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Abstract— We consider the problem of comparing
two directed graphs with nodes that have been
subdivided into classes of different type. The match-
ing process is based on a constrained projection
of the nodes of the graphs in a lower dimensional
space. This procedure is formulated as a non-convex
optimization problem. The objective function uses
the two adjacency matrices of the graphs where the
nodes are adequately numbered. The constraints on
the problem impose the isometry of the so-called pro-
jections. An iterative algorithm is proposed to solve
the optimization problem. As illustration, we give
an example of graph matching for graphs with two
types of nodes. Finally, an extension for comparing
both groups of nodes in a directed bipartite graph is
presented.

Index Terms— Graph matching, Optimization,
Typed nodes

I. INTRODUCTION

Graphs are a powerful tool for many practi-

cal problems such as pattern recognition, shape

analysis, image processing and data mining. A

fundamental task in this context is that of graph

matching. Many approaches have been proposed

for graph matching, but one can distinguish be-

tween two broad classes : the first one tries to find

a one-to-one correspondence between some of the

vertices of the two graphs (exact graph matching);

the second one allows inexact matching and looks

for an optimal match even if the considered graphs

are structurally different (a survey can be found in

[1]). In practice, the second class of methods is the

most interesting one because it is more flexible and

often gives rise to algorithms that are cheaper to

implement.

In this paper we consider an inexact graph

matching method to compare two graphs with

nodes that have been subdivided into classes of

different type. The nodes of the same type in the
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two graphs are compared to each other, but taking

into account the complete interconnection pattern

of the graphs. The proposed method is based on

the optimization of a certain cost function. The

method specializes to the spectral method of Caelli

and Kosinov in the case that the graphs to be

compared are undirected and contain only one type

of nodes [2]. It is also an extension of the method

described in [3] which handles the directed graph

case for nodes of one type only, which in turn is a

low rank approximation of ideas developed in [4].

The computational technique that we propose is

also very similar to that of the above two methods

and is essentially a modified power method with

special correction applied at each step of the iter-

ation. Since the basic operation to be performed

at each step is that of multiplying certain bases

with the adjacency matrices of the two graphs, the

basic step of the computational procedure can be

implemented at low cost for large sparse graphs.

We illustrate the comparison technique with an

application to graphs that are essentially bipartite,

and for which there are clearly two groups of

nodes in each graph. We also use this example to

illustrate the convergence behavior of our proposed

algorithm.

Finally, we propose a modified problem for

comparing both groups of nodes in a directed

bipartite graph.

II. COST FUNCTION

Let R denote the real field and R
m×n denote the

set of all m × n real matrices. XT represents the

transpose of X . For X , Y ∈ R
m×n, the Frobenius

inner product is defined by

〈X,Y 〉 =

m
∑

i=1

n
∑

j=1

XijYij .

and its corresponding norm by

‖X‖ = 〈X,X〉1/2.
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Let f : R
m×n → R be a differentiable (real-

valued) function with matrix argument X . Then

the first-order approximation of f at a point X

can be expressed as

f(X + ∆) = f(X) + 〈∇f(X),∆〉 + o(‖∆‖)

where the gradient ∇f(X) is the m × n matrix

whose (i, j) entry is
∂f(X)
∂Xi,j

. Related to this, we

provide some gradients needed in the rest of the

paper

∇〈A,XT X〉 = X(A + AT ), (II.1)

∇〈XT AX,B〉 = AXBT + AT XB. (II.2)

The approach presented in this paper is an

extension of the work on inexact graph matching

proposed by the authors [3] for graph matching

of two arbitrary directed graphs. In that work

two graphs GA and GB of dimensions m and

n, respectively, were compared by projecting the

two graphs into a k-dimensional space, where k ≤
min(m,n) is typically very small (for visualization

purpose, one chooses e.g. k = 2, 3). The projected

nodes are obtained as follows: each node i of GA

is mapped to the normalized row i of a matrix

U ∈ R
m×k, and each node j of GB is mapped to

the normalized row j of V ∈ R
n×k. The projected

nodes are thus mapped on the unit sphere in a

k-dimensional space, and can then be compared

using any preferred matching technique on that

manifold (e.g. using nearest-neighbor ideas). We

give an example of this in Section V.

The matrices U and V are obtained from the

optimization of a cost function which uses the

adjacency matrices A and B of the two graphs.

It is given by

maxU,V {〈UT AU, V T BV 〉 :

U ∈ Qm,k, V ∈ Qn,k}. (II.3)

where Qm,k denotes the set of m×k matrices with

orthonormal columns :

Qm,k = {X ∈ R
m×k : XT X = Ik}.

