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Optimization over the Stiefel manifold
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In this note we parameterize the Stiefel maniféit); ,, in a manner that allows to perform a constrained Newton step in a
relatively simple way.
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We develop an approach to perform Newton steps for the faligwonstrained optimization problem (sgé
1 . .
min f: Sty, = R, U 5tr(UTAUBT) with given A € R"*", B € R¥**,

where typicallyk < n. Here St , is the Stiefel manifold of: x & orthonormal matrices, i.e. matricés € R"** s.t.
UTU = I,. The local parameterization ¢ft; ,, we use is based on the Cayley transfatif2) of the vector spaceV of
skew symmetric matriceQ with block structure as

Q. Q%

CQ) =T+ -7, Q:[Q21 0

] . Q=0T e RFF Qy e ROVTRXE (1)
The Stiefel manifoldSty, ,, is ad = k(n — k) + @ dimensional manifold and clearlgim ¥V = d. The spacé/V can

be used to parameterize the Stiefel manifétd ,, around() close to [Ik O]T via the functionp: W — Sty ,,, defined by
02— C(Q)Q. Partition € Sty ,, and the transformatioti = C'(2)() as follows :

“ [ gi ] Vo { 8; } - [ gl } Ui, Qi € M, U, Qp € ROTHE, ®)
Therefore
Qi | _ U1 Ui+Q1 ] [ Ui—@Q
(1+Q){Qz ] = (I Q)[UJ — Q[U2+Q2 } _ [ UZ_QZ}
with
i g; } - [ 7QQ21 } +2[ Qj;l :|561(Q1 -5 Qy), S.:=1I — Qi + 0% 0. @)

The inverse map—! can be defined for all’ for whichdet(U; + Q1) # 0 :

[ Q][ U+ QD) QTUL + U Q- UL Q1 — Q1U,) —1

Assumen > 2k. Then it can easily be shown that for a givene St ,, the subset of all thos& < St ,, for which

det(U1 + Q1) = 0is a subset of measure zero. In particular, this means thaisiufficiently close td ;. O]T, @ is not just
a local parameterization arouddl but almost all 0fSt;, ,, can be parameterized vja Notice, however, that i) is not close
to [Ik O]T, then those points o6t ,, which are not in the image af might get arbitrarily close tg). Clearly, the image
of o is always connected. Notice that the complexity of applymgtransformatioi () to Q requires only8nk? + O(k?)
floating point operations because of the use of the Schur leongmts...

To establish a Newton-type method 6ty ,, exploiting the parameterizatignwe proceed as follows. For ady € ¥V we
compute the directional derivative

D(fo @)D= (fog)(@+eh)| =x(Ca)' A, (5)
=0
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with
Go = (I+9Q) Y(AUBT + ATUB)QT (I + Q) ! (6)

and where we used

DC(N)A = diEC(Q+eA) =2(I - Q) AT - Q)L (7)
e=0
As f o pis a function on/Y we establish an explicit expression for the gradient ofp using the metric induced by the inner
product(X,Y)yy = tr(X7Y) forall X,Y € W. Thatis

D(f o @)@ = tr (AT grad (S 0 9)() ®
with
mad(fo (@) =5 (o -8 - o ;0 JGa-cB]) ° ]). ©

being the image of7(, under the orthogonal projection ont®. Accordingly, an explicit expression for the Hessian ofmra
HeSS(fO@)(Q): W — W (10)

can be achieved via computing the directional derivativihefgradient

Hess(fop) ) A = D(grad(f o ¢)(2))A = % grad(f o ¢)(Q +cA) . (11)
e=0
Now using
DU)A = (DC(N)A)Q =2(I - Q) 'AI-2)'Q (12)

and the abbreviations

A=T+Q AT -7, B:=I-0)"'QBQTI+ 0! (13)
we get

D GoA = 2AABT 4+ 2ATAB — (I 4+ Q) 'AGq — GoA(I + Q)7L (14)
For each Newton step we need to solve for a skew symmattlee linear equation

Hess(fopy (@) A = —grad(f o ¢)(Q). (15)

This is a linear equation on the space of skew symmetric oeatri If the Hessiatless f.,)(q), Now considered as the
quadratic formV x W — R, is invertible, the linear system has a unique solutionimgof aA € W.

The corresponding algorithm was implemented and numeexaériments showed quadratic convergence for a starting
point in the basin of attraction as expected.
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