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Abstract. In this paper, we consider two particular problems of di-
rected graph matching. The first problem concerns graphs with nodes
that have been subdivided into classes of different type. The second
problem treats graphs with edges of different types. In the two cases,
the matching process is based on a constrained projection of the nodes
and of the edges of both graphs in a lower dimensional space. The proce-
dures are formulated as non-convex optimization problems. The objective
functions use the adjacency matrices and the constraints on the prob-
lem impose the isometry of the so-called projections. Iterative algorithms
are proposed to solve the optimization problems. As illustration, we give
an example of graph matching for graphs with two types of nodes and
graphs with two types of edges.
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1 Introduction

For many applications in graph theory, a fundamental task is that of finding
a correspondence or a measure of similarity between two graphs. This is often
referred to as the graph matching problem.

Many approaches have been proposed for graph matching and can be classi-
fied in two broad classes : the first one tries to find a one-to-one correspondence
between some of the vertices of the two graphs (exact graph matching); the
second one allows inexact matching and looks for an optimal match even if the
considered graphs are structurally different (a survey can be found in [1]). In
practice, the second class of methods is the most interesting one because it is
more flexible and often gives rise to algorithms that are cheaper to implement.

In this paper we consider first an inexact graph matching method to compare
two graphs with nodes that have been subdivided into classes of different type.

⋆ This paper presents research results of the Belgian Network DYSCO (Dynamical
Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles
Programme, initiated by the Belgian State, Science Policy Office, and a grant Action
de Recherche Concertée (ARC) of the Communauté Française de Belgique. The
scientific responsibility rests with its authors.
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The nodes of the same type in the two graphs are compared to each other, but
taking into account the complete interconnection pattern of the graphs. The
proposed method is based on the optimization of a certain cost function. The
method specializes to the spectral method of Caelli and Kosinov in the case that
the graphs to be compared are undirected and contain only one type of nodes [2].
It is also an extension of the method described in [3] which handles the directed
graph case for nodes of one type only, which in turn is a low rank approximation
of the similarity matrix developed in [4]. The computational technique that we
propose is also very similar to that of the above two methods and is essentially
a modified power method with special correction applied at each step of the
iteration. Since the basic operation to be performed at each step is that of
multiplying certain bases with the adjacency matrices of the two graphs, the
basic step of the computational procedure can be implemented at low cost for
large sparse graphs. An illustration of the matching method is also presented
with an application to graphs with nodes that have been classified into two
classes. The convergence behavior of the algorithm is also illustrated for this
application.

In a second part, the graph matching method is modified in order to compare
two directed graphs with edges of different type. This extension is based on a
low rank approximation of ideas developed in [5] for one type of edges. The
mathematical properties and the computational aspects of this extension are
similar to those of the initial problem where the nodes and the edges have no
specific label. The method is finally illustrated by comparing two directed graphs
for which the edges have been separated into two groups.

2 Notations and definitions

This section first introduces some notations used in the paper and then summa-
rizes some definitions of matrices characterizing the graphs.

2.1 Inner product and gradients

Let IR denote the real field and IRm×n denote the set of all m×n real matrices.
XT represents the transpose of X. For X, Y ∈ IRm×n, the Frobenius inner

product is defined by

〈X,Y 〉 =
m

∑

i=1

n
∑

j=1

XijYij = tr(XT Y )

and its corresponding norm by

‖X‖ = 〈X,X〉1/2.

Let f : IRm×n → IR be a differentiable (real-valued) function with ma-
trix argument X. Then the first-order approximation of f at a point X can be
expressed as

f(X + ∆) = f(X) + 〈∇f(X),∆〉 + o(‖∆‖)
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where the gradient ∇f(X) is the m × n matrix whose (i, j) entry is ∂f(X)
∂Xi,j

.

