit: stop ; 

{AI-1, Bj-I, C/-l, Dj-1} tO the form 

[ ~ ] [ ~ L , _ , - A - , ]  B,-, 1 v. o [ y_g2Ol 

AI, , . -Aj ,  . / B j q  

0 I - s j /  oJ  
(9) 

where Sj has full column rank pj. Using Sj as the 
pivot, (9) can be transformed by unimodular 
row and column transformations to 

p,(,)[ 0 

- _ D,_,J O'.-}~,- I 
I OJ 

(10) 

and the systems {Ak, Bk, Ck, Dk) for k = j -  1,j 
have thus the same zeros. 

[] 

Theorem 2. The (finite) zeros of the system {A, 
B, C, D} are the generalized eigenvalues of the 
'finite structure pencil' (AB I - A f ) .  

Proof: In the first step of ZEROS the routine 
REDUCE yields a system matrix 

rain, - Ar I Brl}n, 
s t (x) - -  t D%--% 

nr mr 

( l l )  

with the same zeros as S(A) but with Dr of full 
row rank. In the second step, the transposed 
system matrix Srr(A), which still has the same 
zeros, is reduced again by REDUCE to a sys- 
tem matrix of the form 

S,c(A)=[  - C ~  | D~JIp,~ 

nrc mrc 

(12) 

The following algorithm shows how 
REDUCE can be used to compute a pencil 
(ABs-At)  with only finite generalized eigen- 
values which are the zeros of the system {A, B, 

where now D,~ has full row rank. Note that D r 
had full column rank originally and REDUCE 
does not decrease the rank of this matrix. 
Therefore D,~ has full column rank as well and 
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thus is invertible. The third step transforms 
Sc(A) to 

n,~{rAl,,~ - A,~ I B,~I 
rank{ ["--'-77~---!-D; J 

n,~ rank 

rAB/-  A t j * ]}n! 
W = L---~ . . . .  I'D, J~rank 

n/ rank 

(13) 

where n t = nr~ and rank = m,~ = p,~ and D! is, of 
course, invertible. Since S,~(A) has n,~ = nf finite 
zeros (namely the eigenvalues of A = A , ~ -  
B,~Dg'C,~) then the (!1/x n/) pencil (ABt-A/)  
has only finite generalized eigenvalues, and they 
are the zeros of S(A). 

[] 

The zeros are now computed by the QZ 
method (Moler and Stewart, 1973; Garbow and 
co-workers, 1977), which decomposes (AB t - At) 
into 

[ 8 \ , , ,  * l * l l " , ,  l Q(AB, - A / ) Z  = A L o "a., J - L o ",% J 

(14) 

where Q and Z are unitary. 
The ratios ;h = (a//3D, i = I ..... n/ are then 

the (finite) zeros of S(A). It should be noted that 
this path is to be preferred over the use of the 
QR algorithm on the matrix ,4 = Arc - B,~D~C,~, 
because of the possible bad conditioning of D~. 

Remarks. 
(1) The reductions performed by ZEROS and 

REDUCE can be rewritten (up to some per- 
mutations) as a decomposition of the type (5). 
Therefore the infinite zero structure and the left 
and right null space structure can also be 
retrieved by these algorithms (Van Dooren, 
1979). If S(A) is minimal these are also the 
infinite transmission zeros and left and right 
minimal indices of the transfer function R(A) 
(Verghese, Van Dooren and Kailath, 1979). 
Note that m,, = p,~ = rank is the normal rank of 
the transfer function R(A). When rank = 0 then 
step_3 of ZEROS can be skipped and we get the 
standard eigenvalue problem since B l = I. 

(2) When the system {A, B, C, D} is real, the 
transformations in REDUCE and ZEROS are 
also real. However, the decomposition in (14) 
has to be slightly modified so that Q and Z are 
real. Under orthogonal transformations one can 
indeed only reduce (AB I -  At) to a block trian- 
gular form (Moler and Stewart, 1973) 

Q(AB I - At)Z = A 

'",  " " l  
o -Lo "aoJ 

(15) 

where the (aBu-  A,) blocks are 1 x 1 or 2 x 2. 
The generalized eigenvalues of the 2 x 2 blocks 
are complex conjugate pairs and those of the 
1 x 1 blocks are real. 

2.2. Details of implementation 
In order to take full advantage of the special 

problem at hand and in order to increase 
numerical accuracy and speed, the structure of 
the pencil must be fully exploited. Therefore we 
use Householder transformations for the row 
and column operations in these algorithms. 
Special care is also taken to exploit the pre- 
viously created zeros at each stage of the al- 
gorithm. It is more convenient for the organiza- 
tion of the data to deal with the matrix 

rBi I ' Aj-i] 
[O,_, , C,_,J" (16) 

At the beginning of step ], (t6) has the special 
form 

{ 

°)-1 f 

! 
* ! 

! ! * 
! 

• I 
! 

". I 
i 

"-x,,j_~ I 

m v/_ l 

(17) 

and the xis are nonzero (when j = 1, we have 
v0 = n; /z0 = p; P0 = P; o'0 = 0). Step'..] first per- 
forms an output transformation U~ to compress 
DI_~ to full row rank. Therefore we first use crj_~ 
Householder transformations without pivoting 
(since xts are nonzero) to reduce (17) to 

vj-i 

x[ . , 
- i 

o x'.,-r-I 
I 
I 

0 X I 
I 

m v/-i 

(18) 
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where again the x~s are nonzero. We then con- 
tinue with Householder reduction with column 
pivoting to reduce X to trapezoidal form, yield- 
ing finally a row compression of Dj_~ 

..... :ii ....... 
,/-~j-I 

(19) 

where the yis are nonzero and o, s = trj_t + rank 
(X). Step j then continues with a state space 
transformation V s to compress the columns of 
Cj. Therefore we use Householder transfor- 
mations with row pivoting on Cj and obtain 

zi. 

i ' -  
I 
I 
I 
I 

* I * 
! 
! 
I 
I 

. . . . . . . . . .  4 -  . . . . . . . . .  I- . . . . .  
I I 

. . . . . . . . . .  4 -  . . . . . . . . .  ~ . . . . .  
Yl. * | i 

• I * I 

"Ym I 
.......... Y ......... ~'-Z-- 

o i o 
! Z 1 

in vs oj 

, ~i-1 

(20) 

where the zis are also nonzero. The last Ps 
columns and zj rows can now then be discarded 
giving (17) again for j updated by one. This 
process is continued until no reduction is pos- 
sible anymore (see exl. 1 and exit_2 in 
REDUCE). 

