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Abstract—We consider the problem of finding the optimal  similarity matrix is the correlation of the graph adjacency
correlation between two projected matricesJ*AU and V*BV.  matrices projected in a one-dimensional subspace. The
The square matricesA and B may be of different dimensions, graph similarity matrix is e.g. useful for the developmeht o

but the isometriesU andV have a common column dimension L - . .
k. The correlation is measured by the real functionc(U,V) = efficient Web search engines or the automatic extraction of

Otr(U*AUV*B*V), which we maximize of the isometries Synonyms in a dictionary. Another important task in graph
U*U =V*V = . analysis is that of graph matching which is a fundamental
~ This problem can be viewed as an extension of the general- problem in pattern recognition and in shape and image
ized numerical range of two matrices, which are now allowed analysis. A popular class of methods in graph matching

to be of different dimension. We discuss several properties of th tral thods i hich tral " f
this optimization problem, characterize its extremal points are the spectral methods in which spectral properties o

and propose an a|gorithm Converging to such an extremal ChaI’aCteI’IStIC matI’ICGS are Used to Compal’e the gl’aphS The

point. spectral method developed in [2] combines a projection
Keywords— Correlation, Trace maximization, Generalized  technique and a clustering algorithm to match the graphs in
numerical range, Isometry a lower-dimensional subspace. It can be shown that the step

of projection used by the authors is equivalent to maximize
(1) for symmetric matriceA and B. A second field of
The problem of projection of matrices in lower- applications concerns experiments in quantum mechanics
dimensional subspaces is of great interest for a largend in particular the task of maximizing the signal intensit
range of applications. The projection of matrices providem coherent spectroscopy (see e.g. [3] and [4]). From a
an easier visualization and comprehension of the initighathematical point of view, this problem is equivalent
problem and is often used to reduce its complexity. Moreto optimizing an expression similar to (1) where all the
over the correlation between these projections can revealtrices are square.
some particularities inherent to the data which can then beln the linear algebra literature, problem (1) has also
analyzed and interpreted. been largely studied for particular cases and dimensions
We consider the correlation between two projected mand hence constitutes an extension of a variety of known
tricesU*AU and V*BV, where A and B are respectively problems. For the case where all the matrices are square,
of dimensionsmx m andn x n. The isometriedJ andV this problem corresponds to the generalized numerical
have a common column dimensiénand satisfy thus the range (orB-numerical range). See e.g. [5] and [6] for
constraintU*U =V*V = I, wherely denotes the identity a survey on the properties of the generalized numerical
matrix of dimensionk < min(m,n). The correlation is range. For the scalar case which corresponds to a one-
expressed as the real function dimensional projection, the expression (1) is equivalent t
. s the product of the field of values of two matrices (see
¢(U,V) = 0tr(UTAUV'B'V). (1) e.g. [7]). In this paper we extend these existing notions to

This is a generic problem which can be linked to variou& more general case of dimensions of matrices. We treat
applications treated in the literature and which has bee?|SO the complex and real cases. _ '
studied extensively in a variety of contexts for particular FTOm @ numerical point of view, many algorithms exist
dimensions of the projection and of the matrices. A firsto maximize (1) for particular dimensions of the matrices
field of application lies in the analysis of graphs. The€-9- [3] and [8]). We develop here a simple recursive
notion of graph similarity matrix, which is a matrix that algorithm valid for the general case, i.e. for complex or

expresses how similar the nodes of two graphs are, hi&! problems and for all dimensions of the matrices.
recently been introduced in [1]. For undirected graphs;, tthharacterlzgtlons of the fixed points of the function and
of the algorithm are presented.
This paper presents research results of the Belgian Prograpmme
Interuniversity Attraction Poles, initiated by the Belgikederal Science The paper is organized as follows. In Section 2, we intro-