Related to this, we provide some gradients needed in the rest of the paper

∇〈A,XT X〉 = X(A + AT ), (1)

∇〈XT AX,B〉 = AXBT + AT XB. (2)

2.2 Adjacency matrix of a graph and extensions

A graph GA consists of a set of nodes or vertices VA and a set of edges EA

which can be directed or undirected. For a graph with nA nodes, the nA × nA

adjacency matrix A of a graph is the matrix whose entry (i, j) is equal to a
weight wij associated to the edge between the nodes i and j.

This “node-node” adjacency matrix is the most common matrix for charac-
terizing the structure of the graph, but other matrices are sometimes used in
the literature to describe the graph. In the rest of the section, we present some
edge-based matrices introduced in [5]. Let sA(i) and tA(i) denote respectively
the source node and terminal node of edge i in graph GA. The number of nodes
in GA is nA and the number of edges mA. The adjacency structure of the graph
is then described by a pair of nA ×mA matrices, the source-edge matrix AS and
the terminus-edge matrix AT , defined as follows:

[AS ]ij =

{√
witA(j)

sA(j) = i

0 otherwise
, (3)

[AT ]ij =

{√
wsA(j)i tA(j) = i

0 otherwise
. (4)

From this representation, it follows that:

– DAS
= ASAT

S is a diagonal matrix with the outgoing capacity of node i in
the ith diagonal entry,

– DAT
= AT AT

T is a diagonal matrix with the ingoing capacity of node i in
the ith diagonal entry,

– A = ASAT
T is the classical node-node adjacency matrix.

Moreover, these two matrices AS and AT have the advantage of expressing the
graph structure from an edge-based point of view, which is interesting with a
perspective of labelling the edges in a graph.

3 Graph matching

The matching methods for comparing graphs which have nodes or edges of dif-
ferent types are extensions of the work proposed in [3] where one optimizes a cost
function using the adjacency matrices of the two graphs. This section summarizes
the procedure and its main properties. Two graphs GA and GB of dimensions nA
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and nB , respectively, were compared by projecting the nodes of the two graphs
into a k-dimensional space, where k ≤ min(nA, nB) is typically very small (for
the purpose of visualization, one chooses e.g. k = 2, 3). The projected nodes are
obtained as follows: each node i of GA is mapped to the normalized row i of a
matrix U ∈ IRnA×k, and each node j of GB is mapped to the normalized row j

of V ∈ IRnB×k, where U and V are matrices optimizing a certain cost function.
The projected nodes are thus mapped on the unit sphere in a k-dimensional
space, and can then be compared using any preferred matching technique on
that manifold (e.g. using nearest-neighbor ideas).

The matrices U and V are obtained from the optimization of a cost function
which uses the adjacency matrices A and B of the two graphs. It is given by

max
U, V

{〈UT AU, V T BV 〉 : U ∈ QnA,k, V ∈ QnB ,k} (5)

where Qm,k denotes the set of m × k matrices with orthonormal columns :

Qm,k = {X ∈ IRm×k : XT X = Ik}.

The mathematical properties of the non convex optimization problem (5) are
presented in [3]. In general, there is no closed form for the optimal value, except
for special matrices A and B (e.g. if A or B is symmetric). For arbitrary matrices,
only an upper bound to the problem is obtained. This value is an adequate
combination of the eigenvalues of the symmetric and skew-symmetric parts of A

and B. An algorithm is also proposed in [3] to solve the optimization problem
numerically.

We illustrate the method by comparing the two directed graphs GA and GB

represented in Figure 1. The two graphs are identical with the exception of the
direction of the edge between the nodes 4 and 5. Intuitively, according to the
direction of the edges, we expect to associate groups of nodes 1, 2, 3, 4 of A with
5, 6, 7 of B and conversely. A normalized solution of problem (5) for k = 2 is
represented in Figure 3 where the x-axis and the y-axis represent respectively
the first and the second columns of U and V . In this projection plane, nodes
which are close have the property to be similar. As shown in the Figure, we
retrieve the expected grouping of the nodes.

