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Abstract
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1. Introduction

Many problems and applications in various areas use projections of matrices in lower-
dimensional subspaces. In this paper, we consider the “coupling” between the isometric pro-
jections of two square matrices A and B, respectively of dimensions m and n. This coupling
between A and B with respect to U and V , is defined as

c(U, V ) = tr(UTAUV TBTV ) (1.1)

where U and V are isometries, i.e. matrices satisfying UTU = V TV = Ik , and where Ik denotes
the identity matrix of dimension k with k � (m, n). A similar expression can also be defined for
complex matrices [6] but for simplicity we restrict ourselves here to the real case.

In this paper, we consider the problem of maximizing the coupling c(U, V ) over all isometries
U and V . A numerical procedure will be given to find an extremal point (U, V ) of this function.

The problem of maximizing c(U, V ) over all isometries U and V constitutes an extension
of well-known problems from the linear algebra literature, e.g. maximizing the real part of the
generalized numerical range or the products of the elements from the fields of values of A and B

(see [6] for a survey of these particular cases). For particular matrices and dimensions, optimizing
(1.1) can also be linked to various applications, especially in graph theory. We cite as a first
example the graph similarity matrix [1] expressing how similar the nodes of two graphs are. A
second application concerns the problem of graph matching, and in particular the set of spectral
graph matching methods, see [2,9–12] for a description of various spectral methods. In [2], Caelli
and Kosinov introduced a spectral method where the nodes of the two graphs are projected, by
solving a problem similar to the maximization of (1.1). Let us remark that all the papers describing
spectral methods in the field of graph matching are restricted to undirected graphs. Numerical
methods for finding extremal points (U, V ) of the function c(U, V ) will be developed in this
paper. These methods have the advantage of allowing a comparison between directed graphs with
different number of nodes.

The paper is organized as follows. Section 2 explains the relevance of maximizing the coupling
between two square matrices with respect to isometries (1.1). The initial motivation of this
problem, coming from graph theory, is also mentioned. In Section 3, the main mathematical
properties of the optimization problem are summarized and the theoretical aspects of optimization
over equinormed sets are presented. The computational aspects and two algorithms for solving
the problem are presented in Section 4. The first algorithm is based on the Singular value decom-
position (see [6]) and the second one is a new gradient-based method. Numerical experiments
are given in Section 5. In particular experimental comparisons of the two algorithms and a graph
matching experiment are presented.

2. The relevance of optimizing the coupling between matrices

This section explains the pertinence of maximizing (1.1), expressing a coupling between the
matrices A and B, over all isometries U and V . This was introduced in [6] for complex matrices, but
for simplicity, we restrict ourselves here to the real case. Let us first introduce some notation used
in the rest of the paper. Let R denote the real field, Rm×n denote the set of all m × n real matrices,
and XT represent the transpose of X. For X, Y ∈ Rm×n, the Frobenius inner product is defined by

〈X, Y 〉 =
m∑

i=1

n∑
j=1

XijYij = trXY T = trY TX,
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and its corresponding norm by

‖X‖ = 〈X, X〉1/2.

A classical problem in the field of matrix theory concerns the determination of “dominant” sub-
spaces of square matrices A ∈ Rm×m and B ∈ Rn×n, expressed as two independent optimization
problems:

max
U

{〈UTAU, Ik〉 : U ∈ Qm,k} = max
U

{〈
UT A + AT

2
U, Ik

〉
: U ∈ Qm,k

}
,

max
V

{〈V TBV, Ik〉 : V ∈ Qn,k} = max
V

{〈
V T B + BT

2
V, Ik

〉
: V ∈ Qn,k

}
, (2.2)

where we assume k � (m, n). The set of matrices Qm,k , also known as the Stiefel manifold, is
defined by

Qm,k = {X ∈ Rm×k : XTX = Ik}.