In step_3 of ZEROS we also exploit the tri- 
angular shape of D~ by reducing a matrix of the 
form 

1 [  B~ • A,c * [ * 

m ic j L 0 ""x~, 

to the form 

(21) 

A t i  * 
I 

01o, 
I 

r ]  
I * I * 

| " .  e L ,0 .x~J. 

(22) 

For this we use Householder transformation 

without pivoting on the columns of (21). For the 
construction of B i the same transformations are 
also performed on the matrix [Inrc 0]. 

A comment ought to be made here about the 
practical implementation of the several rank 
evaluations performed by REDUCE. As 
recommended in for example, Golub, Klema 
and Stewart (1976), the numerical rank of a 
given s x t matrix M is defined as the number of 
singular values larger than a given threshold 
EPS. The other singular values are thus in fact 
put equal to zero, thereby inducing an error 
bounded by EPS in the matrix M. When M 
consists of measured data, EPS is the noise level 
of these data; otherwise it is chosen equal to 
~r .  ~ .  I l M l l 2 - - w h e r e  ~r i s  a polynomial expression 
in s and t, ¢ is the machine precision of the 
computer and I1" 112 is the spectral norm--which 
is the inherent noise level of computations per- 
formed on that computer (Wilkinson, 1965). In 
order to save some computing time, this rank 
criterion is often replaced by a Householder 
reduction on M (with or without row/column 
pivoting), and checking the number of pivots 
that are larger than EPS. In REDUCE House- 
holder reductions with (row or column) pivoting 
are used whenever a rank determination is in- 
volved, because in that respect it performs bet- 
ter than the Householder reduction without 
pivoting (see Golub, Klema and Stewart, 1976). 
This is the case for the reductions of X in (18) and 
Cj in (19) to trapezoidal forms. Householder 
transformations without pivoting are used 
whenever rank properties are guaranteed because 
of the previous steps: the xi in (17) and (21) are 
known to be nonzero (i.e. larger than EPS), 
ensuring the full rank of the corresponding sub- 
matrices. It is precisely the use of Householder 
transformations without pivoting in these cases, 
that allows us to exploit the previously created 
zeros in order to save considerable amount of 
computations (see the next section). 

3. P R O P E R T I E S  OF T H E  A L G O R I T H M  A N D  COM- 

PARISON 

Two important properties of our method are 
its numerical stability and its efficiency. 

3.1. Operation count 
In the sequel, one operation stands for a 

single addition and multiplication (for the real or 
complex case). A Householder transformation 
acting on a s x t matrix requires 2st operations 
(Wilkinson, 1965). Using this, and the assump- 
tion that m - p ,  we optain the following opera- 
tion count for REDUCE. The row compression 
of Dj-1 requires at most trj-< m Householder 
transformations, each working on matrices 
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smaller than (~j-I + 1) x (vt_ , + m) < 
(Pt-* + 1) × (n + m) [see (17) and (18)]. For this 
step we thus have less than 

ai = 2(pj_~ + 1)(n + m)m operations. (23) 

The state space transformation to compress the 
columns of Ct requires Pt Householder trans- 
formation, each working on matrices smaller 
than (/zt_l + vj-l) x vt_ l <_ (p + n) x n for V t, and 
(m+vt_l )  x v j _ l < - ( m + n ) x n  for V~ [see (19) 
and (20)]. For this step we thus have less than 

b t = 2pt(p + m + 2n)n operations. (24) 

If REDUCE requires k steps, then A= 
pn + p2 +.  • • pk-1 is the amount by which the state 
dimension is reduced. Using this and the fact 
that po = P, Pk = 0 and k -< n, we have the total 
operation count of 

k 

~, (a t + bi) <~ 2(p + n + A)(n + m)m 
i=1 

+ 2A(p + m + 2n)n (25) 

for REDUCE. The routine ZEROS then uses 
less than the following number of operations 

--for  step_l; less than: 

2{(p + n + Ai)(n + m)m + AI(p + m + 2n)n} 
operations (26) 

where A~ = n -  n, is the reduction of the state 
dimension in the first run of REDUCE 

--for  step_2; less than: 

2{(m + n + A2)(n + p,)p, + A2(m + p, + 2n)n} 
operations (27) 

where A2 = n , -  n= is the reduction of the state 
dimension in the second run of REDUCE and 
where Pr ~ m 

--for  step 3; less than: 

2{(n= + m=)(n,~ + 1)m=} operations (28) 

where m= < m. 
This last step indeed requires mr~ Householder 

transformations working on matrices smaller 
than (n= + m=) x (n= + 1). Denoting A = 
A I + A 2 = n -  n r c  a s  the number of state reduc- 
tions, and M = m a x { p + n , m + n } = p + n  we 
obtain the reduction to (AB r - A t )  in less than 

4(p + n)(n + m)m  + 2A(n + m)m 
+ 2A(m + p + 2n)n 

+ 2(n + m)(n + 1)M 
<~ 4M~m + 2AMm + 4AM 2 + 2M2m 

~< 6(A + m ) M  2 <~ 6(A + p ) M  2 operations. (29) 

Notice that A + p = M -  n= is the total reduc- 
tion of the dimension of S(A) to the pencil 
AB I - A  r. ZEROS thus requires less than 6M 2 
operations per deflation, while for example, the 
Q Z  method used on S(A) directly, would 
require approximately 16M ~ operation per 
deflation [according to Moler and Stewart (1973) 
about 1.2-1.3 Q Z  iterations are needed per 
computed eigenvalue and one Q Z  iteration 
requires approximately 13M 2 operations]. 
Moreover, the operation count (29) is a rather 
generous upper bound. Consider, for example, 
the simple case where D is scalar (i.e. m = p = 
1) and invertible. Then ZEROS only performs 
the Householder transformation described in 
step 3. This single deflation requires 2M 2 opera- 
tions (with M = n + 1) versus 16M ~ operations 
for a corresponding deflation of the QZ al- 
gorithm. 

It should be noted here that such operation 
counts reflect only part of the computation time 
used by an algorithm: the organizational burden 
can sometimes also be considerable. This is 
confirmed by the comparison of the first two 
methods reported in Laub and Moore (1978), for 
example: the QZ method has a smaller comput- 
ing time although the method of Davison and 
Wang requires fewer operations. 