4 Graphs with typed nodes

We will now modify the method described in the previous section for the case
of graphs with nodes of different types [6]. The projections U and V will be
constrained to have a particular structure such that the nodes of both graphs
are only compared with nodes of the same type.
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Fig. 1. The two directed graphs A (a) and B (b) that are compared.
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Fig. 2. Projected nodes of Graphs A and B.

4.1 Cost function

If we now have graphs with different types of nodes, we assume that they have
been relabelled such that in the corresponding adjacency matrices

A =











A11 A12 . . . A1ℓ

A21 A22 . . . A2ℓ

...
...

. . .
...

Aℓ1 Aℓ2 . . . Aℓℓ











, B =











B11 B12 . . . B1ℓ

B21 B22 . . . B2ℓ

...
...

. . .
...

Bℓ1 Bℓ2 . . . Bℓℓ











,

the nodes of the same type i = 1, · · · , ℓ correspond to the same blocks in both
matrices A and B. The blocks Ai,j ∈ IR

nAi
×nAj and Bi,j ∈ IR

nBi
×nBj thus

describe the edges between nodes of type i to nodes of type j in both A and B.

The rationale behind cost function (5) is that the so-called projections U and
V describe the dominant behavior of both adjacency matrices A and B, but
in terms of a joint cost function (5), which emphasizes the correlation between
both projected matrices. Since our projections U and V should not mix nodes
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of different types, we will constrain them to have a block diagonal form :

U =













U1 0 . . . 0

0 U2 . . .
...

...
. . .

. . .
...

0 . . . 0 Uℓ













, V =













V1 0 . . . 0

0 V2 . . .
...

...
. . .

. . .
...

0 . . . 0 Vℓ













, (6)

where Ui ∈ QnAi
×ki

and Vi ∈ QnBi
×ki

, which implies that ki ≤ min(nAi
, nBi

).
Notice that this is essentially the same optimization problem as in (5) except for
the additional constraint that U and V are block diagonal projections, which of
course prevents the mixing of types in the projected nodes. We will subsequently
have to match nodes within each type i, using again a preferred matching al-
gorithm, on a sphere in a ki-dimensional space, and this for i = 1, · · · , ℓ. The
mapping of the projected nodes on a sphere is again obtained by a row normal-
ization of U and V . In the rest of this paper, we will assume for ease of notation
that ℓ = 2, i.e. that there are only two different types of nodes. All results extend
trivially to the case of arbitrary number of types ℓ.

The mathematical properties of the optimization problem (5) were presented
in [3] for ℓ = 1. We give here a very short proof for the extension to the con-
strained case with ℓ = 2 blocks. We thus consider two graphs with partitioned
adjacency matrices

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

with Ai,j ∈ IR
nAi

×nAj and Bi,j ∈ IR
nBi

×nBj and orthogonal matrices Ui ∈
QnAi

×ki
and Vi ∈ QnBi

×ki
, for i = 1, 2 and j = 1, 2. The optimization problem

(5) then becomes

max
Ui, Vi

{〈
[

UT
1 A11U1 UT

1 A12U2

UT
2 A21U1 UT

2 A22U2

]

,

[

V T
1 B11V1 V T

1 B12V2

V T
2 B21V1 V T

2 B22V2

]

〉 :

Ui ∈ QnAi
,ki

, Vi ∈ QnBi
,ki

, i = 1, 2} (7)

which is a continuous function on a compact domain. Therefore, there always
exists an optimal solution (Ui, Vi), i = 1, 2 such that the first order conditions are
satisfied. By using some of the trace properties1, the objective function becomes

〈UT
1 A11U1, V

T
1 B11V1〉 + 〈UT

2 A22U2, V
T
2 B22V2〉 +

〈UT
1 A12U2, V

T
1 B12V2〉 + 〈UT

2 A21U1, V
T
2 B21V1〉. (8)

The first-order derivative conditions can be derived from the Lagrangian:

L(U1, U2, V1, V2,X1,X2, Y1, Y2) = 〈UT
1 A11U1, V

T
1 B11V1〉 + 〈UT

1 A12U2, V
T
1 B12V2〉

+ 〈UT
2 A21U1, V

T
2 B21V1〉 + 〈UT

2 A22U2, V
T
2 B22V2〉

+ 〈X1, (I − UT
1 U1)〉 + 〈X2, (I − UT

2 U2)〉
+ 〈Y1, (I − V T

1 V1)〉 + 〈Y2, (I − V T
2 V2)〉

1 trA = trAT , trAB = trBA, tr(A + B) = trA + trB.
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where Xi and Yi are symmetric matrices of Lagrange multipliers for the orthog-
onality constraints. By setting the partial gradients of this Lagrangian to zero
(using (1) and (2)), the first order conditions are found to be :

U1X1 = [A11U1V
T
1 BT

11 + AT
11U1V

T
1 B11 + A12U2V

T
2 BT

12 + AT
21U2V

T
2 B21]V1,

V1Y1 = [B11V1U
T
1 AT

11 + BT
11V1U

T
1 A11 + B12V2U

T
2 AT

12 + BT
21V2U

T
2 A21]U1,

U2X2 = [A22U2V
T
2 BT

22 + AT
22U2V

T
2 B22 + A21U1V

T
1 BT

21 + AT
12U1V

T
1 B12]V2,

V2Y2 = [B22V2U
T
2 AT

22 + BT
22V2U

T
2 A22 + B21V1U

T
1 AT

21 + BT
12V1U

T
1 A12]U2,

where Xi = Yi are symmetric matrices. Clearly the cost in (7) does not change
if one multiplies each pair Ui, Vi by a common ki × ki orthogonal matrix Qi.
That degree of freedom can also be used to impose that Xi = Yi are also equal
to diagonal matrices Λi (see [3] for more details).

4.2 Computational aspects

In this section we present an iterative algorithm to find a critical point of (7). It is
a simple recursive algorithm based on the Singular Value Decomposition, which
provides interesting results. A convergence proof is still missing but numerical
experiments always show linear convergence to an equilibrium point, provided
the shifts si, i = 1, 2 are chosen appropriately.

The proposed iterative algorithm to compute a critical point of (7) is as
follows

U1+Σ1+V T
1+ + U1−Σ1−V T

1− = A11U1V
T
1 BT

11 + AT
11U1V

T
1 B11

+ A12U2V
T
2 BT

12 + AT
21U2V

T
2 B21 + s1U1V

T
1 (9)

U2+Σ2+V T
2+ + U2−Σ2−V T

2− = A22U2V
T
2 BT

22 + AT
22U2V

T
2 B22

+ A21U1V
T
1 BT

21 + AT
12U1V

T
1 B12 + s2U2V

T
2 (10)

where Ui+ and Vi+ are orthogonal complements of Ui− and Vi−. The scalars
si are positive numbers sufficiently large (see [3] for more details) and Σi± are
diagonal matrices. The updating of the matrices Ui, Vi is done at each iteration
according to

U1 := U1+, U2 := U2+, V1 := V1+, V2 := V2+. (11)

It is easy to see that U1+Σ1+V T
1+ and U2+Σ2+V T

2+ are the best rank ki approx-
imations of the respective right hand sides. In practice the previous iteration is
realized by the application of the SVD algorithm to the right-hand side of the
equation, which is a matrix of rank at most 5ki. This can be exploited of course
in the application of the SVD algorithm to these right hand sides. For sparse
matrices A and B, the complexity of the computation of one iteration step (9),
(10), (11) is then only linear in nA and nB .