The mathematical properties of the non convex

optimization problem (II.3) are presented in [3].

In general, there is no closed form for the optimal

value, except for special matrices A and B (e.g.

if A or B is symmetric). For arbitrary matrices,

only an upper bound to the problem is obtained.

This value is an adequate combination of the

eigenvalues of the symmetric and skew-symmetric

parts of A and B.

If we now have graphs with different types of

nodes, we assume that they have been relabelled

such that in the corresponding adjacency matrices

A =











A11 A12 . . . A1ℓ

A21 A22 . . . A2ℓ

...
...

. . .
...

Aℓ1 Aℓ2 . . . Aℓℓ











,

B =











B11 B12 . . . B1ℓ

B21 B22 . . . B2ℓ

...
...

. . .
...

Bℓ1 Bℓ2 . . . Bℓℓ











,

the nodes of the same type i = 1, · · · , ℓ correspond

to the same blocks in both matrices A and B.

The blocks Ai,j ∈ R
mi×mj and Bi,j ∈ R

ni×nj

thus describe the edges between nodes of type i to

nodes of type j in both A and B.

The rationale behind cost function (II.3) is that

the so-called projections U and V describe the

dominant behavior of both adjacency matrices A

and B, but in terms of a joint cost function (II.3),

which emphasizes the correlation between both

projected matrices. Since our projections U and V

should not mix nodes of different types, we will

constrain them to have a block diagonal form :

U =













U1 0 . . . 0

0 U2 . . .
...

...
. . .

. . .
...

0 . . . 0 Uℓ













,

V =













V1 0 . . . 0

0 V2 . . .
...

...
. . .

. . .
...

0 . . . 0 Vℓ













, (II.4)

where Ui ∈ Qmi×ki
and Vi ∈ Qni×ki

, which

implies that ki ≤ min(mi, ni). Notice that this

is essentially the same optimization problem as

in (II.3) except for the additional constraint that

U and V are block diagonal projections, which

of course prevents the mixing of types in the

projected nodes. We will subsequently have to

match nodes within each type i, using again a

preferred matching algorithm, on a sphere in a ki-

dimensional space, and this for i = 1, · · · , ℓ. In

the rest of this paper, we will assume for ease of

notation that ℓ = 2, i.e. that there are only two

different types of nodes. All results extend trivially

to the case of arbitrary number of types ℓ.
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III. THEORETICAL ASPECTS

The mathematical properties of the optimization

problem (II.3) were presented in [3] for ℓ = 1. We

give here a very short proof for the extension to

the constrained case with ℓ = 2 blocks. We thus

consider two graphs with partitioned adjacency

matrices

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

with Ai,j ∈ R
mi×mj and Bi,j ∈ R

ni×nj and or-

thogonal matrices Ui ∈ Qmi×ki
and Vi ∈ Qni×ki

,

for i = 1, 2 and j = 1, 2. The optimization

problem (II.3) then becomes

maxUi,Vi
{〈

[

UT
1 A11U1 UT

1 A12U2

UT
2 A21U1 UT

2 A22U2

]

,

[

V T
1 B11V1 V T

1 B12V2

V T
2 B21V1 V T

2 B22V2

]

〉 :

Ui ∈ Qmi,ki
, Vi ∈ Qni,ki

, i = 1, 2}. (III.5)

which is a continuous function on a compact

domain. Therefore, there always exists an optimal

solution (Ui, Vi), i = 1, 2 such that the first order

conditions are satisfied. By using some of the trace

properties1, the objective function becomes

〈UT
1 A11U1, V

T
1 B11V1〉

+ 〈UT
2 A22U2, V

T
2 B22V2〉

+ 〈UT
1 A12U2, V

T
1 B12V2〉

+ 〈UT
2 A21U1, V

T
2 B21V1〉. (III.6)

The first-order derivative conditions can be derived

from the Lagrangian:

L(U1, U2, V1, V2,X1,X2, Y1, Y2) =

〈UT
1 A11U1, V

T
1 B11V1〉

+ 〈UT
1 A12U2, V

T
1 B12V2〉

+ 〈UT
2 A21U1, V

T
2 B21V1〉

+ 〈UT
2 A22U2, V

T
2 B22V2〉

+ 〈X1, (I − UT
1 U1)〉 + 〈X2, (I − UT

2 U2)〉

+ 〈Y1, (I − V T
1 V1)〉 + 〈Y2, (I − V T

2 V2)〉

where Xi and Yi are symmetric matrices of

Lagrange multipliers for the orthogonality con-

straints. By setting the partial gradients of this

Lagrangian to zero (using (II.1) and (II.2)), the first

1trA = trAT , trAB = trBA, tr(A + B) = trA +
trB.