3.2. Numerical stability 
An important property of the proposed 

method is its backward stability. For the unitary 
transformations performed in REDUCE [see 
(9)], the following result can be proved (Wilkin- 
son, 1965). In the presence of rounding errors, 
the right-hand side of (9) is exactly equal to 

[ V* i O I IAI~,_,- A-~-,~ Bt-,]F ~4 0 ]  
. . . . .  " "  . . . .  ' " - "  . . . . .  , " -  

L - q - ,  ,Dt-,JLo ,i,.J 
I I 

A I v j - A j l  * [Bt7 
. . . . .  • • 

! I 0 , -S ,  OA 

(3O) 

where ~ and ~ are still unitary. If e is the 
machine precision of the computer, and a 
threshold EPS of the order of • • [[M/U2 is used, 

[At B t ] ,  
where Mj= Ct Dt J then 

L C~_, Dj_,J L Cj_, Dj-,j.2 
IAj-, Bi_  I <- l I j .   IIG-  Dj-z.  (31) 

with IIt a constant depending on the dimension 
of the matrices. Note that in (30) the coefficient 
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of A is not perturbed because no computations 
are actually performed on it [the asterisks in 
(30) are not computed]. The errors performed in 
each step of REDUCE can be worked back to 
the original matrix S(A) without affecting their 
norms because unitary transformations do not 
change the II" 112 norm of a matrix. When doing 
this for the two calls of REDUCE in ZEROS, 
we obtain the equality 

0 A I - A , ,  Brc * 
0 -Crc Drc * 
0 0 0 * 

(32) 

with U, V unitary and 

(33) 

where I-[RED is the sum of the His in (31). Note 
that the threshold EPS can as well be chosen of 

the order of ~. [IMII2 with M =  [A B/B)] ' for all 
l 

steps without seriously affecting the bound (33). 
This is usually done in practice. A similar error 
analysis of step_3 in ZEROS and the QZ 
decomposition of (AB t - A  t) yields 

with 

¢]n 

--<(IIr~ +3H,)"  C,c D, cJH2" (38) 

This error can again be worked back to the 
original matrix S(A). We finally obtain that the 
ratios Ai = (ad/3i) are the exact zeros of a system 
{ a I -  A,/~, t~, 15} such that 

(39) 

where 

I]  = ]-]rED + IIrc + 3II,. (4o) 

Note that the expression I'I is a rather 
generous upperbound. One can estimate I] 
experimentally (see next section) and it is fair to 
say that (I is close to 1 for matrices of reason- 
able size (n-<20). For larger matrices, it is 
recommended to use doubled accuracy for the 
inner products in the Householder transfor- 
mations in order to keep I'I close to one [see 
Wilkinson (1965), p. 152 for more details]. 

+ • rLL9-1 
0 I i . l t  "----~'r~ [ /5,~ J L0 [IJ  

=A 
i * |  I 

o .  . . . .  . . . .  /- . . . . .  

L 0 J O J  0 I D r l  (34) 

with Q, Z, W unitary and 

nrc 

(35) 

IlEolb, IlEdb -< n . .  • (36) 

for some expressions II~ and II,. 
Note that the coefficient of a is perturbed, but 

that its rank is unaltered because of the special 
structure of the transformations in (32). Because 
of (36), there exists then a column transfor- 
mation (I + F)  with IIFlb < 3rI,.  ~ such that 

[ XE~, + ~ I+  X(I+E")-A'~ l , - ~ , ,  - ~fi,~ 1~ F) 

= ~I-A,~ ~ , ~  
(37) 

Additional features. The method described in 
Section 2 requires no assumption on {A, B, C, 
D} and requires no special treatment for 
different cases as opposed to methods 1 and 2. 
It handles the case where the normal rank of the 
transfer function is smaller than min {m, p} and 
has no difficulty with high multiplicity zeros at 
infinity under small perturbations. 

The 'degenerate' case has been pretty much 
neglected in the past because of its ill-posed- 
ness. Recently more attention has been paid to 
this problem and justifications have been given, 
from a numerical and physical point of view, for 
computing zeros of such systems (Wilkinson, 
1978, 1979; Van Dooren, 1979, 1981). Another 
nice property of our approach is that the sorting 
of so-called extraneous zeros is avoided via the 
rank decisions of the Kronecker approach. It is 
known (Wilkinson, 1978, 1979; Van Dooren 
1979, 1981) that such rank decisions with res- 
pect to the Kronecker canonical form can be 
quite delicate also, but they are only affected by 
the sensitivity of the order of the regular part 
AB r - A  t, or in other words by the number of 
zeros of the considered system. The first two 
methods, on the other hand, make decisions 
based on computed eigenvalues, which thus 
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may be affected by the sensitivity of the zeros 
themselves (badly conditioned zeros might thus 
be ruled out as extraneous zeros, while their 
number could be robustly fixed). 

Finally, the generation of the random matrix 
K is replaced in our approach by a single 
parameter EPS. The user should put EPS equal 
to the noise level of his data, provided that it is 

B 
larger than, say, 1 0 . ~ . 1 [  C D ] I 2 "  O t h e r w i s e ,  

EPS should be put equal to this lower bound 
(this could easily be taken care of by the pro- 
gram). 

4. E X A M P L E S  

All the examples considered are real. The 
computations were carried out on the IBM 
37013033 at Stanford University. We used the 
FORTRAN H Extended Compiler, 
OPTIMIZE(2) and all computations were per- 
formed in double precision (REAL*8). The 
driver program RGG of EISPACK (Garbow and 
co-workers, 1977) was used to call the QZ al- 
gorithm and singular values were obtained using 
the routine DSVDC of LINPACK (Dongarra, 
and co-workers, 1979). The value of EPS used 
in the rank tests was chosen equal to 

I A B I f o r e a c h e x a m p l e ( t h e v a l u e o f ~  100~. D 2 

here was 15.16 -14~2.08× 10-16). For each 
example, we also compute the ordered singular 
values ~r~ t> o,2 I>. . .  of the system matrix 

S~0 '  -- [ ~ ° / C  ~ ~ ]  " ' )  

at each computed zero A0. We refer to the ratio 

R B A  = O'(n+rank) (42) 
or 1 

as the 'relative backward error'. Note that ac- 
cording to the backward error analysis, RBA is 
of the order of l~I • e. Indeed, A0 is the exact zero 
of the system {.4,/~, C,/5}, or 

O'(n+rank) { [AOI ~ ~ ~ ] }  = 0. (43) 

Hence, because of (39), the actual backward 
error 

satisfies 

= O'(n+rank){S(A0) } ~ I]" ~ C D 2 

f I .  ~,{S(A0)}. (44) 

This allows us to estimate the value of I~I. Note 
that an e-small backward error does not imply 

that the zeros are computed up to EPS-ac- 
curacy. This also depends on the conditioning of 
each separate zero. 