The optimal U and V correspond to the “dominant” invariant subspaces of dimension k of the
symmetric parts of A and B respectively. Let us remark that replacing U by UQ1 and V by V Q2
with Q1 and Q2 orthogonal matrices of dimension k does not change the value of the objective
function. The degrees of freedom of this problem (represented by the orthogonal transformations
Q1 and Q2) often need to be fixed when comparing the matrices A and B or their symmetric parts
A+AT

2 and B+BT

2 .
We therefore consider the following optimization problem:

max
U,V

{f (U, V ) :=〈UTAU, V TBV 〉 : U ∈ Qm,k, V ∈ Qn,k}. (2.3)

The matrices A and B are now projected simultaneously which allows to fix the degree of freedom
of one projection w.r.t. the other one. Indeed, in this, case, the only degree of freedom is to replace
the product UV T by UQTQV T with Q an orthogonal matrix of dimension k. This degree of
freedom represents a simultaneous orthogonal transformation of the pair of projections U and V .
Moreover, the problem yields different results for symmetric and non-symmetric matrices.

The initial motivation for the definition of the optimization problem (2.3) was the extension
of the work on inexact graph matching proposed by Caelli and Kosinov [2] which was applicable
to undirected graphs. Their method uses the k leading eigenvectors of the adjacency matrices
of both graphs, which is equivalent to solving (2.2) for A and B symmetric adjacency matrices
of the graphs. Indeed, it is shown that these eigenvectors contain interesting properties for the
graph structure (see [5] or [3] for a summary concerning the graph properties connected to the
spectrum of the graph). In order to compare graphs of different sizes, a normalization procedure of
U and V is proposed in [2]. This normalization corresponds to the projection of the vertices onto
a unit hypersphere of dimension k. This method provides good results but is applicable only to
undirected graphs. Moreover, the two graphs are projected independently of each other which may
lead to an ambiguity of the projections. The coupled projection presented in this paper removes
this ambiguity and allows to compare two directed graphs of dimensions m and n represented by
non-symmetric matrices A and B.
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3. The gradient method and its convergence

The mathematical properties of the optimization problem (2.3) are presented in [6]. This section
first recalls some important results of the problem. Secondly, some new results concerning a
gradient method for the optimization over equinormed sets are developed.

3.1. Recollection of some properties

Problem (2.3) is an optimization problem of a differentiable function on a compact do-
main. Therefore there always exists an optimal solution (U, V ) such that the first-order con-
ditions are satisfied. These first-order derivative conditions can be derived from the Lagrangian
L(U, V, X, Y ):

L(U, V, X, Y ) = 1

2
{〈UTAU, V TBV 〉 + 〈UTATU, V TBTV 〉 (3.4)

+〈X, (I − UTU)〉 + 〈Y, (I − V TV )〉},
where X and Y are symmetric matrices of Lagrange multipliers for the isometry constraints.

Definition 1. Let X ∈ Rm×n and f : Rm×n → R be a differentiable real-valued function with
matrix argument X. Then the gradient ∇f (X) is the m × n matrix whose (i, j) entry is ∂f (X)

∂Xi,j
and

the first-order approximation of f at a point X can be expressed as

f (X + �) = f (X) + 〈∇f (X), �〉 + O(‖�‖).

Related to this, we provide some gradients needed later on

∇〈A, XTX〉 = X(A + AT), (3.5)

∇〈XTAX, B〉 = AXBT + ATXB. (3.6)

By setting the partial gradients of L(U, V, X, Y ) to zero (using (3.5) and (3.6)), the first order
conditions can be expressed by

UX = ∇Uf (U, V ) :=ATU(V TBV ) + AU(V TBTV ), (3.7)

V Y = ∇V f (U, V ) :=BTV (UTAU) + BV (UTATU), (3.8)

with X = Y because of the symmetry of both matrices (see [6]). The cost function (2.3) is
independent of a common transformation (U, V ) → (UQ, V Q) with Q orthogonal. This degree
of freedom can be used to choose X = Y = � to be diagonal. Notice that the above conditions
are equivalent to

(I − UUT)∇Uf (U, V ) = 0, (3.9)

(I − V V T)∇V f (U, V ) = 0, (3.10)

which are now independent of X and Y . These conditions will also be used later to check
convergence to a stationary point.