order conditions are found to be :

U1X1 = [A11U1V
T
1 BT

11 + AT
11U1V

T
1 B11

+A12U2V
T
2 BT

12 + AT
21U2V

T
2 B21]V1,

V1Y1 = [B11V1U
T
1 AT

11 + BT
11V1U

T
1 A11

+B12V2U
T
2 AT

12 + BT
21V2U

T
2 A21]U1,

U2X2 = [A22U2V
T
2 BT

22 + AT
22U2V

T
2 B22

+A21U1V
T
1 BT

21 + AT
12U1V

T
1 B12]V2,

V2Y2 = [B22V2U
T
2 AT

22 + BT
22V2U

T
2 A22

+B21V1U
T
1 AT

21 + BT
12V1U

T
1 A12]U2,

where Xi = Yi are symmetric matrices. Clearly

the cost in (III.5) does not change if one multiplies

each pair Ui, Vi by a common ki × ki orthogonal

matrix Qi. That degree of freedom can also be used

to impose that Xi = Yi are also equal to diagonal

matrices Λi (see [3] for more details).

IV. COMPUTATIONAL ASPECTS

In this section we present an iterative algorithm

to find a critical point of (III.5). It is a simple

recursive algorithm based on the Singular Value

Decomposition, which provides interesting results.

A convergence is still missing but numerical ex-

periments always show linear convergence to an

equilibrium point, provided the shifts si, i = 1, 2
are chosen appropriately.

The proposed iterative algorithm to compute a

critical point of (III.5) is as follows

U1+Σ1+V T
1+ + U1−Σ1−V T

1− =

A11U1V
T
1 BT

11 + AT
11U1V

T
1 B11

+A12U2V
T
2 BT

12 + AT
21U2V

T
2 B21

+s1U1V
T
1 (IV.7)

U2+Σ2+V T
2+ + U2−Σ2−V T

2− =

A22U2V
T
2 BT

22 + AT
22U2V

T
2 B22

+A21U1V
T
1 BT

21 + AT
12U1V

T
1 B12

+s2U2V
T
2 (IV.8)

where Ui+ and Vi+ are orthogonal complements of

Ui− and Vi−. The scalars si are positive numbers

sufficiently large (see [3] for more details) and Σi±

are diagonal matrices. The updating of the matrices

Ui, Vi is done at each iteration according to

U1 := U1+, U2 := U2+,

V1 := V1+, V2 := V2+. (IV.9)

It is easy to see that U1+Σ1+V T
1+ and U2+Σ2+V T

2+

are the best rank ki approximations of the re-

spective right hand sides. In practice the previous

iteration is realized by the application of the SVD

algorithm to the right-hand side of the equation,
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which is a matrix of rank at most 5ki. This can

be exploited of course in the application of the

SVD algorithm to these right hand sides. For

sparse matrices A and B, the complexity of the

computation of one iteration step (IV.7), (IV.8),

(IV.9) is then only linear in m and n.

One can show that the critical points of the cost

function (III.5) are fixed points of the iteration

(IV.7), (IV.8), (IV.9) and vice-versa. The proof of

this is very similar to that of the one block case

[3] and is omitted here.

V. EXPERIMENTS IN TYPED GRAPH MATCHING

In order to apply this problem to graph match-

ing, we use it to compare two directed graphs, the

nodes of which have been divided into two types,

labelled group 1 and 2.

In Figure 1 we show two graphs that are essentially

bipartite in the sense that nodes from clusters A

and B (denoted as group 1 in Figure 1(c)) point

to nodes from clusters C and D (denoted as group

2 in Figure 1(c)), and vice versa. These are not

true bipartite graphs because within the clusters,

there are random connections between the nodes

of that cluster. But clearly one hopes to detect a

close connection between the groups of nodes of

type A and B in both graphs and those of type C

and D in both graphs. Indeed, when imposing the

constraint that only nodes of group 1 and 2 can

be compared with each other in both graphs, then

there is a clear distinction between the subgroups

of type A and B in group 1, on the one hand, and

those of type C and D in group 2, on the other

hand. This is also what is observed in Figure 2

when projecting both groups of nodes in a two

dimensional space.

When one zooms in on each of the four clusters in

Graphs A and B, one clearly sees in Figure 3 that

the nodes of these clusters are different, but quite

close to each other.

We also show the convergence behavior of our

algorithm for this example. We measured the con-

vergence by checking the maximal residual norm

at each step

Residual(step) :=

max(‖U1V
T
1 − U1+V T

1+‖2, ‖U2V
T
2 − U2+V T

2+‖2)

which is what we plot in Figure 4(a) below.