Indeed, if K(A0) denotes the conditioning of 
the zero A0 then the error performed when 
computing this zero, is at most ~ • x(A0), where 

is the norm of the actual backward error of 
the algorithm (Wilkinson, 1965). The importance 
of having a stable method is that vImi.e, the 
contribution of the algorithm to the error in the 
computed zeromis minimized (we have that ~ < 
EPS). The value of RBA in the examples is 
always less than e. Because of (44), we may say 
that l~I • • = e and thus l~I ~ 1. Hence, the back- 

ward error ~? is of the order of ~. D 2 

which is unavoidable on a computer with 
machine precision ~. The precision of the zero 
A0 can be estimated by performing a second run, 
whereby a random e-perturbation is added to 
the system. This, in fact, is implicitly done in 
the two previous methods, but on the other 
hand, these methods may have troubles dis- 
cerning sensitive eigenvalues [where K(a0) is 
very large] from extraneous ones. In each of the 
examples the value of rank, the normal rank of 
the transfer function , is also given. The. com- 
puted value RBA is only explicitly given when it 
is larger than • (this occurs only once!) since it 
can only be computed up to e accuracy (Don- 
garra and co-workers, 1979). The exact digits in 
the computed zeros are underlined. These were 
obtained by comparison with extended precision 
results (see also Aplevich, 1979). 

Example 1 
This example is the sixteenth-order linearized 

model of the F100-PW-100 jet engine used as 
the theme problem for the International Forum 
on Alternatives for linear multivariable control 
(Sain and co-workers, 1978). 

D has rank 4, and there are fifteen zeros. The 
following shows the computed zeros to sixteen 
significant digits. 

Zeros RBA = ~21/~l ~ f l -  ~ (rank = 5) 

-829.2490955651110 
789.8985828158399 
141.2294550203129 
-50.46757476394580 
±jl.031914160423297 
-49.63760103236723 
- 13.76530730452916 
±j9.110214747547156 
-0.6659561616385485 
- 6.710651036803525 
- 2.003403155575229 
- 23.13366516893961 
- 20.55602749379905 
-+ il.417353350011828 
- 18.958550189406822 

~E 

<E 

<E 
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Example 2 
This  is a n i n t h - o r d e r  m o d e l  of  a bo i l e r  s y s t e m  

( A x e l b y ,  L a u b  and  D a v i s o n ,  1978). 
The  z e r o s  a long  wi th  the  c o r r e s p o n d i n g  re la-  

t ive  b a c k w a r d  e r ro r s ,  a re  as  fo l lows :  

I: :l o: I: C =  0 0 1 - 1  , 0 

Zeros RBA =~8/~1 ~ fl" • (rank = 2) 

-0.6823278038280190 < •  
0.3411639019140096 
±j1.161541399997251 4.07x 10-~6<2• 
0.9999999999999997 < • 

Zeros RBA= ffll/ffl ~I~I.• (rank = 2) 

-26.39513728882773 < •  
-2.957771985292086 
±j0.3352672071870191 <e 
0.7486064441907556 < • 
0.09403261020202233 < • 
-0.009546070612163396 < e  

Example 4 
The  is a f i f th -o rde r  m o d e l  of  a d r u m  bo i l e r  

(Beng t s son ,  1973) wi th ,  

A = 

- 0 . 1 2 9  0.000 

0.329 x 10 -2 0.000 

0.718 x 10 -1 0.000 

0.411 x 10 -m 0.000 

0.361 x 10 -3 0.000 

0.396 x 10 -m 

- 0.779 x 10 -4 

- 0.100 

0.000 

0.350 × 10 -4 

0.250 x 10 -1 0.191 x 10 -~ " 

0.122 x 10 -3 - 0 . 6 2 1  

0.887 x 10 -3 - 0 . 3 8 5  x 10 I 

- 0.822 × 10 -m 0.000 

0.426 x 10 -4 - 0 . 7 4 3  x 10 -I 

N o t i c e  tha t ,  d e s p i t e  the  f ac t  tha t  our  m e t h o d  is 
n u m e r i c a l l y  s t ab le ,  it  g ives  less  s igni f icant  digi ts  
of  a c c u r a c y  than  the  o t h e r  two  m e t h o d s .  The  
p r o b l e m  he re  is the  wide  n u m b e r i c a l  r ange  of  
da ta ,  w h i c h  can  be  o v e r c o m e  b y  ba l anc ing  the  
{A, B, C, D} sy s t em.  This  is impl i c i t ly  done  in 
m e t h o d s  1 and  2 v ia  the  E I S P A C K  rou t ines  
( L a u b  and  M o o r e ,  1978). F o r  e x a m p l e  if w e  use  
the  t r a n s f o r m a t i o n  

T = {10000, 1, 1, 10000, 1, 1, 1, 1, 1} 

t hen  the  s y s t e m  {TAT -m, TB, CT -1, D} has  

m u c h  less  sens i t i ve  zeros .  Our  m e t h o d  now 
gave  the  n u m e r i c a l  r e su l t s :  

Zeros RBA = ~11/~1 ~ l~I" • (rank = 2) 

-26.39513729219998 < • 
-2.957771983411052 
±j0.3352672040387147 < •  
0.7486064352915261 < • 
0.09403261463283083 < • 
-0.009546070736639054 < • 

Example 3 
This  is a s i x t h - o r d e r  e x a m p l e  f rom D a v i s o n  

and  W a n g  (1974) wi th  

A = 

0 1 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 -  
0 0 0 
0 0 0 
0 1 0 , 
0 0 1 
0 0 0 

B = [i ° 
o o  

0 
0 
0 
1 

B = 

C =  

0.000 

0.000 

0.000 

0.249 x 10 -4 

0.000 

I l o  0 0 0 

1 0 0 

0.139 x 10 -2 

0.359 x 10 -4 

- 0 . 9 8 9  x 1 0  -2 , 

0.000 

- 0.534 x 10 -5 

0 1 '  D = 0 "  0 

The  z e r o s  and  the  r e l a t ive  b a c k w a r d  e r ro r s  are :  

Zeros RBA=~T/~I ~f i "  • (rank = 2) 

-0.368051203603595 < • 
-0.06467751189941505 < • 

Example 5 
C o n s i d e r  the  s y s t e m  wi th  

s ( A )  = 

A - 1  
" ' -  0 

- 1 .  . 0 

' ' .  " ' .  I 
0 - ' 1  "A ! 0 

. . . . . .  - 6  . . . .  

