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Abstract— We consider the problem of finding the optimal
correlation between two projected matricesU∗AU and V∗BV.
The square matricesA and B may be of different dimensions,
but the isometriesU and V have a common column dimension
k. The correlation is measured by the real functionc(U,V) =
ℜ tr(U∗AUV∗B∗V), which we maximize of the isometries
U∗U = V∗V = Ik.

This problem can be viewed as an extension of the general-
ized numerical range of two matrices, which are now allowed
to be of different dimension. We discuss several properties of
this optimization problem, characterize its extremal points
and propose an algorithm converging to such an extremal
point.

Keywords— Correlation, Trace maximization, Generalized
numerical range, Isometry

I. I NTRODUCTION

The problem of projection of matrices in lower-
dimensional subspaces is of great interest for a large
range of applications. The projection of matrices provides
an easier visualization and comprehension of the initial
problem and is often used to reduce its complexity. More-
over the correlation between these projections can reveal
some particularities inherent to the data which can then be
analyzed and interpreted.

We consider the correlation between two projected ma-
trices U∗AU and V∗BV, whereA and B are respectively
of dimensionsm×m and n×n. The isometriesU andV
have a common column dimensionk and satisfy thus the
constraintU∗U = V∗V = Ik, whereIk denotes the identity
matrix of dimensionk ≤ min(m,n). The correlation is
expressed as the real function

c(U,V) = ℜ tr(U∗AUV∗B∗V). (1)

This is a generic problem which can be linked to various
applications treated in the literature and which has been
studied extensively in a variety of contexts for particular
dimensions of the projection and of the matrices. A first
field of application lies in the analysis of graphs. The
notion of graph similarity matrix, which is a matrix that
expresses how similar the nodes of two graphs are, has
recently been introduced in [1]. For undirected graphs, this
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similarity matrix is the correlation of the graph adjacency
matrices projected in a one-dimensional subspace. The
graph similarity matrix is e.g. useful for the development of
efficient Web search engines or the automatic extraction of
synonyms in a dictionary. Another important task in graph
analysis is that of graph matching which is a fundamental
problem in pattern recognition and in shape and image
analysis. A popular class of methods in graph matching
are the spectral methods in which spectral properties of
characteristic matrices are used to compare the graphs. The
spectral method developed in [2] combines a projection
technique and a clustering algorithm to match the graphs in
a lower-dimensional subspace. It can be shown that the step
of projection used by the authors is equivalent to maximize
(1) for symmetric matricesA and B. A second field of
applications concerns experiments in quantum mechanics
and in particular the task of maximizing the signal intensity
in coherent spectroscopy (see e.g. [3] and [4]). From a
mathematical point of view, this problem is equivalent
to optimizing an expression similar to (1) where all the
matrices are square.

In the linear algebra literature, problem (1) has also
been largely studied for particular cases and dimensions
and hence constitutes an extension of a variety of known
problems. For the case where all the matrices are square,
this problem corresponds to the generalized numerical
range (orB-numerical range). See e.g. [5] and [6] for
a survey on the properties of the generalized numerical
range. For the scalar case which corresponds to a one-
dimensional projection, the expression (1) is equivalent to
the product of the field of values of two matrices (see
e.g. [7]). In this paper we extend these existing notions to
a more general case of dimensions of matrices. We treat
also the complex and real cases.

From a numerical point of view, many algorithms exist
to maximize (1) for particular dimensions of the matrices
(e.g. [3] and [8]). We develop here a simple recursive
algorithm valid for the general case, i.e. for complex or
real problems and for all dimensions of the matrices.
Characterizations of the fixed points of the function and
of the algorithm are presented.

The paper is organized as follows. In Section 2, we intro-
duce some notations. In Section 3, we define the problem
considered in the paper which consists of maximizing an



expression similar to (1) for a general case of dimensions
of the matrices. We recall some important results from
the literature that we can link to our problem. The first
one concerns of square matrices and appears in the field
of the generalized numerical range and in the context of
semi-definite programming relaxations. The second case is
about scalar projections and is linked to the field of values
of matrices. The main new results are in Section 4 where
we characterize the fixed points of the problem. Then we
focus on the case of Hermitian and normal matrices and
we give lower and upper bounds for the optimal value.
In Section 5, we propose a simple algorithm to solve the
optimization problem. The last Section 6 summarizes the
results and describes some directions for future research.