For special matrices, the optimal value of (2.3) can be found analytically. For the underlying
case of non-symmetric matrices and k > 1, only bounds for the solution of the problem could be
formulated [6]. This motivates the study of numerical methods for (2.3).
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3.2. Numerical approximation by optimization over equinormed sets

In this section we develop an optimization technique for compact equinormed sets. Let us first
provide a definition of an equinormed set.

Definition 2. We call the compact set Q ⊂ Rm×n equinormed for a given norm ‖ · ‖ if

‖X‖ = r ∀X ∈ Q.

The value r is called the radius of Q.

Clearly, a nontrivial equinormed set cannot be convex. Our main problem of interest will be to
find a local minimum of a smooth function f (X) over an equinormed set Q:

min
X

{f (X) : X ∈ Q}. (3.11)

Since Q is non-convex, we are restricted in the optimization steps that are implementable over
this set. In this paper, we consider the sets for which the optimization problem

λQ(C) = max
X

{〈C, X〉 : X ∈ Q} (3.12)

with C ∈ Rm×k is simple and can easily be solved. Denote by LQ(C) any of its global solutions.
They always exist since Q is compact and 〈C, X〉 is continuous.

In order to find a local solution to (3.11), we use the concept of gradient mapping defined in
[8]. Denote by πQ(X, �) ∈ Q, with � a scalar, any point from the set of global maxima

Arg max
Y∈Q [��(X, Y )

def=〈∇f (X), X − Y 〉 − 1
2�‖Y − X‖2]. (3.13)

Then the gradient mapping φ�(X) is defined as φ�(X) = ��(X, πQ(X, �)).
Applied to connected equinormed sets, we obtain the following main properties of the gradient

mapping. Note that we impose here the additional condition that Q is connected.

Lemma 3. Let X ∈ Q,Q be connected and � > 0. Then φ�(X) � 0. Moreover, φ�(X) = 0 implies
that X satisfies the first-order optimality conditions for problem (3.11).

Proof. Since the choice Y = X yields ��(X, Y ) = 0 in (3.13), we get the first statement of the
lemma. Further, condition φ�(X) = 0 implies

〈∇f (X), Y − X〉 � −1

2
�‖Y − X‖2 ∀Y ∈ Q. (3.14)

Denote by NQ(X) the set of directions at some X ∈ Q:

NQ(X) =
⎧⎨
⎩U : U = lim

Y→X,
Y∈Q\{X}

Y − X

‖Y − X‖

⎫⎬
⎭ .

Dividing both sides of (3.14) by ‖Y − X‖ and taking the limit as Y → X in the connected set
Q, we get 〈∇f (X), U〉 � 0 for all U ∈ NQ(X). That is the first-order optimality condition for
problem (3.11) at X. �

Lemma 4. Let the function f have a Lipschitz-continuous gradient:
‖∇f (X) − ∇f (Y )‖ � m‖X − Y‖, ∀X, Y ∈ Q

def= Conv(Q), (3.15)
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with a certain m > 0. Then for any X ∈ Q and � � m we have

f (X) − f (πQ(X, �)) � φ�(X). (3.16)

Proof. From (3.15), it follows that [8]

f (Y ) � f (X) + 〈∇f (X), Y − X〉 + 1

2
�‖Y − X‖2

for all Y ∈ Q and � � m. Taking Y = πQ(X, �), we get (3.16). �

The statement of the last lemma leads to the following gradient method: choose X0 ∈ Q, � � m

and iterate

Xi+1 = πQ(Xi, �), i � 0. (3.17)

The following theorem expresses a convergence statement of the algorithm.

Theorem 1. The process (3.17) decreases the objective function in a monotone way. Moreover the
set of Q is bounded, then the set of accumulation points X∗ of the sequence {Xi}∞i=0 is nonempty.
For any X∗ ∈ X∗ we have the first-order optimality conditions satisfied: φ�(X∗) = 0.