One can clearly observe linear convergence of our

algorithm. Finally, we show in Figure 4(b) the

convergence of the actual value of the cost, as a

function of the iteration step.

Let us remark that we have presented one solu-

tion corresponding to a local minima of problem

A

B

C

D

(a) Graph A with four groups of 10 random nodes

A

B C

D

(b) Graph B with four groups of 10 random nodes

A

B

C

D

Group 1 Group 2

(c) Bipartite partition

Fig. 1. Two essentially bipartite graphs

(III.5). For this solution, the nodes of cluster A

in Graph A are compared to nodes of cluster A

in Graph B, and so on for the four clusters of

nodes. For another local minimum or solution, the
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−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
nodes 1−>11 (group A of Graph A)
nodes 10−>20 (group B of Graph A)
nodes 1−>10 (group A of Graph B)
nodes 11−>20 (group B of Graph B)

(a) Projected nodes of Group 1 of both graphs

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

0

0.2

0.4

0.6

0.8

1

nodes 21−>30 (group C of Graph A)
nodes 31−>40 (group D of Graph A)
nodes 21−>30 (group C of Graph B)
nodes 31−>40 (group D of Graph B)

(b) Projected nodes of Group 2 of both graphs

Fig. 2. Closeness between nodes of the same clusters in each
group

nodes of cluster A in Graph A would have been

compared to nodes of cluster B in Graph B, the

nodes of cluster B in Graph A to nodes of cluster

A in Graph B, the nodes of cluster C in Graph

A to nodes of cluster D in Graph B and finally,

the nodes of cluster D in Graph A would have

been compared to nodes of cluster C in Graph B.

Depending on the initial condition for the iteration,

the solution will be different, but the nodes will

always be compared with nodes of the same type.

If we suppress the types in the previous example.

Clusters of nodes will now be compared without

any constraints of type. One then automatically

obtains four local minima that correspond to cyclic

permutations of the clusters A, B, C and D in

graphs A and B.

VI. CASE OF BIPARTITE GRAPHS

A directed bipartite graph of dimension m is a

special graph where the set of nodes can be divided

into two disjoint sets {M1,M2} of dimensions m1

−5 0 5 10 15

x 10
−4

0.9985

0.999

0.9995

1

1.0005

nodes 1−>11 (group A of Graph A)
nodes 10−>20 (group B of Graph A)
nodes 1−>10 (group A of Graph B)
nodes 11−>20 (group B of Graph B)

(a) Clusters A in both graphs

0.9999 1 1 1 1 1 1.0001

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

x 10
−4

nodes 1−>11 (group A of Graph A)
nodes 10−>20 (group B of Graph A)
nodes 1−>10 (group A of Graph B)
nodes 11−>20 (group B of Graph B)

(b) Clusters B in both graphs

0 0.005 0.01 0.015 0.02 0.025

0.996

0.998

1

1.002

1.004

1.006

nodes 21−>30 (group C of Graph A)
nodes 31−>40 (group D of Graph A)
nodes 21−>30 (group C of Graph B)
nodes 31−>40 (group D of Graph B)

(c) Clusters C in both graphs

−1 −0.9999 −0.9999 −0.9998 −0.9998 −0.9997
0

0.005

0.01

0.015

0.02

0.025

0.03

nodes 21−>30 (group C of Graph A)
nodes 31−>40 (group D of Graph A)
nodes 21−>30 (group C of Graph B)
nodes 31−>40 (group D of Graph B)

(d) Clusters D in both graphs

Fig. 3. Zooming in on the four different groups in Graphs A
and B
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(a) Linear convergence of residual
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(b) Convergence of the cost

Fig. 4. Convergence behavior

and m2, with m1+m2 = m, such that no edge has

both end-points in the same set. A bipartite graph

has then the following adjacency matrix

AB =

(

0 A1

AT
2 0

)

(VI.10)

with A1, A2 ∈ R
m1×m2 . In this section, we treat

the problem of bipartite graph matching, in the

sense of comparing together both sets of nodes, i.e.

comparing nodes of group M1 with nodes of group

M2. In this case, we will see that the problem is

reduced to a smaller one.