16 

c o r r e s p o n d i n g  to  the  t r a n s f e r  f u n c t i o n  H(s)= 
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(1/s15). If we perturb the (16, 16) element by the 
order of machine precision (e ~ 10-~6), then the 
QZ algorithm will yield one zero at infinity and 
the other zeros lie on a circle with radius e -l/". 
Our algorithm has no such difficulty and will 
indicate that there are no finite zeros. The high 
gain method also has no problems with this 
example. 

Example 6 
Consider the case where 

~ A - 2  1 0 10"] 
/o o io |  

S(A)= | 1 0 A L l  | 

L6 . . . . . .  

This pencil has right and left Kronecker indices 
equal to one. The normal rank of the transfer 
function is zero. The QZ algorithm (Laub and 
Moore, 1978) will indicate degeneracy (i.e. a 
(0/0) eigenvalue). 

Theoretically one should not trust any of the 
other computed ratios as some of them could be 
arbitrary. But practically speaking only special 
perturbations could alter the true zero at 2. 
More about this can be found in Wilkinson 
(1978, 1979). The method of Davison and Wang 
(1978) also returns that this system is 
degenerate. Our algorithm will extract the sin- 
gular part of S(A) and will yield a regular pencil 
containing the single zero at 2. 

Example 7 
Consider the system (rank = 0) 

0:07 
I 

S(A)= L1 0 lO]  

with left and right Kronecker indices equal to 
one and with vanishing transfer function 
( rank=0) .  Both examples 6 and 7 are 
degenerate, but in contrast with the previous 
example, there are no zeros here. Methods 1 
and 2 correctly indicate degeneracy, but they do 
not proceed further with the investigation of 
possible zeros, while our algorithm determines 
that S(A) has indeed no zeros. 

C = [ O  0 0 1 0 0], D=[O].  

Zeros RBA = ~71~, ~ I ~I" • (rank = 1) 

- O.9999999999999994 
-+ j0.1821927265261 x 10 -7 < • 

The system actually has two zeros at - 1.0, but 
the error of the order of e '/2 is to be expected 
because of the presence of a 2 x 2 Jordan block. 
The computed roots are indeed the exact roots 
of an e-perturbed characteristics polynomial 
A 2 + (2 + e,)A + (1 + e2) with negative discriminant 
D = • I - e 2 +  • 2/4~ --e. If instead we had D 
+ e, one would obtain two real roots close to 
- -  1 -4- ¢1/2 .  This example illustrates that sensitive 
zeros could sometimes be confused with 
extraneous ones, when one merely looks at their 
invariance for differen runs. 

Example 9 
Consider the system with 

s(~) = 

A - 1  
" .°  0 

- 1 .. 0.05 

". ".  0 

0 " " 

- '1 ' l  0 

0 0 1 I 0 

15 

This system has a zero at 20. However,  if we 
perturb the (16, 16) element by e, the QZ al- 
gorithm will yield a zero at oo and the rest are 
located on a circle with radius • -'/". The eigen- 
value at 20 is also absorbed in this 'cluster'  and 
can no longer be discerned from the rest. Our 
algorithm will compute the zero at 20 with no 
difficulty. The normal rank of the transfer func- 
tion is one. 

Example 10 
This example is taken from Kalman (1963) 

Example 8 
This is the model of an electrical network 

(Kaufman,  1973) with 

A= 

"-2 1 0 0 0 0 -  
1 - 2  1 0 1 - 1  
0 I - 2  1 0 0 
0 0 1 - 1  0 1 
0 -1  0 0 0 0 
0 1 0 - 1  0 0 

B =  

1 
0 
0 
0 
1 
0 

A= 

-0 0 0 - 2 4 :  

1 0 0 - 5 0 :  O O 0 1 0 -35!  
0 0 1 -10 :  

• ° . , . . . ° . . . ° . . . o ° . . .  . . . .  . . .  . . . . .  . . . . .  

"0 0 0 - 3 0 :  © .,oo_,,  © 
i o  1 o - 4 1 :  

. . . . . . . . . . . . .  ;.0..Q..I.. : !!~ . . . . . . . . . .  

0 0 oo-,, 1 0 -23 
0 1 -9  
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B =  

135 18 14 20 
117 42 25 33 
33 30 13 15 
3 6 2 2 
4 10 50 32 
6 17 20 32 
2 8 2 8 

. . 9 . . . !  . . . .  2 . . .9 .  
36 0 5 68 
14 - 10 6 54 
2 - 2  1 10 

C= [ioo, 0 0 0  
0 0 0  

0 0 0 0 ' 0 0 0 ]  
0 0 0 1  0 0 0  
0 0 0 0 " 0 0 1 .  

The  sys tem has input  decoupl ing  zeros at 

Zeros RBA = crll/crl ~ fI. ~ (rank = 0) 

- 4.999999999999955 < 
- 2.999999999999988 < 

and  no ou tpu t  decoup l ing  zeros.  

E x a m p l e  11 
Cons ide r  the rec tangula r  

var i takis  and  MacFa r l ane ,  1976) 

sys tem (Kou-  

- 5  4 - 4  - - 
A =  2 0 2 - 2  , B = -  

6 - 3  5 - 

- 2  2 - 2  

C =  1 1 1 0 , D =  0 
0 3 - 2  3 0 0 .  

The  sys tem has a left  K r o n e c k e r  index  equal  to 
one ,  no right K r o n e c k e r  index  and  two zeros at  

infinity.  