Proof. Indeed, since Q is bounded, f is bounded below on Q by some constant f∗. Therefore, by
(3.16) we have

k∑
i=0

φ�(Xi) � f (X0) − f (Xk) � f (X0) − f∗.

Hence, limk→∞ φ�(Xk) = 0. It remains to use compactness of Q. �

Note that for general sets the auxiliary optimization problem (3.13) can be very difficult. However,
in the case of an equinormed feasible set, the situation is much better.

Lemma 5. Let Q be an equinormed set. Then πQ(X, �) = LQ(�X − ∇f (X)).

Proof. Indeed, denote by r the radius of the set Q. Then for X and Y from Q the objective function
of problem (3.13) can be rewritten in the following way:

〈∇f (X), X − Y 〉 − 1

2
�‖Y − X‖2 = 〈∇f (X), X − Y 〉 − 1

2
�[2r2 − 2〈X, Y 〉]

= 〈�X − ∇f (X), Y 〉 + 〈∇f (X), X〉 − �r2. �

The gradient method (3.17), combined with Lemma 5, will be used for a numerical approximation
of the solution of (2.3). In view of Theorem 1, this process ensures a monotone decrease of the
objective function. Moreover any accumulation point of the generated sequence satisfies the
first-order optimality condition. The convergence is therefore guaranteed.

4. Computational aspects

In this section we compare two iterative algorithms to find a critical point of (2.3). The first
one is a simple recursive algorithm based on the singular value decomposition (SVD) for which,
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unfortunately, the convergence has not yet been proved. The second algorithm is the gradient
method of Section (3.2). This method is guaranteed to converge to a minimum of the function.
We also compare the cost of the two algorithms.

4.1. Algorithms

The iterative algorithm developed in [6] to solve (2.3) is the following. Choose initial isometries
U0, V0 and compute at each step:

Ui+1�+i+1V
T
i+1 + U⊥i+1�−i+1V

T⊥i+1
= AUiV

T
i BT + ATUiV

T
i B + aUiV

T
i (4.18)

where U⊥ and V⊥ are orthogonal complements of U and V (UTU⊥ = 0, U has dimensions
m × k and U⊥ dimensions m × (m − k)). The scalar a is a positive number sufficiently large and
�+ is a diagonal matrix with positive elements. The subscripts i + 1 represent the new stage of
the iteration while the subscript i is the current stage. In the iteration, Ui+1�i+1V

T
i+1 is the best

approximation of rank k of AUiV
T
i BT + ATUiV

T
i B + aUiV

T
i . In practice the iteration (4.18) is

realized by computing an SVD of the right-hand side of the equality. The following step is applied
iteratively for i = 0, 1, . . . until the error estimate stepsize gets below a certain tolerance.

Basic iteration step:

(1) U�V T = AUiV
T
i BT + ATUiV

T
i B + aUiV

T
i ,

(2) Ui+1 = U

[
Ik

0

]
; Vi+1 = V

[
Ik

0

]
,

(3) stepsizei+1 = ‖Ui+1V
T
i+1 − UiV

T
i ‖.

When the product UiV
T
i converges (i.e. ‖Ui+1V

T
i+1 − UiV

T
i ‖ → 0), there exists a diagonal matrix

� = �+ − aIk such that

U�V T = AUV TBT + ATUV TB − U⊥�−V T⊥ , (4.19)

where �− is a diagonal matrix with elements which are all smaller than the elements of �+. In
practice, a must be sufficiently large to make �+ = � + aIk positive. It can be shown that taking
a � 4‖A‖‖B‖ guarantees this condition [6]. The convergence is not proved but in all experiments
the process always converged linearly to a stationary point. It was shown that a pair (U, V ) satisfies
(4.19) if and only if it solves the optimization problem (2.3) [6].

The second algorithm is based on the gradient method developed in Section 3.2 and applied
to (2.3). Notice that the gradients are Lipschitz-continuous with a certain � > 0. This algorithm
takes into account the following simplifications.

• For any X ∈ Qm,k we have ‖X‖2 = 〈X, X〉 = 〈XTX, Ik〉 = k. Thus,Qm,k is an equinormed
set with radius

√
k.