II. N OTATIONS

In this section, we introduce some notations used in the
paper. The first part treats of the complex and Hermitian
inner product of matrices, while the second part summa-
rizes some definitions about derivatives of functions with
matrix arguments.

A. Inner product

Let R andC denote the real and complex field, respec-
tively. R

m×n andC
m×n denote the set of allm×n real and

complex matrices.XT , X̄ and X∗ represent respectively
the transpose, the complex conjugate and the complex
conjugate transpose ofX. The inner product between
matrices is defined as follows. ForX, Y ∈ R

m×n, the real
inner productis denoted by

〈X,Y〉 =
m

∑
i=1

n

∑
j=1

Xi jYi j

and can be linked to the trace function of a matrix:

〈X,Y〉 = tr(XYT) = tr(XTY).

For complex matricesX, Y ∈ C
m×n, the complex inner

product is defined by

〈X,Y〉C =
m

∑
i=1

n

∑
j=1

X̄i jYi j

and can be linked again to the trace

〈X,Y〉C = tr(XY∗).

We introduce also theHermitian inner productas the real
part of the complex inner product:

〈X,Y〉H = ℜ(〈X,Y〉C) = 〈ℜ(X),ℜ(Y)〉+ 〈ℑ(X),ℑ(Y)〉.

B. Derivatives

Let f (X) : C
m×n → R be a differentiable real-valued

function with matrix argumentX. Then the first-order
approximation off at a pointX can be expressed as

f (X +∆) = f (X)+ 〈∇ f (X),∆〉H +o(‖∆‖) (2)

where the derivative∇ f (X) is the m× n matrix whose
(i, j) entry is ∂ f (X)

∂Xi, j
. To differentiate an expressionf (X)

with respect to a complex variableX, the more general
complex derivative calledcomplex Gradient Matrixfor
a real function f of a complex matrixX is used. This
gradient∇ f is defined by (2) and allows us to estimate
some derivatives of inner products we need in the paper
in order to calculate gradients.

III. M AIN KNOWN RESULTS

For A ∈ C
m×m andB ∈ C

n×n, we consider the following
problem

max
U∗U = Ik
V∗V = Ik

〈U∗AU,V∗BV〉H (3)

whereU ∈ C
m×k andV ∈ C

n×k with k ≤ min(m,n). For
real matricesA and B, U and V must also be real. This
problem has largely been studied for particular dimensions
of m,n andk. The first section contains results existing for
m= n = k and the second one fork = 1.

A. Square matrices U and V

For m = n = k, U and V are square matrices and the
problem we consider is equivalent to:

max
Q∗Q = I

〈Q∗AQ,B〉H (4)

where the optimization depends only on the unitary matrix
Q which corresponds to the productUV∗. This problem
has been studied in a variety of contexts. In the rest of
the section, we connect our problem to theB-numerical
range and present results in the field of semi-definite
programming relaxations in the aim to provide bounds on
the problem. To link the notations used in the literature for
this problem with (4), we point out that

〈Q∗AQ,B〉H = ℜ(tr(AQB∗Q∗)) = ℜ(tr(B∗Q∗AQ)) .

1) B-numerical range:The problem (4) is equivalent
to maximizing the real part of theB-numerical range of
A (or generalized numerical range) introduced by [9] and
defined by

WB(A) := {tr(B∗Q∗AQ) : Qis unitary}.

The B-numerical range has been studied by many au-
thors in the last few decades (see e.g. [5] and [6] for a sur-
vey on the properties of the generalized numerical range)
and has many domains of applications, e.g. in quantum
dynamics for the study of the efficiency of polarization or
coherence transfer between quantized states under unitary
transformations (e.g. [3] and [4]). Some authors have also
used the numerical range to study problems on norms of
operators (see [5]).

