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Optimization over the Stiefel manifold
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In this note we parameterize the Stiefel manifoldStk,n in a manner that allows to perform a constrained Newton step in a
relatively simple way.
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We develop an approach to perform Newton steps for the following constrained optimization problem (see[1])

min f : Stk,n → R, U 7→
1

2
tr(UT AUBT ) with givenA ∈ R

n×n, B ∈ R
k×k,

where typicallyk ≪ n. HereStk,n is the Stiefel manifold ofn × k orthonormal matrices, i.e. matricesU ∈ R
n×k s.t.

UT U = Ik. The local parameterization ofStk,n we use is based on the Cayley transformC(Ω) of the vector spaceW of
skew symmetric matricesΩ with block structure as

C(Ω) := (I + Ω)(I − Ω)−1, Ω =

[

Ω11 −ΩT
21

Ω21 0

]

, Ω11 = −ΩT
11 ∈ R

k×k, Ω21 ∈ R
(n−k)×k. (1)

The Stiefel manifoldStk,n is ad = k(n − k) + k(k−1)
2 dimensional manifold and clearly,dimW = d. The spaceW can

be used to parameterize the Stiefel manifoldStk,n aroundQ close to
[

Ik 0
]T

via the functionϕ : W → Stk,n, defined by
Ω 7→ C(Ω)Q. PartitionQ ∈ Stk,n and the transformationU = C(Ω)Q as follows :

Q =

[

Q1

Q2

]

, U = C(Ω)

[

Q1

Q2

]

=

[

U1

U2

]

, U1, Q1 ∈ R
k×k, U2, Q2 ∈ R

(n−k)×k. (2)

Therefore

(I + Ω)

[

Q1

Q2

]

= (I − Ω)

[

U1

U2

]

⇐⇒ Ω

[

U1 + Q1

U2 + Q2

]

=

[

U1 − Q1

U2 − Q2

]

with
[

U1

U2

]

=

[

−Q1

Q2

]

+ 2

[

I

Ω21

]

S−1
c (Q1 − ΩT

21Q2), Sc := Ik − Ω11 + ΩT
21Ω21. (3)

The inverse mapϕ−1 can be defined for allU for whichdet(U1 + Q1) 6= 0 :
[

Ω11

Ω21

]

=

[

(UT
1 + QT

1 )−1(QT
1 U1 + UT

2 Q2 − UT
1 Q1 − QT

2 U2)
U2 − Q2

]

(U1 + Q1)
−1. (4)

Assumen ≥ 2k. Then it can easily be shown that for a givenQ ∈ Stk,n the subset of all thoseU ∈ Stk,n for which

det(U1 +Q1) = 0 is a subset of measure zero. In particular, this means that ifQ is sufficiently close to
[

Ik 0
]T

, ϕ is not just
a local parameterization aroundQ, but almost all ofStk,n can be parameterized viaϕ. Notice, however, that ifQ is not close

to
[

Ik 0
]T

, then those points onStk,n which are not in the image ofϕ might get arbitrarily close toQ. Clearly, the image
of ϕ is always connected. Notice that the complexity of applyingthe transformationC(Ω) to Q requires only8nk3 + O(k3)
floating point operations because of the use of the Schur complementSc.

To establish a Newton-type method onStk,n exploiting the parameterizationϕ we proceed as follows. For any∆ ∈ W we
compute the directional derivative

D(f ◦ ϕ)(Ω)∆ =
d

d ε
(f ◦ ϕ)(Ω + ε∆)

∣

∣

∣

∣

ε=0

= tr (GΩ)
T

∆, (5)
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with

GΩ := (I + Ω)−1(AUBT + AT UB)QT (I + Ω)−1 (6)

and where we used

DC(Ω)∆ =
d

d ε
C(Ω + ε∆)

∣

∣

∣

∣

ε=0

= 2(I − Ω)−1∆(I − Ω)−1. (7)

As f ◦ϕ is a function onW we establish an explicit expression for the gradient off ◦ϕ using the metric induced by the inner
product〈X,Y 〉W := tr(XT Y ) for all X,Y ∈ W. That is

D(f ◦ ϕ)(Ω)∆ = tr
(

∆T grad(f ◦ ϕ)(Ω)
)

(8)

with

grad(f ◦ ϕ)(Ω) =
1

2

(

(GΩ − GT
Ω) −

[

0 0
0 In−k

]

(GΩ − GT
Ω)

[

0 0
0 In−k

])

, (9)

being the image ofGΩ under the orthogonal projection ontoW. Accordingly, an explicit expression for the Hessian operator

Hess(f◦ϕ)(Ω) : W → W (10)

can be achieved via computing the directional derivative ofthe gradient

Hess(f◦ϕ)(Ω) ∆ = D(grad(f ◦ ϕ)(Ω))∆ =
d

d ε
grad(f ◦ ϕ)(Ω + ε∆)

∣

∣

∣

∣

ε=0

. (11)

Now using

DU(Ω)∆ = (D C(Ω)∆)Q = 2(I − Ω)−1∆(I − Ω)−1Q (12)

and the abbreviations

Â := (I + Ω)−1A(I − Ω)−1, B̂ := (I − Ω)−1QBQT (I + Ω)−1 (13)

we get

DGΩ∆ = 2Â∆B̂T + 2ÂT ∆B̂ − (I + Ω)−1∆GΩ − GΩ∆(I + Ω)−1. (14)

For each Newton step we need to solve for a skew symmetric∆ the linear equation

Hess(f◦ϕ)(Ω) ∆ = − grad(f ◦ ϕ)(Ω). (15)

This is a linear equation on the space of skew symmetric matrices. If the HessianHess(f◦ϕ)(Ω), now considered as the
quadratic formW ×W → R, is invertible, the linear system has a unique solution in terms of a∆ ∈ W.

The corresponding algorithm was implemented and numericalexperiments showed quadratic convergence for a starting
point in the basin of attraction as expected.
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