Zeros RBA = o'7/o'1 ~- l : l .  • ( r a n k  = 2 )  

- 3.0000C~0000000~ < 
3.999999999999972 < 

5. CONCLUSIONS 
We have  p resen ted  a new algor i thm for com-  

put ing  the zeros  of a l inear  mul t ivar iab le  sys- 
tem. The  a lgor i thm deals effect ively  with the 
degenera te  case as well and  is p roved  to be 
backward  stable.  The  me thod  also yields the 
no rma l  r ank  of the t rans fe r  f u n c t i o n  matr ix ,  and  
has the potent ia l  of  yie lding more  i n fo rma t i on  
abou t  the s t ruc ture  of the g iven  sys tem.  It has 
been.  success fu l ly  imp lemen ted  on  the com-  
puter .  
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APPENDIX: SUBROUTINE CODES FOR COMPUTINGZEROS 
The basic subroutine codes are listed in FORTRAN for the convenience of the reader, but it must be emphasized that they have not 
been developed by a commercial software firm to be transportable, machine independent, PFORT verified, or essentially erroryree. 
Consequently, they must be used with some caution and risk by the reader. Note also that only subroutines are listed, and a main 
program is needed to call them and provide an interface with the user's computer and I /0  devices. Also, as indicated in Section 4, 
other programs preferably from EISPACK and LINPACK, are required to call the QZ algorithm and to obtain singular values--if 
the numerical solutions to the examples given in Section 4 are to be obtained and compared, including the RBA as de~ned in equation 
(42). 

With respect to the program listing, the authors have noted that they "regard the program as a guideline for implementation of the 
algorithm by software experts". We would be interested in receiving comments about the inclusion of  the program code with this or 
any other paper, we will welcome any account of the experiences anyone has in attempting to use this algorithm. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12. 
13. 
l q .  
15. 
16. 
17. 
18. 
19. 
20.  
21.  
22.  
23.  
24.  
25.  
26.  
27.  
28.  
29.  
30.  
31.  
32.  
33.  
34 .  
35.  
36.  
37.  

Ediwr-m-Chief 
SUBROUTINE Z E R O S ( A , B , C , D , M , N M A X , N , P M A X , P , M A X , E P S , B F , A F , N U ,  

#RANK,SUM,DUMMY) 
C*** THIS ROUTINE EXTRACTS FROM THE SYSTEM MATRIX OF A STATE-SPACE 
C**# SYSTEM { A ( N , H ) , B ( H , M ) , C ( P , N ) , D ( P , M ) }  A REGULAR PENCIL 
c*** {~.BF(NU,NU)-AF(NU,NU)} NHICH HAS THE NU INVARIANT ZEROS OF 
C #*# THE SYSTEM AS GENERALIZED EIGENVALUES. THE ROUTINE ZEROS 
C ~** REQUIRES THE SUBROUTINES REDUCE, HOUSH, PIVOT, TRI AND TR2. 
C #*# THE PARAMETERS IN THE CALLING SEQUENCE ARE (STARRED INPUT 
C ~** PARAMETERS ARE ALTERED BY THE SUBROUTINE) : 
C ~** IHPUT: 
C**~ * A , B , C , D  THE SYSTEM DESCRIPTOR MATRICES 
C *~* M,N,P  THE NUMBER OF INPUTS, STATES AND OUTPUTS 
C ~*# PMAX,NMAX THE FIRST DIMENSION OF C,D AND A,B RESPECTIVELY 
C*** MAX THE FIRST DIMENSION OF AF,BF 

C ~*~ EPS THE ABSOLUTE TOLERANCE OF THE DATA(NOISE LEVEL),IT 
C ~** SHOULD BE LARGER THAN THE MACH. ACC.~HORM(A,B,C,D)  
C*#*  OUTPUT: 
C ~*~ BF,AF THE COEFFICIENT MATRICES OF THE REDUCED PENCIL 
C #** NU THE NUMBER OF ( F I N I T E )  INVARIANT ZEROS 
C ~*~ RANK THE NORMAL RANK OF THE TRANSFER FUNCTION 
C ~** HORKING SPACE: 

C ~w~ SUM A VECTOR OF DIMENSION AT LEAST MAX{M,P} 
C * ~  DUMMY A VECTOR OF DIMENSION AT LEAST MAX{M,N,P} 
C*** 

IMPLICIT REAL#8 (A-H,O-Z) 
LOGICAL ZERO 

INTEGER P,PMAX,PP,RANK,RO,SIGMA 
DIMENSION A(HMAX,H),B(NMAX,M),C(PMAX,N),D(PMAX,M),AF(MAX, 1), 

* B F ( M A X , 1 ) , S U H ( | ) , D U M H Y ( 1 )  
MM=M 
NN=N 
PP=p 

C* CONSTRUCT THE COMPOUND MATRIX I B A I OF DIMENSION (N+P)X(M+N) 
C* I D C I 

IF (MM.EQ.O)  GO TO ]5 
DO 10 I = l , N N  
DO 10 J = I , M H  
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38. 
39. 
gO. 
41. 
q2. 
43. 
qq. 

~5, 
46. 
q7. 
qs. 
hg. 
50. 
51. 
52. 
53. 
5q. 
55. 
56. 
57. 
58. 
59. 
60. 
61. 
62. 
63. 
64. 
65. 
66, 
67. 
68. 
69. 
70. 
71. 
72. 
73. 
74. 
75. 
76. 
77. 
78. 
79. 
80. 
81. 
82. 
83. 
8q 
85  
86 
87 
88 
89 
90 
91 
92 
93 
9q 
95 
96 
97 
98 
99 

I00 
101 
102 
I03 
I04 
105 
106 
107 
I08 
109 
110 
111 
1 1 2 .  
1 1 3 .  
1 1 g .  
1 1 5 .  
1 1 6 .  

C'w* 

C*** 
C*** 
C*** 
C*** 

I0 BF(I,J)=B(I,J) 

15 DO 20 I:I,NN 
DO 20 J=I,NN 

20 BF(I,J+MM):A(I,J) 
IF(PP.EQ.O) GO TO 45 
IF(MH.EQ.0) GO TO 35 
DO 30 I=I,PP 

DO 30 J=I,MM 
30 BF(I+NN,J)=D(I,J) 
35 DO gO I=I,PP 

DO 40 J=I,NN 
gO BF(I+NN,J+MH)=C(I,J) • 

C* REDUCE THIS SYSTEM TO ONE WITH THE SAME INVARIANT ZEROS AND WITH 
C* D FULL ROW RANK HU (THE NORMAL RANK OF THE ORIGINAL SYSTEM). 
C* 

g5 RO=PP 
SIGMA=O 

CALL REDUCE(BF,MAX,MM,NN,PP,EPS,RO,SIGMA,MU,NU,SUM,DUMMY) 
RANK=MU 

IF(HU.EQ.0) RETURN 
C* PERTRANSPOSE THE SYSTEM. 