2) Semidefinite programming relaxations:



a) Real matrices:In the case of real matricesA and
B and by adding the redundant constraintsQQT = I , the
problem (4) becomes

νP = max
QT Q = I
QQT = I

tr(AQBTQT). (5)

By a reasoning similar to the one developed in [8], we
construct the following dual Lagrangian:

νD = min trS+ trT (6)

s.t. B⊗A
2 + BT⊗AT

2 −S⊗ I − I ⊗T � 0
S= ST

T = TT

where the two symmetric matrices of Lagrange multipliers
S and T are used to relax the constraintsQTQ = I and
QQT = I and ⊗ denotes the Kronecker product. The
redundant constraintQQT = I is added in order to close
the duality gap for symmetric matricesA andB. Indeed, it
is proved that strong duality holds for symmetric matrices,
i.e. νP = νD. For non-symmetric matrices, strong duality
does not hold, but this method provides an upper bound
νD for the problem we consider, i.e.νP ≤ νD.

b) Complex matrices:A complex matrixA = AR +
jAI of dimensionn×n can be represented by a real matrix
Ã of dimension 2n×2n of the form:

Ã =

(

AR AI

−AI AR

)

. (7)

For a Hermitian matrixA, Ã is symmetric while for a
unitary matrixQ, Q̃ is orthogonal. The following theorem
results from this representation.

Theorem 1:Suppose that we represent the matricesA,
B andQ ∈ C

n×n by the matricesÃ, B̃ andQ̃ ∈ C
2n×2n by

use of the expression (7). Then we obtain the following
link between the two trace functions:

2ℜ tr(AQB∗Q∗) = tr(ÃQ̃B̃TQ̃T). (8)
By Theorem 1, the optimization problem (4) in term of
complex matrices is equivalent to maximizing

max
Q̃T Q̃ = I

1
2

tr(ÃQ̃B̃Q̃T). (9)

expressed in term of real matrices. The dual method
developed previously for real matrices can then be applied
in the same way and provides an upper bound for the
problem.

B. One-dimensional matrices U and V

When k equals one, the matricesU andV are reduced
to vectorsu andv and the problem (3) becomes

max
u∗u = 1
v∗v = 1

〈u∗Au,v∗Bv〉H . (10)

This problem is related to the notion of the field of values.
The field of values of a matrixA (also known as the
numerical range) is defined by [7]

F(A) := {x∗Ax : x∈ C
n
, x∗x = 1}.

The problem is then reduced to obtaining the maximum of
the Hermitian product of the elements from the fields of
values ofA and ofB. The field of values is known to be a
convex subset of the complex plane while the product of
two fields of valuesF(A)F(B) is generally not a convex
set.

In the real and Hermitian cases, we obtain the exact
optimal value of the function while in the complex case,
we can only derive some upper bounds for this optimal
value.

1) Hermitian case:For a Hermitian matrixAH , the field
of values is a real interval and any pointα of the field of
value can be be bounded by

λmin(AH) ≤ α ≤ λmax(AH)

with λmin(AH) and λmax(AH) the smallest and largest
eigenvalues ofAH . This interval is the smallest that con-
tains F(AH). The solution of (10) is then the product of
the adequate extremal (smallest and largest) eigenvalues
of the Hermitian matricesAH and BH depending on their
signs. The solutionsu and v providing the optimum are
the eigenvectors ofAH and BH corresponding to the
eigenvalues providing the solution, respectively.

2) General complex case:For complex matricesA and
B, the field of values is a set of complex values. Any point
α + jβ of F(A) and γ + jδ of F(B) satisfies

λmin(AH) ≤ α ≤ λmax(AH) ,

λmin(AS) ≤ β ≤ λmax(AS) ,

λmin(BH) ≤ γ ≤ λmax(BH) ,

λmin(BS) ≤ δ ≤ λmax(BS) ,

where AH = A+A∗

2 , BH = B+B∗

2 represent the Hermitian
parts of A and B, AS = A−A∗

2 j , BS = B−B∗

2 j the skew-
Hermitian parts ofA and B. These intervals define the
smallest boxes containingF(A) and F(B). These bounds
on the fields of values provide an upper bound for the
problem (10).

3) Real case:For a real matrixA, the field of value
could be complex in general. The real field of values
associated with a real square matrixA is defined by [7]

FR(A) := {xTAx : x∈ R
n
,xTx = 1}.