• Let C ∈ Rm×k be of full row rank. Consider Qm,k . It is easy to see that

LQm,k
(C) = C[CTC]−1/2. (4.20)

Moreover, λQm,k
(C) = 〈[CTC]1/2, Ik〉 = tr([CTC]1/2).
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Therefore, we can choose initial isometries U0, V0 and iterate, for i � 0:⎧⎪⎪⎨
⎪⎪⎩

Y1i = �Ui − ∇Uf (Ui, Vi),

Y2i = �Vi − ∇V f (Ui, Vi),

Ui+1 = Y1i[Y T
1iY1i]−1/2,

Vi+1 = Y2i[Y T
2iY2i]−1/2.

(4.21)

In practice, because Ui+1 and Vi+1 are respectively the polar factors of Y1i and Y2i , the following
iteration step is applied iteratively until stepsize gets below a certain tolerance.

Basic iteration step:

(1) Y1i = �Ui + (AUiV
T
i BTVi + ATUiV

T
i BVi),Y2i = �Vi + (BViU

T
i ATUi + BTViU

T
i AUi),

(2) P1�1Q
T
1 = Y1i , Ui+1 = P1

[
Ik

0

]
QT

1 ,

(3) P2�2Q
T
2 = Y2i , Vi+1 = P2

[
Ik

0

]
QT

2 ,

(4) stepsizei+1 = ‖Ui+1V
T
i+1 − UiV

T
i ‖.

The scalar � is obtained as follows: we choose a small initial value of � and, after each step,
we check if the condition (3.15) is satisfied. In the positive case, we update the variables and we
compute the next step of the algorithm. In the negative case, we increase the value of � by a factor
2 and start again the current step of the iteration until the condition (3.15) is verified. Thus, we can
recover from a bad choice of this parameter after a small number of short steps which depends
logarithmically on our initial guess.

In view of Theorem 1 and contrary to the SVD algorithm, the convergence of the gradient
method to a fixed point is guaranteed.

4.2. Complexity

In this section, we analyze the complexity of the two algorithms in order to compare their cost
(see [7] for more details about the amount of work for some matrix operations or decompositions).
The costs rely on the following basic operations.

(1) A product between two matrices M1, M2 of dimensions m1 × m2 and m2 × m3 respectively.
It is well known that this requires

2m1m2m3 flops,

where a flop is a basic arithmetic operation like an addition or a multiplication. If the matrix
M1 is sparse and has e.g. α nonzero elements in total, then the number of required operations
becomes

2αm3 flops.

(2) The SVD of a m × n matrix N given in a factored form

N = N1 · NT
2

where N1 is of dimension m × k and N2 of dimension n × k, with k � (m, n). The
procedure recommended in [4] is to first compute the QR factorizations

N1 = Q1R1, N2 = Q2R2
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and then the SVD of the k × k matrix

R1R
T
2 = Uk�kV

T
k .

The complexity of this approach is given in [4] or [7] and equals

6mk2 + 6nk2 + O(k3)flops.

We now apply this to our two algorithms. In the following, we assume that n ∼ m and k � (m, n).

4.2.1. Cost per iteration step for the SVD algorithm
The cheapest way to compute the first algorithm is to proceed as follows:

(1) construct

N1 = [AUi |ATUi |aUi],
N2 = [BVi |BTVi |Vi],

which requires respectively 4αk + mk and 4βk flops, where α and β are respectively the
number of nonzero elements of A and B,

(2) compute the SVD of a matrix given in a factored form as explained above, where N1 and
N2 are respectively of dimensions m × 3k and n × 3k. This requires 6m(3k)2 + 6n(3k)2 +
O(k3) flops and provides Ui+1 and Vi+1.

The total amounts of work for one step of this algorithm is thus 4αk + 4βk + 54k2(m +
n) + mk + O(k3). For dense matrices A and B (α = m2, β = n2), the complexity is given by
4m2k + 4n2k + O(mk2, nk2), while for sparse matrices, in general α = O(m) and β = O(n),
and the cost of the algorithm is thus cheaper.