In problem (III.5), we choose A = AB and B =
AT

B and the projections U and V are constrained

to have the block diagonal form (II.4)

U = V =

[

U1 0
0 U2

]

(VI.11)

where Ui ∈ Qmi×ki
, i = 1, 2, with ki ≤ mi. By

using some of the trace properties, the objective

function becomes

2〈UT
1 A1U2, U

T
1 A2U2〉

where UT
1 U1 = Ik and UT

2 U2 = Ik. The optimiza-

tion problem can be formulated

maxU1,U2
{〈UT

1 A1U2, U
T
1 A2U2〉 :

U1 ∈ Qm1,k1
, U2 ∈ Qm2,k2

}. (VI.12)

Let us remark that, for m1 = k1 = m2 =
k2, this optimization problem is equivalent to the

problem presented in [5]. The first-order derivative

conditions can be derived from the Lagrangian

L(U1, U2,X, Y ) = 〈UT
1 A1U2, U

T
1 A2U2〉

+〈X, Ik − UT
1 U1〉 + 〈Y, Ik − UT

2 U2〉

where X and Y are symmetric matrices of

Lagrange multipliers for the orthogonality con-

straints. By setting the partial gradients of

L(U1, U2,X, Y ) to zero, the first-order conditions

are found to be:

U1X = [A1U2U
T
2 AT

2 + A2U2U
T
2 AT

1 ]U1,

U2Y = [AT
1 U1U

T
1 A2 + AT

2 U1U
T
1 A1]U2.

In this case the matrices X and Y are not equal but

satisfy tr X = tr Y . These symmetric matrices X

and Y could be chosen diagonal and are denoted

DX and DY respectively. A proposed iterative

algorithm to compute a critical point of (VI.12)

is the following:

U1+ΛX+UT
1+ + U1−ΛX−UT

1− =

A1U2U
T
2 AT

2 + A2U2U
T
2 AT

1

+sU1U
T
1 , (VI.13)

U2+ΛY +UT
2+ + U2−ΛY −UT

2− =

AT
1 U1U

T
1 A2 + AT

2 U1U
T
1 A1

+sU2U
T
2 , (VI.14)

where Ui+ are orthogonal complements of Ui−,

i = 1, 2. The scalar s is a positive number

sufficiently large (see [3] for more details) and

ΛX+, ΛY + are diagonal matrices. These iterations

correspond to the iteration (IV.7) for one type of

nodes (l = 1), where we have replaced the matrices

A, B, U and V according to (VI.10) and (VI.11).

The role of the shift s is to select the adequate part

of the spectra. The updating of the matrices U1, U2

is done at each iteration according to

U1 := U1+, U2 := U2+. (VI.15)

In practice the previous iteration is realized by

application of an eigendecomposition to the right-

hand side of the equation. The dominant spaces

correspond to the rightmost part of the spectra.

One can easily see that a fixed point (U1, U2) of

(VI.13) and (VI.14) is a critical point of (VI.12)
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with DX = ΛX −sI and DY = ΛY −sI . There is

no proof of convergence but numerical experiments

always converge to an equilibrium point.

VII. CONCLUSION

In this paper, we extend the projected correlation

method described in [3], which can be used to

perform graph matching between two graphs repre-

sented by their adjacency matrices A and B. The

proposed extension constrains the matching such

that the nodes of both graphs can only be compared

when their types are the same : both graphs are

thus assumed to be partitioned in subgraphs of

equal type. The proposed cost function never-

theless uses the connectivity between nodes of

different type in the global cost, to be minimized.

A modified problem for bipartite graphs is also

presented.

The problem of matching graphs with nodes of

different types could be extended for graphs with

different types of edges. The case of graphs with

different types of nodes and edges could then be

obtained by combining both approaches.

REFERENCES

[1] D. CONTE, P. FOGGIA, C. SANSONE AND M. VENTO,
“Thirty years of graph matching in pattern recognition”,
Int. J. Pattern Recognition and Artificial Intelligence,
Vol.18(3), pp. 265–298 , 2004.

[2] T. CAELLI AND S. KOSINOV, “An eigenspace projec-
tion clustering method for inexact graph matching,”
IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol.26(4), pp. 515–519, 2004.

[3] C. FRAIKIN, Y. NESTEROV AND P. VAN DOOREN, “Op-
timizing the coupling between two isometric projections
of matrices”, submitted to SIAM J. Matrix Anal. Appl.,
2006.

[4] V. BLONDEL, A. GAJARDO, M. HEYMANS, P. SEN-
NELART AND P. VAN DOOREN, “Measure of similarity
between graph vertices. Applications to synonym extrac-
tion and web searching”. SIAM Review, pp. 647–666,
Vol.46, 2004.

[5] R. BROCKETT, “Singular values and least squares match-
ing”. Proc. 36th IEEE Conf. on Dec. and Control, San
Diego, CA, pp. 1121–1124, 1997.

TuC13.4

1694