If we notice thatFR(A) = FR(AS), with AS = A+AT

2 the
symmetric part ofA, then it is sufficient to consider only
the symmetric part of the matrix in order to study the real
field of values. The solution of (10), forA, B, u andv real,
is then the product of the adequate extremal eigenvalues of
the symmetric parts ofA andB depending on their signs.
The solutionsu and v are the eigenvectors ofAS and BS

corresponding to the eigenvalues forming the optimum.
In the particular case of real symmetric matrices, it can

be shown that our problem is linked to the concept of the
similarity matrix S introduced in [1] which expresses how
similar the vertices of two graphs are.



IV. T HE GENERAL CASE

In this section we provide some results obtained for the
general problem

max
U∗U = Ik
V∗V = Ik

〈U∗AU,V∗BV〉H (11)

where A ∈ C
m×m, B ∈ C

n×n, U ∈ C
m×k and V ∈ C

n×k

with k ≤ min(m,n). This problem is equivalent to maxi-
mizing the correlation between two projected matricesA
andB subject to isometry constraints.

We derive first the expressions for the fixed points of the
optimization problem. Then we consider some particular
cases, i.e. when one matrix is Hermitian, when the two
matrices are normal and finally whenk = min(m,n), i.e.
U or V is a square matrix. An upper and a lower bound
to the general problem are also obtained by decomposing
the problem into the sum of two Hermitian problems.

A. Fixed points

We consider the optimization problem (11) which is
an optimization problem of a continuous function on a
compact domain. There always exists a solutionU andV
optimizing the function such that the first order conditions
are satisfied. These first-order derivative optimality condi-
tions can be derived from the Lagrangian

F = 〈U∗AU,V∗BV〉H + 〈U∗A∗U,V∗B∗V〉H (12)

+〈X,(I −U∗U)〉H + 〈Y,(I −V∗V)〉H

whereX andY are Hermitian matrices of Lagrange mul-
tipliers. By taking a particular coordinate system, the first
order conditions can be expressed by:

UΣ = A∗U(V∗BV)+AU(V∗B∗V), (13)

VΣ = B∗V(U∗AU)+BV(U∗A∗U), (14)

with Σ a diagonal matrix.

B. Case where one matrix is Hermitian

In this section we consider the particular case where
one of the matrices is Hermitian (e.g.A = A∗). The
maximum of (11) is then achieved for matricesU andV
corresponding respectively to the dominant eigenvectors of
A and (B+B∗). MoreoverUΣV∗ is exactly of rankk. In
other words in this case the problem is decoupled regarding
the matricesA andB. The optimum is characterized by

Σ = U∗AUV∗(B+B∗)V =







α1β1 0 0

0
... 0

0 0 αkβk







whereα1, · · · ,αk and β1 · · · ,βk are k real eigenvalues of
A and(B+B∗) ordered in such a way that the optimum of
(11) equal to

1
2

trΣ =
1
2

(

k

∑
i=1

αiβi

)

(15)

is optimal for all the combinations of the eigenvalues.

In practice, the maximal sum is obtained for adequate
combinations of the eigenvalues and can be constructed
via a simple procedure.

C. Sum of two Hermitian problems

A square matrixA can always be decomposed into

A = AH + jAS

B = BH + jBS

where the matrices

AH =
A+A∗

2
, AS =

A−A∗

2 j

are Hermitian matrices. The objective function can then
also be decomposed into a sum of two Hermitian problems

1
2
〈U∗AHU,V∗BHV〉H +

1
2
〈U∗ASU,V∗BSV〉H . (16)

From (15), an upper bound for the optimal value can be
obtained for (16), expressed as follows:

1
2

(

k

∑
i=1

αH
i β H

i

)

+
1
2

(

k

∑
i=1

αS
i β S

i

)

whereαH
i andβ H

i represent the eigenvalues ofAH andBH

ordered in such a way that1
2

(

∑k
i=1 αH

i β H
i

)

is maximal over
all possible combinations, and whereαS

i and β S
i are the

eigenvalues ofAS andBS ordered such that12
(

∑k
i=1 αS

i β S
i

)

is maximal.
A lower bound can also be found by choosing the

matricesU and V optimizing one of the two Hermitian
problems and by calculating the value of (16) for this pair
of matrices which is the same for the two problems.