4.2.2. Cost per iteration step for the gradient algorithm
The algorithm is computed in the following way:

(1) construct

Y1i = �Ui + (AUiV
T
i BTVi + ATUiV

T
i BVi),

Y2i = �Vi + (BViU
T
i ATUi + BTViU

T
i AUi),

which requires 4αk + 4βk + 2k2(m + n) + 3k(m + n) flops,
(2) compute the modified SVD of Y1i and Y2i which results in 6mk2 + 6nk2 + O(k3) flops,
(3) determine Ui+1 and Vi+1 which requires 2mk2 + 2nk2 flops.

The total amounts of work for one step of this algorithm equals 4αk + 4βk + 10k2(m +
n) + 3k(m + n) + O(k3). For dense matrices A and B (α = m2, β = n2), the complexity is
given by 4m2k + 4n2k + O(mk2, nk2) which is similar to the cost per iteration step for the SVD
algorithm. On the other hand, for sparse matrices, the cost per iteration step for the gradient
algorithm is cheaper than the SVD one. Let us remark that adjacency matrices of graphs are often
sparse.
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5. Numerical experiments

In this section we present some numerical experiments. First a comparison of the behavior and
the cost of both algorithms is realized. Secondly an application to graph matching is proposed to
illustrate the usefulness of numerically approximate (2.3).

5.1. Comparison of the two algorithms

In the aim to compare both algorithms, we apply them to randomly generated matrices A and B

of dimensions m = n = 50 for k = 2. The matrices are of different types: sparse non-symmetric
and sparse symmetric with 150 nonzero elements in total, dense non-symmetric and finally dense
symmetric. For each type of matrices, we ran 100 experiments and took the mean number of steps
over all 100 computations. We imposed a termination criterion based on the convergence measure
that the gradients must be perpendicular to the manifold (see (3.9) and (3.10)):

errori =
√

‖(I − UiU
T
i )∇UF(Ui, Vi)‖2 + ‖(I − ViV

T
i )∇V F (Ui, Vi)‖2. (5.22)

Initial isometries U0 and V0 are also randomly generated, but are the same for the computation
of both algorithms. The results are described in Tables 1–4. The mean number of flops for each
case is obtained by multiplying the mean number of steps with the theoretical number of flops
per iteration step described in Section 4.2. The process always converges to a fixed point, but this
fixed point could be different for the two algorithms. Tables 1–4 give also the number of similar
matchings, i.e. the number of times (over the 100 experiments) that both algorithms converge to
the same fixed point. Note that in these experiments the algorithms often converge to different
fixed points. This is probably due to the fact that for random matrices we can not expect to have a
global maximum with a large basin of attraction and hence that one may easily converge to local
minima.

Finally, the mean numbers of flops for the given termination criteria are plotted, for each case,
in Fig. 1. We observe the linear convergence of the algorithms. Moreover, in these experiments,
the gradient method converges in less steps than the SVD method and appears to be cheaper in
three of the four cases.

5.2. Application to graph matching

In the aim to test this problem to graph matching, we provide an example on graphs composed
of groups of vertices that are strongly connected. A few directed edges link these groups. The

Table 1
Results for sparse non-symmetric matrices

tol Gradient method SVD method
	 steps 	 flops 	 steps 	 flops

10−2 94 66×104 136 327×104

10−4 271 189×104 355 857×104

10−6 473 331×104 608 1465×104

10−8 678 475×104 874 2106×103

10−10 885 619×103 1142 2753×103

58 Similar matchings
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Table 2
Results for dense non-symmetric matrices