Policy Office, and a grant Action de Recherche Corgm(ARC) of the d : In Secti 3 defi h bl
Communaut¢ Francaise de Belgique. The scientific responsibilitysres uce some notations. In Section 3, we define the problem

with its authors. considered in the paper which consists of maximizing an

. INTRODUCTION



expression similar to (1) for a general case of dimensionsith respect to a complex variabl, the more general

of the matrices. We recall some important results froncomplex derivative calleccomplex Gradient Matrixfor

the literature that we can link to our problem. The firsta real functionf of a complex matrixX is used. This
one concerns of square matrices and appears in the figichdientOf is defined by (2) and allows us to estimate
of the generalized numerical range and in the context gfome derivatives of inner products we need in the paper
semi-definite programming relaxations. The second caseiis order to calculate gradients.

about scalar projections and is linked to the field of values

of matrices. The main new results are in Section 4 where "
we characterize the fixed points of the problem. Then we

focus on the case of Hermitian and normal matrices and For A € C™™ andB € C™", we consider the following
we give lower and upper bounds for the optimal valueproblem

In Section 5, we propose a simple algorithm to solve the

. M AIN KNOWN RESULTS

optimization problem. The last Section 6 summarizes the max (U*AU,V*BV)y (3)
results and describes some directions for future research. 33 :I'k
=k
Il. NOTATIONS

mxk nxk yyi i
In this section, we introduce some notations used in th‘@hfreu 5 CsA adngvue Cdv with k<| m|rt1)(m n)l F_l?rr]
paper. The first part treats of the complex and Hermitiah-& matricesA an an must aiso be rea IS
inner product of matrices, while the second part summéa roblem has largely been studied for particular dimensions

rizes some definitions about derivatives of functions Wltf?f mn arlldk (;”t}? first Se‘;t'on C?;[a"is results existing for
matrix arguments. =n=Kand the second one

A. Inner product A. Square matrices U and V
Let R andC denote the real and complex field, respec- ]
tively. R™M and C™" denote the set of afhx n real and Form=n=k, U andV are square matrices and the

complex matricesXT, X and X* represent respectively Problem we consider is equivalent to:
the transpose, the complex conjugate and the complex

conjugate transpose oX. The inner product between Qﬁgale (Q"AQB)H (4)
matrices is defined as follows. Fit, Y € R™", thereal
inner productis denoted by where the optimization depends only on the unitary matrix
Q which corresponds to the produdfvV*. This problem
Y)= ZZ XijYij has been studied in a variety of contexts. In the rest of
i=1j=1 the section, we connect our problem to tBexumerical
and can be linked to the trace function of a matrix: range and present results in the field of semi-definite

Y — (XY — tr(XTY programming relaxations in the aim to provide bounds on
(X,Y) = tr( )=t )- the problem. To link the notations used in the literature for

For complex matriceX, Y € C™", the complex inner this problem with (4), we point out that

productis defined by
(Q"AQB)n =D (tr(AQB'Q")) = U (r(B'Q"AQ)) .

(X,Y)c :'thlijij
i=1j=

1) B-numerical range:The problem (4) is equivalent

and can be linked again to the trace to maximizing the real part of thB-numerical range of
A (or generalized numerical range) introduced by [9] and
(X,Y)c =tr(XY"). defined by
We introduce also thélermitian inner productas the real ) o . :
part of the complex inner product: We(A) = {tr(B"Q"AQ) : Qis unitary}.
XY =0((X,Y)e) =(O(X),0(Y)) +(0O(X),T(Y)). The B-numerical range has been studied by many au-

thors in the last few decades (see e.g. [5] and [6] for a sur-
] ) vey on the properties of the generalized numerical range)
Let f(X) :C™" — R be a differentiable real-valued and has many domains of applications, e.g. in quantum
function with matrix argumentX. Then the first-order gynamics for the study of the efficiency of polarization or
approximation off at a pointX can be expressed as coherence transfer between quantized states under unitary
F(X+A) = f(X)+ (OF(X), A +o(]|A]) ) transformations (e.g. [3] and [4]). Some authors have also

used the numerical range to study problems on norms of
where the derivative1f(X) is the mx n matrix whose operators (see [5]).