NUHU:NU+MU 
MNU=MM+NU 
NUMUI=NUMU+I 
MNUI=MNU+I 
DO 50 I=I,NUMU 

DO 50 J=I,MNU 
50 AF(HNUI-J,NUHUI-I)=BF(I,J) 

IF (HU.EQ.MM) GO TO 55 
PP=MM 
NN=NU 
MM=MU 

C* REDUCE THE SYSTEM TO ONE WITH THE SAME INVARIANT ZEROS AND WITH 
C* D SQUARE INVERTIBLE. 

C* 
RO=PP-HM 
SIGMA=MM 
CALL REDUCE(AF,HAX,MM,NN,PP,EPS,RO,SIGMA,MU,NU,SUM,DUMHY) 

IF(NU.EQ.O) RETURN 
C* PERFORM A UNITARY TRANSFORMATION ON THE COLUMNS OF ]II-A B I IN 
C* I%BF-AF X[ I -C D I 
C* ORDER TO REDUCE IT TO I 0 YI WITH Y AND BF SQUARE INVERTIBLE 

C* 
HNU=MM+NU 

55 DO 70 I=I,NU 
DO 60 J=I,MNU 

60 BF(I,J)=0.D0 
70 BF(I,I+MM)=I.D0 

IF(RANK.EQ.0) RETURN 
NUI=NU+I 
II=NU+MU 
JI=MNU+I 
10=HM 
DO 90 I=I,MM 

I0=I0-1 
DO 80 J:I,NUI 

80 DUHMY(J)=AF(II,I0+J) 
CALL HOUSH(DUMHY,NUI,HUI,EPS,ZERO,S) 
CALL TR2(AF,HAX,DUHMY,S, I,II,10,NUI) 
CALL TR2(BF,HAX,DUMMY,S, I,NU,IO,NUI) 

90 II=II-1 
RETURN 
END 
SUBROUTINE REDUCE(ABCD,MDIHA,M,N,P,EPS,RO,SIGMA,MU,NU,SUM, 

*DUMMY) 
THIS ROUTINE EXTRACTS FROM THE (N+P)X(N+N) SYSTEM [ B A ] 

I B'A' ] [ D C ] 
A (NU+MU)X(M+NU) 'REDUCED' SYSTEM [ D'C' ] HAVING THE SAME 
TRANSMISSION ZEROS BUT WITH D' OF FULL ROW RANK. THE SYSTEM 
{A',B',C',D'} OVERWRITES THE OLD SYSTEM. EPS IS THE NOISE 
LEVEL. SUM(MAX[P,M})  AND DUMMY(MAX{P,N)) ARE WORKING ARRAYS. 

IMPLICIT REAL*8 (A-H,O-Z) 
INTEGER TAU,P,RO,ROI,SIGMA 
LOGICAL ZERO 
DIMENSION ABCD(HDIMA, I),DUMMY(1),SUM(1) 

MU=P 
NU=N 

10 IF(MU.EQ.0) RETURN 
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117 
118 
119 
120 
121 
122 
123 
124 
125 .  
126 .  
127 .  
128 .  
129 .  
130 .  
131 . 
132 .  
133 .  
134. 
135 
136 
13'7 
138 
139 
140 
41 
42 
43 
qq 

q5 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62. 
63. 

6 q .  
165 .  
166 .  
167 .  
168 .  
169 
170 
171 
172 
173 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 

188.  
189 
190 
191 
192 .  
193 .  
194 .  
195 .  
196 .  

C*** 

3O 
C*** 

40 

50 
55 
60 

C * * *  

7O 
C*** 

80 
90 

C*** 

C ~  

150 
C*** 

160 
170 

ROI=RO 
MNU=M+NU 

NUMU=NU+MU 
IF(M.Eq.0) GO TO 120 
RO1=RO1+1 
IROW=NU 
IF(SIGMA.LE.I) GO TO 40 
COMPRESS ROWS OF D. F I R S T  E X P L O I T  T R I A N G U L A R  S H A P E  ~ *  

MI=SIGHA-I 
DO 30 ICOL=I,MI 

DO 20 J = I , R O 1  
20 D U M M Y ( J ) = A B C D ( I R O W + J , I C O L )  

CALL HOUSH(DUHMY,ROI ,  1 , E P S , . Z E R O , S )  
CALL TRI(ABCD,MDIMA,DUHMY,S,IROW,ROI,ICOL,MNU) 

IROW=IROW+I 
C O N T I N U E  WITH HOUSEHOLDER WITH PIVOTING #*# 
IF(SIGMA.HE.O) GO TO 45 

SIGMA=I 
ROl=RO1-1  

45 I F ( S I G H A . E Q . M )  GO TO 60 
DO 55 I C O L = S I G M A , M  

DUM=O,DO 
DO 50 J = I , R O 1  

D U M = D U M + A B C D ( I R O W + J , I C O L ) # A B C D ( I R O W + J , I C O L )  
SUM( ICOL)=DUM 

DO 100 I C O L = S I G H A , M  
PIVOT IF NECESSARY *** 

IF(ICOL.EQ.H) GO TO 80 
CALL PIVOT (SUM,DUM,IBAR,ICOL,M) 
IF(IBAR.EQ.ICOL) GO TO 80 
SUH(IBAR)=SUM(ICOL) 
SUM( ICOL)=DUM 

DO 7 0  I = I , N U M U  
DUM=ABCD(I,ICOL) 
ABCD(I,ICOL)=ABCD(I,IBAR) 
ABCD(I,IBAR)=DUH 

PERFORM HOUSEHOLDER TRANSFORMATION #~# 
DO 90 I=I,ROI 

DUHHY(I)=ABCD(IROW+I,ICOL) 
CALL HOUSH(DUHHY,ROI, I,EPS,ZERO,S) 
IF(ZERO) GO TO 120 
IF(ROI.EQ.I) RETURN 
CALL TRI(ABCD,MDIMA,DUMMY,S,IROW,ROI,ICOL,MNU) 
IROW=IROW+I 
RO1=ROI-I 
DO 100 J=ICOL,H 

100 S U H ( J ) = S U H ( J ) - A B C D ( I R O W , J ) * A B C D ( I R O H , J )  
120 TAU=RO1 

SIGHA=HU-TAU 
COMPRESS THE COLUMNS OF C *~ 
I F ( N U . L E . 0 )  GO TO 2 2 0  
II=NU+SIGMA 
MM1=M+1 
NI=NU 
IF(TAU.EG.I) GO TO lq0 
DO 135 I = I , T A U  