tol Gradient method SVD method
	 steps 	 flops 	 steps 	 flops

10−2 504 2016×104 1741 6963×104

10−4 1037 4149×104 3349 13, 398×104

10−6 1578 6314×104 4995 19, 979×104

10−8 2121 8483×104 6643 26, 570×104

10−10 2663 10, 653×104 8290 33, 162×104

42 Similar matchings

Table 3
Results for sparse symmetric matrices

tol Gradient method SVD method
	 steps 	 flops 	 steps 	 flops

10−2 236 165×104 173 418×104

10−4 504 353×104 346 834×104

10−6 779 545×104 523 1260×104

10−8 1055 738×104 701 1690×104

10−10 1331 931×104 881 2122×104

70 Similar matchings

Table 4
Results for dense symmetric matrices

tol Gradient method SVD method
	 steps 	 flops 	 steps 	 flops

10−2 236 945×104 173 694×104

10−4 504 2017×104 346 1384×104

10−6 779 3115×104 523 2092×104

10−8 1055 4219×104 701 2805×104

10−10 1331 5325×104 881 3523×104

74 Similar matchings

projection of the graphs emphasizes the importance of the direction between the clusters in order
to compare the graphs.

We generate randomly two directed graphs with three groups of vertices that are strongly con-
nected and with weak connections between these groups. The graphs can be roughly represented
by path graphs with three vertices. Each vertex represents a group of strongly connected nodes
(see Fig. 2). E.g. the vertex D of the path graph models the group of nodes 1–10 of Graph B.
Graph A is composed of three groups of 20 nodes while Graphs B is composed of groups of
10 nodes. The direction of the links between the clusters represented on the path graphs is the
dominant direction between these clusters, e.g. there exist two edges from A to B and only one
between B and A. The dominant direction is thus from A to B.

In order to compare pairs of graphs, we project Graphs A and B in a 3-dimensional space for
an easier visualization of the results (k = 3). The matrices A and B represent in this case the
graph adjacency matrices. For the given initial isometries U0 and V0, the two algorithms converge
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Fig. 1. Mean number of steps for the given termination criteria.

in this case to the same solution U and V . This is probably due to the fact that, for these particular
matrices, the objective function has a global maximum with a sufficiently large basin of attraction.
The error gets below a tolerance of 10−6 in respectively 824 and 2600 iterations for the gradient
and the SVD methods.

Because the graphs are of different dimension, we normalize the projections U and V by a row
normalization similar to the one from [2], i.e. we project the vertices on a sphere in a k-dimensional
space (k = 3). We plot the normalized projections U and V , i.e. the first column of U (resp. V ) as
x, the second column of U (resp. V ) as y and the third column of U (resp. V ) as z on Fig. 3. The
points have the property that similar nodes or groups of nodes are close in the projection space.
We remark that strongly connected vertices are close in the projection space and that allows to
find clusters in a graph. We observe also that the clusters are matched according to the direction
between them, i.e. group A is close to group D, B–E and C–F . The direction of the edges plays
thus an important role for the result of this example. Indeed if we had compared the symmetric
graphs (by removing the directions of the edges), the group A would compare equally well to D

or F without altering the objective function.
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Fig. 2. The graphs and their representation by a path graph: (a) Graph A (60 vertices): the clusters A, B and C represent
respectively the nodes 1–20, 21–40 and 41–60; (b) graph B (30 vertices): the clusters D, E and F represent respectively
the nodes 1–10, 11–20 and 21–30.
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Fig. 3. Result of the projection of graphs A and B in a 3-dimensional subspace.

6. Conclusion

In this paper, we analyze the problem of maximizing the coupling between two square matrices
A and B with respect to isometries U and V , i.e. the problem (2.3). An new iterative algorithm
is developed in order to numerically approach the critical points of the optimization problem.
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It consists of a gradient-type procedure based on the concept of gradient mapping applied to an
optimization problem over equinormed set. Numerical experiments showed that in most of the
cases the gradient algorithm outperforms the SVD-based algorithm presented in [6]. We also
applied the method to the problem of directed graph matching. Our technique retrieves clusters
in graphs depending on the direction of the edges. Further investigations of this problem can be
pursued in several directions. An interesting perspective in the field of graph matching is to develop
a systematic measure of similarity between the projected graphs. In this paper, the similarity was
verified on a plot by the proximity of the projected nodes in a k-dimensional space. But there is a
need for a proper distance measure in order to obtain a systematic procedure for comparing and
classifying graphs.
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