(i,j) entry is a>§ L. To differentiate an expressiofi(X) 2) Semidefinite programming relaxations:

B. Derivatives



a) Real matrices:In the case of real matricesand The problem is then reduced to obtaining the maximum of

B and by adding the redundant constrai@@®" = I, the the Hermitian product of the elements from the fields of
problem (4) becomes values ofA and ofB. The field of values is known to be a
B T AT convex subset of the complex plane while the product of
VP = Q%azx, r(AQB Q). ®) two fields of valuesF(A)F(B) is generally not a convex
QQ" =1 set.
By a reasoning similar to the one deve|0ped in [8], we In the real and Hermitian cases, we obtain the exact
construct the following dual Lagrangian: optimal value of the function while in the complex case,
. we can only derive some upper bounds for this optimal
Vp =mintrS+trT )  value.
T T
st. BSALBOA _Sel-19T <0 1) Hermitian case:For a Hermitian matrixd, the field
s=¢' of values is a real interval and any poimtof the field of
T=TT value can be be bounded by
where the two symmetric matrices of Lagrange multipliers _
Sand T are used to relax the constraind Q =1 and Amin (Ar) < @ < Amax(An)
T _ .
QQ' =1 and ® denotes the Kronecker product. The;in Amin(An) and AmadAn) the smallest and largest

OOT — | i i : ma :

redundant constrainQQ" = | is added in order to close gjgenyalues ofy. This interval is the smallest that con-
the duality gap for symmetric matricésandB. Indeed, it 5ins F(A). The solution of (10) is then the product of

is proved that strong duality holds for symmetric matricé§pe gdequate extremal (smallest and largest) eigenvalues
.. vp = vp. For non-symmetric matrices, strong dualitysf the Hermitian matricegys and By depending on their
does not hold, but this method provides an upper bo“”ﬁgns. The solutionsi and v providing the optimum are

vp for the problem we cor.lsider, l.&p < Vp. the eigenvectors ofAy and By corresponding to the
b) Complex matricesA complex matrixA=Ar+  gjgenvalues providing the solution, respectively.

'J&A' fo;.dlmen.smng * 2 ca? tl;e rfepre.sented by a real matrix 2) General complex casd=or complex matrices and
ot dimension > cn of the form. B, the field of values is a set of complex values. Any point

A < —AZ :‘; ) . (7y @+IiB of F(A) andy+ & of F(B) satisfies
For a Hermitian matrixA, A is symmetric while for a Amin(Ar) = @< Amax(An)
unitary matrixQ, Q is orthogonal. The following theorem Amin(As) =B < Amax(As),
results from this representation. Amin(BH) <y< Amax(Bu),
Theorem 1:Suppose that we represent the matriées Amin(Bs) <8< Amax(Bs),
B andQ € C™" by the matricesA, B andQ e C2"*2" py .

use of the expression (7). Then we obtain the followingvhere Ay = A+TA*, Bh = represent the Hermitian
link between the two trace functions: parts of A and B, As = AN Bg= BB the skew-

2] 2j
20tr(AQB'Q*) = tr(AQBTQ"). (8)

Hermitian parts ofA and B. These intervals define the
By Theorem 1, the optimization problem (4) in term Ofsmallest boxes containing(A) and F(B). These bounds
complex matrices is equivalent to maximizing

\S]

on the fields of values provide an upper bound for the
problem (10).
max }tr(,&@g@T)' (9) 3) Real case:For a real matrixA, the field of value
Q=1 could be complex in general. The real field of values
expressed in term of real matrices. The dual metho@ssociated with a real square matfixs defined by [7]
developed previously for real matrices can then be applied