D. Case of two normal matrices

In case of normal matricesA and B (i.e. AA∗ = A∗A
and BB∗ = B∗B), the optimal value for the optimization
function can be found fork = 1 andk = m= n. In general,
for k ≤ min(m,n), we can only provide an upper bound
for the problem. The following developments are based
on the fact that all normal matrices are diagonalizable
under unitary transformation. We can thus transform the
matricesA and B to diagonal matricesDA and DB by
unitary transformations. We decompose them into real and
imaginary parts

DA = DAR + jDAI

DB = DBR + jDBI

where the subscriptsR and I denote respectively the real
and imaginary parts of the matrices.

1) One-dimensional case:For k = 1 and by using
the diagonalization of the normal matrices, (11) can be
expressed as follows:

max
u∗u = 1
v∗v = 1

〈u∗DAu,v∗DBv〉H .



This problem is equivalent to

maxℜ(
n

∑
i=1

µiαi)(
m

∑
i=1

νiβi)

s.t. ∑i µi = 1
∑i νi = 1
µi ≥ 0, νi ≥ 0

whereαi andβi are the eigenvalues ofA andB respectively,
µi = |ui |

2 and νi = |vi |
2 are nonnegative real numbers.

We optimize then the real part of the products of convex
combinations of the eigenvalues ofA andB. This problem
is a bilinear form with respect toµi and νi . If we fix µi

the problem is linear inνi and we resolve a linear pro-
gramming problem. The feasible set forms a polyhedron
and the optimal solution is situated on a vertex of this
polyhedron (or on a face of the polyhedron). We apply then
the same reasoning forµi to obtain the optimal solution.
The problem is then equivalent to finding the indicesi and
j maximizing

max
i, j

ℜ(αiβ j).

If we separate the real and imaginary parts ofαi and βi

the optimal value of the function becomes

max
i, j

(αiRβ jR +αiI β jI ), (17)

where the subscriptsR and I denote respectively the real
and imaginary parts. This problem can be solved inO(mn)
operations.

2) Square matrices:For k = n and by using again the
diagonalization of the matrices, (11) becomes:

max
Q∗Q = I

〈Q∗DARQ,DBR〉+ 〈Q∗DAI Q,DBI 〉.

By developing the first term and using a result of Birkhoff
(see [10]), the value at the optimum can be shown to be

n

∑
k,l=1

(αkRβlR +αkI βlI ) (18)

whereαkR, βlR, αkI andβlI are the elements ofdiag(DAR),
diag(DBR), diag(DAI ) and diag(DBI ), ordered in such a
way that (18) is maximal. The optimal value is thus
obtained for an adequate combination of the real and
imaginary parts of the eigenvalues ofA andB, which is a
linear programming problem.

3) General case:For 1≤ k≤ min(m,n) we optimize

max
U∗U = Ik
V∗V = Ik

〈U∗DARU,V∗DBRV〉+ 〈U∗DAI U,V∗DBI V〉.

An upper bound to this problem is then
k

∑
i, j=1

(αiRβ jR)+
k

∑
i, j=1

(αiI β jI ) (19)

where the elementsαiR andβiR in dAR anddBR are ordered
in such a way that∑k

i, j=1(αiRβ jR) is maximal and the
elementsαiI and βiI in dAI and dBI ordered such that
∑k

i, j=1(αiI β jI ) is maximal. This problem is combinatorial
and differs from (18).

E. Matrices U and V of maximal size

For k = min(m,n), the problem (11) is equivalent to

max
Q∗Q = I

〈Q∗AQ,B〉H

whereQ = UV∗ is an isometry of dimensionm×n. The
general problem is thus reduced to an optimization problem
with only one variableQ.

V. A LGORITHM

In this section we present an iterative algorithm to solve
the problem (11) whose fixed points satisfy the first-order
derivative conditions (13) and (14) forU and V. This
iteration is the following:

Ui+1Σi+1V
∗
i+1−U⊥i+1Σ−i+1V

∗
⊥i+1

= AUiV
∗
i B∗ +A∗UiV

∗
i B
(20)

whereU⊥ andV⊥ are orthogonal complements ofU andV
and Σ is a diagonal matrix. The subscripti +1 represents
the new stage of the iteration while the subscripti is the
current stage.Ui+1Σi+1V∗

i+1 is the best approximation of
rank k of AUiV∗

i B∗ +A∗UiV∗
i B.