DUM=O.DO 
DO 130 J=MMI,MNU 

130 DUH=DUM+ABCD(I I+ I ,J ) *ABCD(I I+ I ,J )  
135 SUM(I)=DUH 
140 DO 200 R O I = I , T A U  

RO=ROI-1  
I=TAU-RO 
I2=I+I1 

PIVOT IF NECESSARY *~ 
I F ( I . E Q . 1 )  GO TO 160 
CALL PIVOT(SUH,DUM,IRAR,I , I )  
I F ( I B A R . E Q . I )  GO TO 160 
SUH(IBAR)=SUM(I) 
SUM(I)=DUH 
DO 150 J=MM1,HNO 

D U H = A B C D ( I 2 , J )  
A B C D ( I 2 , J ) = A B C D ( I B A R + I 1 , J )  
ABCD( IBAR+I I ,J )=  DUN 

PERFORM HOUSEHOLDER TRANSFORMATION **w 
DO 170 J = I , N 1  

DUMMY(J)=ABCD(I2,M+J) 
CALL ~ O U S H ( D U M M Y , N 1 , N 1 , E P S , Z E R O , S )  
I F ( Z E R O )  GO TO 210 
IF(N1.gq. I) GO TO 200 
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197 .  
198. 
199 .  
2 0 0 .  
201 . 
2 0 2 .  
2 0 3 .  
2 0 4 .  
2 0 5 .  
2 0 6 .  
2 0 7 .  
208. 
209. 
2 1 0 .  
2 1 1 .  
212, 
2 1 3 .  
2 1 q .  
2 1 5 .  
2 1 6 ,  
2 1 7 .  
2 1 8 .  
2 1 9 .  
2 2 0 .  
221 . 
2 2 2 .  
2 2 3 .  
2 2 4 .  
2 2 5 .  
2 2 6 .  
227 
228 
229 
230 
231 
232 
233 
2 3 4 .  
2 3 5 .  
2 3 6 .  
2 3 7 .  
2 3 8 .  
2 3 9 .  
240. 
241 . 
2q2. 
243. 
2 4 4 .  
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
2 5 8 .  
2 5 9 .  
2 6 0 .  
261 . 
2 6 2 .  
2 6 3 .  
2 6 4 .  
2 6 5 .  
2 6 6 .  
2 6 7 .  
268. 
269. 
2 7 0 .  
271 . 
2 7 2 .  
2 7 3 .  
27q. 
2 7 5 .  

CALL TR2(ABCD,MDIMA,DUMMY,S, 1,12,M,NI) 
MNI=M+NI 
CALL TRI(ABCD,MDIMA,DUMMY,S,O,NI, I,MHI) 
DO 190 J = l , I  

190 SUM(J)=SUM(J)-ABCD(II+J,MNI)~ABCD(II+J,MNI) 
MNU=MNU-I 

200 NI=NI-I 
RO=TAU 

210 NU=NU-RO 
MU=SIGMA+RO 
IF (RO.EQ.O) RETURN 
GO TO 10 

220 HU=SIGMA 
NU=0 
RETURN 
END 
SUBROUTINE PIVOT(NORM,MAX,IBAR,II , I2) 

C * * ~  THIS SUBROUTINE COMPUTES THE MAXIMAL ELEMENT (MAX) OF THE 
C * ~ *  VECTOR N O R M ( I I , . . . , I 2 )  AND ITS LOCATION IBAR 

REAL*8 NORM(1),MAX 
IBAR=II 
MAX=NORM(1) 
111=II+I 
IF(III.GT.12) RETURN 
DO I0 I=III,12 

IF(MAX.GE,NORM(1)) GO TO I0 
MAX=NORM(1) 
IBAR=I 

10 CONTINUE 
RETURN 
END 
SUBROUTINE HOUSH(DUMMY,K,J,EPS,ZERO,S) 

C W*~ THIS ROUTINE CONSTRUCTS A HOUSEHOLDER TRANSFORMATION H=I-S.UU ' 

C ~* THAT 'MIRRORS' A VECTOR DUMMY(I,..,K) TO THE JTN UNIT VECTOR 

C wWW IF NORM(DUMMY)<EPS, ZERO IS PUT E@UAL TO .TRUE. 

C W~W UPON RETURN U IS STORED IN DUMMY 
REAL*8 D U M N Y ( K ) , S , A L F A , D U M 1 , E P S  
LOGICAL ZERO 
ZERO=.TRUE. 
S=0.D0 
DO 10 I = I , K  

10 S=S+DUMMY(I)*DUMMY(I) 
ALFA=DSQRT(S) 
IF (ALFA.LE.EPS) RETURN 
ZERO=.FALSE. 
DUMI=DUMMY(J) 
IF(DUMI.GT.O.DO) ALFA=-ALFA 
DUMMY(J)=DUMI-ALFA 
S=I,DO/(S-ALFAWDUMI) 
RETURN 
END 
SUBROUTINE T R I ( A , M D I M A , U , S , I I , I 2 , J 1 , J 2 )  

C*~* THIS ROUTINE PERFORMS THE HOUSEHOLDER TRANSFORMATION H=I -S .UU'  
CWW* ON THE ROWS I I + I  TO I I + 1 2  OF A, THIS FROM COLUMNS J1 TO J2. 

C*~W 
REAL*8 A(MDIMA, I),U(I2),S,INPROD,Y 
DO 20 J=JI,J2 

INPROD=0.DO 
DO 10 I = I , I 2  

I0 INPROD:INPROD+U(I)WA(I 1+ I , J )  
Y=INPROD~S 
DO 20 I = l , I 2  

20 A ( I I + I , J ) : A ( I I + I , J )  -U(1)~Y 
RETURN 
END 
SUBROUTINE TR2(A,MDIMA,U,S,II,I2,JI,J2) 

C ~W~ THIS ROUTINE PERFORMS THE HOUSEHOLDER TRANSFORMATION H=I-S-UU ' 

C ~W* ON THE COLUMNS JI+I TO J1+J2 OF A, THIS FROM ROWS II TO I2. 

C~W~ 

10 

20 

REAL*8 A(MDIMA, I ) ,U(J2) ,S, INPROO,Y 
DO 20 I = I I , 1 2  
INPROD=0.D0 
DO 10 J=1,J2 

INPROD:INPROD+U(J)*A(I,JI+J) 
y:INPRODWS 
DO 20 J = I , J 2  

A ( I , J I + J ) = A ( I , J I + J ) - U ( J ) ~ Y  
RETURN 
END 