. T . n Ty __
in the same way and provides an upper bound for the FR(A) = (XA XERT X X =1}

problem. If we notice thatFr(A) = Fr(As), with As = 22T the
B. One-dimensional matrices U and V symmetric part ofA, then it is sufficient to consider only
Whenk equals one, the matricés andV are reduced the symmetric part of th(_a matrix in order to study the real
to vectorsu andv and the problem (3) becomes fleld of values. The solution of (10), fak, B, u ar!dv real,
is then the product of the adequate extremal eigenvalues of
max (U"AUV'BV)H. (10)  the symmetric parts oA and B depending on their signs.
uu=1 . .
VV_1 The solutionsu andv are the eigenvectors &fs and Bs

. . . ) corresponding to the eigenvalues forming the optimum.
This problem is related to the notion of the field of values. P 9 9 g pimt
In the particular case of real symmetric matrices, it can

:Sriglr?c!gl (r);nvaél)u ?SS d?affir?e(;nsm?] (also known as the be shown that our problem is linked to the concept of the
9 y similarity matrix S introduced in [1] which expresses how
F(A) = {X"Ax:xe€ C", x"'x = 1}. similar the vertices of two graphs are.



IV. THE GENERAL CASE In practice, the maximal sum is obtained for adequate
In this section we provide some results obtained for theombinations of the eigenvalues and can be constructed

general problem via a simple procedure.
max (U*AU,V*BV)y (11) C. Sum of two Hermitian problems

uu =1

V‘V:I: A square matrixA can always be decomposed into
whereA € C™M B e C™" U € C™K andV e C™k A=Ay + jAs
with k < min(m,n). This problem is equivalent to maxi- B—By+jB
mizing the correlation between two projected matriées H s
and B subject to isometry constraints. where the matrices

We derive first the expressions for the fixed points of the At A* A— A

optimization problem. Then we consider some particular Ay = 5 As= i

cases, i.e. when one matrix is Hermitian, when the two
matrices are normal and finally whén= min(m,n), i.e. are Hermitian matrices. The objective function can then
U orV is a square matrix. An upper and a lower boundlso be decomposed into a sum of two Hermitian problems
to the general problem are also obtained by decomposing

the problem into the sum of two Hermitian problems. §<U*AHU,V*BHV>H + %(U*ASU,V*BSWH. (16)

A. Fixed points From (15), an upper bound for the optimal value can be
We consider the optimization problem (11) which isobtained for (16), expressed as follows:

an optimization problem of a continuous function on a K ‘

compact domain. There always exists a solutibmndV 1 al' gH +} aSBS

optimizing the function such that the first order conditions 2 i; F 2 i; .

are satisfied. These first-order derivative optimality ¢end H H i

tions can be derived from the Lagrangian wherea;” and3"™ represent the eigenvaluesAf andBy

ordered in such a way th3t(3¥ ; a g) is maximal over
F = (U"AU,V'BV)n + (U"A'U, VBV )y (12)  all possible combinations, and wheee® and ° are the
(X, (1 =U Uy + Y, (1 =V V) eigenvalues oAs andBs ordered such tha} (3£ ; aSBS)
is maximal.

A lower bound can also be found by choosing the
matricesU andV optimizing one of the two Hermitian
problems and by calculating the value of (16) for this pair
US = A*U(V*BV) + AU(V*B*V), (13) of matrices which is the same for the two problems.

VI =B*V(U*AU) +BV(U*A*U), (14)

whereX andY are Hermitian matrices of Lagrange mul-
tipliers. By taking a particular coordinate system, thetfirs
order conditions can be expressed by:

D. Case of two normal matrices

with X a diagonal matrix. In case of normal matricef and B (i.e. AA* = A*A
and BB* = B*B), the optimal value for the optimization
. . . ] function can be found fok =1 andk =m=n. In general,