In practice (20) is realized by application of the SVD
algorithm until convergence. At this moment, the solution
satisfies

UΣV∗ = AUV∗B∗ +A∗UV∗B+U⊥Σ−V∗
⊥. (21)

The convergence is not proved but in all our experiments
the process always converged linearly to a solution.

A. Relation to the optimization problem

In this part we show that the iteration is equivalent to
solving the optimization problem

max
U∗U = Ik
V∗V = Ik

〈U∗AU,V∗BV〉H (22)

whose fixed points are expressed by (13) and (14), i.e.

UΣ = A∗U(V∗BV)+AU(V∗B∗V), (23)

VΣ = B∗V(U∗AU)+BV(U∗A∗U). (24)

The expression (21) implies (23) and (24) by simply
right and left multiplying left- and right-hand sides of (21)
by V and U∗. Then a fixed point exists for the iterative
algorithm.

Conversely we can prove that (23) and (24) imply (21).
To show this we multiply (23) byV∗:

UΣV∗ = A∗UV∗BVV∗ +AUV∗B∗VV∗

= N(I −V⊥V∗
⊥)

with N =
(

A∗UV∗BVV∗ +AUV∗BTVV∗
)

. Here we used
VV∗ = I −V⊥V∗

⊥ becauseV is an isometry, then its pro-
jector VV∗ can be linked to its complementary projector
V⊥V∗

⊥. Similarly by multiplying (24) byU∗ and taking the
transpose, we obtain

UΣV∗ = (I −U⊥U∗
⊥)N.



An orthogonal projectorP⊥ of N satisfies the property
P⊥(P⊥N) = P⊥N. This property implies

NV⊥V∗
⊥ = U⊥U∗

⊥NV⊥V∗
⊥ = U⊥U∗

⊥N.

Therefore

UΣV∗ = N(I −V⊥V∗
⊥) = (I −U⊥U∗

⊥)N

lies in the orthogonal complement ofU and also ofV.
That proves the existence of a fixed point of (20).

B. Non-convexity

For arbitrary matricesA andB the set

{〈U∗AU,V∗BV〉H : U,V isometries}

is in general not convex. Local minima and local maxima
can exist and then the algorithm may not always converge
to the global optimum. We can notice the non-convexity of
the set by taking a particular example as follows. In case of
square matrices of the same dimensions, we optimize the
B-numerical range ofA, as defined previously. In general
WB(A) is not a convex set, e.g. [11] gave an example in
which B is normal but not Hermitian and whereWB(A) is
not convex. It is then easy to choose the coordinates for
U andV to generate a non-convex example.

VI. CONCLUSION

In this paper, we analyze the correlation between projec-
tions in lower-dimensional subspace of matrices submitted
to isometry constraints. Our problem provides a method
to project simultaneously the matrices in subspaces of
arbitrary dimensions and can be applied to both real and
complex matrices. We indicate that it is an extension of
various problems found in the literature. Many applications
can arise from this formulation.

We present some mathematical properties of the problem
and we characterize the maximal correlation for particular
matrices such as Hermitian or normal matrices. In general
only an upper bound can be found.

We develop an iterative algorithm providing the opti-
mum and we characterize the fixed points. This algorithm
is very simple to implement and is based on the SVD.
Because this problem is not convex, the analysis of con-
vergence and stability of the fixed points is difficult.

Investigations of mathematical properties and applica-
tions of the correlation between projected matrices can
be pursued in several directions. A deeper analysis of the
convergence of the algorithm is worthwhile to consider. We
outline a few possible improvements and future research
directions. The first possible improvement concerns the
convergence of the algorithm. Experimentally we observe
a linear convergence to the optimum but this convergence
has not yet been proved and remains an important point
to develop in the future. Secondly, because the problem is
not convex, the analysis of the stability of the fixed points
and the study of their basins of attraction is not easy to
obtain. This last point is thus a delicate but interesting task
to explore. From a more applied point of view, another

topic of interest is to investigate how the mathematical
concepts proposed here can be used, possibly in modified
form, for applications in various areas. We believe that the
problem considered in this paper gives rise to interesting
mathematical problems but also to useful applications in
different areas.
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