In this section we consider the particular case wherg) | < min(m,n), we can only provide an upper bound
one of the matrices is Hermitian (e.h = A"). The {4 the problem. The following developments are based
maximum of (11) is then achieved for matriddsandV o the fact that all normal matrices are diagonalizable
corresponding respectively to the dominant eigenvectors gnger unitary transformation. We can thus transform the
A and (B+B*). MoreoverUzV* is exactly of rankk. In atricesA and B to diagonal matriceDa and Dg by

other words in this case the problem is decoupled regardiRgitary transformations. We decompose them into real and
the matricesA andB. The optimum is characterized by  jmaginary parts

afp 0 O
Z:U*AUV*(B+B*)V: 0 0
0 0 akb

whereas,---,ax and By ---, B¢ arek real eigenvalues of
A and(B+B*) ordered in such a way that the optimum of
(11) equal to

B. Case where one matrix is Hermitian

Da =Dag + JDp,
Dp = Dg; + jDp,

where the subscriptg and, denote respectively the real
and imaginary parts of the matrices.

1) One-dimensional casefor k =1 and by using
the diagonalization of the normal matrices, (11) can be

1 1(k expressed as follows:
Srz=3 Zlaiﬁi (15)

i= max (u*Dau,V'DgV)y.
uu=1

2 2
is optimal for all the combinations of the eigenvalues. viv=1



This problem is equivalent to E. Matrices U and V of maximal size

n m For k = min(m,n), the problem (11) is equivalent to
maXD(ZlUiai)(ZlViBi) (m,n), the p (11)is eq
= = max (Q"AQ B)y
st Siu=1 Q=1
divi=1 where Q = UV* is an isometry of dimensiomx n. The
Hi > 0,vi >0 general problem is thus reduced to an optimization problem

whereaq; and; are the eigenvalues éfandB respectively, With only one variableQ.
ti = |u? and v; = |vi|> are nonnegative real numbers.
We optimize then the real part of the products of convex
combinations of the eigenvalues AfandB. This problem In this section we present an iterative algorithm to solve
is a bilinear form with respect tp; and v;. If we fix y;  the problem (11) whose fixed points satisfy the first-order
the problem is linear iy and we resolve a linear pro- derivative conditions (13) and (14) fdd and V. This
gramming problem. The feasible set forms a polyhedroiteration is the following:

and the optimal solution is situated on a vertex of this UoiS VU, S

polyhedron (or on a face of the polyhedron). We apply then ~' T15+1%+1 7 2 i =
the same reasoning fqy, to obtain the optimal solution.
The problem is then equivalent to finding the indicesd

j maximizing

V. ALGORITHM

Vi, =AUV'B"+A'U\V'B

(20)
whereU, andV, are orthogonal complements dfandV
andZ is a diagonal matrix. The subscript- 1 represents
the new stage of the iteration while the subscrifg the
current stageU;;1%i1V; is the best approximation of
rank k of AU;V*B* + A*U;V*B.

i+1

n??xlj (aiBj).

If we separate the real and imaginary partsopfand f3;

the optimal value of the function becomes In .practice.(20) is realized by gpplication of the S\(D
algorithm until convergence. At this moment, the solution
”??X(aiRﬁjR +ai Bj), (A7)  satisfies
where the subscripts and, denote respectively the real UZV* = AUV*B*+ A'UV*'B+ U X _V]. (21)
and imaginary parts. This problem can be solve®{mn) . . )
operations. The convergence is not proved but in all our experiments

2) Square matricesFor k= n and by using again the the process always converged linearly to a solution.

diagonalization of the matrices, (11) becomes: A. Relation to the optimization problem

Jmax (Q"DarQ; Dag) + (Q"Dp Q, Dg ). In this part we show that the iteration is equivalent to

. ) . i solving the optimization problem
By developing the first term and using a result of Birkhoff

(see [10]), the value at the optimum can be shown to be ,max (U*AU,V*BV)H (22)
S (Aot 0l ) (18 -
O Pig + Ak b
k,Z:l R o whose fixed points are expressed by (13) and (14), i.e.

whereayg, Bis, a,, andpf, are the elements afiag(Dag), US =AU(V*BV)+AU(V*BV), (23)
diag(Dgg), diag(Da,) and diag(Dg, ), ordered in such a o . * ok

way that (18) is maximal. The optimal value is thus VZ=B'V(U"AU)+BV(U*A"U). (24)
obtained for an adequate combination of the real and The expression (21) implies (23) and (24) by simply
imaginary parts of the eigenvalues AfandB, which is a  right and left multiplying left- and right-hand sides of {21

linear programming problem. by V andU*. Then a fixed point exists for the iterative
3) General case:For 1< k < min(m,n) we optimize algorithm.
max (U*DagU,V*Dp.V) + (U*DaU,V*Dg V). Conversgly we can prove that (23) and (24) imply (21).
SI\L; :Ilk To show this we multiply (23) by/*:
=k
An upper bound to this problem is then UzVv® = A'UV'BVV'+AUV'B'VV'
K k N(I—=ViVy)
ijzzl(a‘RBjRHi;(a"Bj') 19 with N = (A'UV'BVV" + AUV'BTVV"). Here we used
’ ’ VV* =1 -V, V} becauseV is an isometry, then its pro-

where the elementsi, fndBiR N dag andds, are ordered o044 \/\+ can be linked to its complementary projector
in such a way thaty;_,(airfjp) is maximal and the y; v« gimilarly by multiplying (24) byU* and taking the
elementsa;, and (3, in da and dg, ordered such that transpose, we obtain

Eik_]-:l(ailﬂjl) is maximal. This problem is combinatorial '

and differs from (18). Uzv*=(1-U U])N.



An orthogonal projectoP, of N satisfies the property
P, (P.N) =P_N. This property implies

NV, Vi =U UINV, Vi =U UIN.

Therefore

topic of interest is to investigate how the mathematical
concepts proposed here can be used, possibly in modified
form, for applications in various areas. We believe that the
problem considered in this paper gives rise to interesting
mathematical problems but also to useful applications in

different areas.

USV* =N (I =V, Vi) = (I U U)N

lies in the orthogonal complement &f and also ofV.

That proves the existence of a fixed point of (20). 1]

B. Non-convexity
For arbitrary matriceg\ and B the set

{(U"AU,V*BV)y : U,Visometrie$

(2]

(3]
is in general not convex. Local minima and local maxima
can exist and then the algorithm may not always converge
to the global optimum. We can notice the non-convexity of[4]
the set by taking a particular example as follows. In case of
square matrices of the same dimensions, we optimize thg;
B-numerical range of\, as defined previously. In general
Wi(A) is not a convex set, e.g. [11] gave an example in[G]
which B is normal but not Hermitian and wheYis(A) is

not convex. It is then easy to choose the coordinates for
U andV to generate a non-convex example. [

VI. CONCLUSION 8l

In this paper, we analyze the correlation between projec-
tions in lower-dimensional subspace of matrices submitted®
to isometry constraints. Our problem provides a method
to project simultaneously the matrices in subspaces &0l
arbitrary dimensions and can be applied to both real arﬁil]
complex matrices. We indicate that it is an extension of
various problems found in the literature. Many applicagion
can arise from this formulation.

We present some mathematical properties of the problem
and we characterize the maximal correlation for particular
matrices such as Hermitian or normal matrices. In general
only an upper bound can be found.

We develop an iterative algorithm providing the opti-
mum and we characterize the fixed points. This algorithm
is very simple to implement and is based on the SVD.
Because this problem is not convex, the analysis of con-
vergence and stability of the fixed points is difficult.

Investigations of mathematical properties and applica-
tions of the correlation between projected matrices can
be pursued in several directions. A deeper analysis of the
convergence of the algorithm is worthwhile to consider. We
outline a few possible improvements and future research
directions. The first possible improvement concerns the
convergence of the algorithm. Experimentally we observe
a linear convergence to the optimum but this convergence
has not yet been proved and remains an important point
to develop in the future. Secondly, because the problem is
not convex, the analysis of the stability of the fixed points
and the study of their basins of attraction is not easy to
obtain. This last point is thus a delicate but interestirgsta
to explore. From a more applied point of view, another
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