One can show that the critical points of the cost function (7) are fixed points
of the iteration (9), (10), (11) and vice-versa. The proof of this is very similar
to that of the one block case [3] and is omitted here.
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4.3 Experiments in graph matching

In order to apply this problem to graph matching, we use it to compare two
directed graphs, the nodes of which have been divided into two types, labelled
group 1 and 2.

A

B

C

D

(a) Graph A with four groups of 10 ran-
dom nodes.

A

B C

D

(b) Graph B with four groups of 10 ran-
dom nodes.

A

B

C

D

Group 1 Group 2

(c) Bipartite parti-
tion.

Fig. 3. Two essentially bipartite graphs.

In Figure 3 we show two graphs that are essentially bipartite in the sense that
nodes from clusters A and B (denoted as group 1 in Figure 3(c)) point to nodes
from clusters C and D (denoted as group 2 in Figure 3(c)), and vice versa.
These are not true bipartite graphs because within the clusters, there are random
connections between the nodes of that cluster. But clearly one hopes to detect a
close connection between the groups of nodes of type A and B in both graphs and
those of type C and D in both graphs. Indeed, when imposing the constraint
that only nodes of group 1 and 2 can be compared with each other in both
graphs, then there is a clear distinction between the subgroups of type A and B
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in group 1, on the one hand, and those of type C and D in group 2, on the other
hand. This is also what is observed in Figure 4 when projecting both groups of
nodes in a two dimensional space.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
nodes 1−>11 (group A of Graph A)
nodes 10−>20 (group B of Graph A)
nodes 1−>10 (group A of Graph B)
nodes 11−>20 (group B of Graph B)

(a) Projected nodes of Group 1 of both
graphs.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

0

0.2

0.4

0.6

0.8

1

nodes 21−>30 (group C of Graph A)
nodes 31−>40 (group D of Graph A)
nodes 21−>30 (group C of Graph B)
nodes 31−>40 (group D of Graph B)

(b) Projected nodes of Group 2 of both
graphs.

Fig. 4. Closeness between nodes of the same clusters in each group.

When one zooms in on each of the four clusters in Graphs A and B, one clearly
sees in Figure 5 that the nodes of these clusters are different, but quite close to
each other.

We also show the convergence behavior of our algorithm for this example.
We measured the convergence by checking the maximal residual norm at each
step

Residual(step) := max(‖U1V
T
1 − U1+V T

1+‖2, ‖U2V
T
2 − U2+V T

2+‖2) (12)

which is what we plot in Figure 6(a) below. One can clearly observe linear
convergence of our algorithm. Finally, we show in Figure 6(b) the convergence
of the actual value of the cost, as a function of the iteration step.

Let us remark that we have presented one solution corresponding to a local
minima of problem (7). For this solution, the nodes of cluster A in Graph A are
associated to nodes of cluster A in Graph B, and so on for the four clusters of
nodes. For another local minimum or solution, the nodes of cluster A in Graph
A would have been associated to nodes of cluster B in Graph B, the nodes of
cluster B in Graph A to nodes of cluster A in Graph B, the nodes of cluster C

in Graph A to nodes of cluster D in Graph B and finally, the nodes of cluster
D in Graph A would have been associated to nodes of cluster C in Graph B.
Depending on the initial condition for the iteration, the solution will be different,
but the nodes will always be associated with nodes of the same type.

If we suppress the types in the previous example, clusters of nodes will now
be compared without any constraints of type. One then automatically obtains
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(a) Clusters A in both graphs.
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(b) Clusters B in both graphs.
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(c) Clusters C in both graphs.

−1 −0.9999 −0.9999 −0.9998 −0.9998 −0.9997
0

0.005

0.01

0.015

0.02

0.025

0.03

nodes 21−>30 (group C of Graph A)
nodes 31−>40 (group D of Graph A)
nodes 21−>30 (group C of Graph B)
nodes 31−>40 (group D of Graph B)

(d) Clusters D in both graphs.

Fig. 5. Zooming in on the four different groups in Graphs A and B.
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Fig. 6. Convergence behavior.

four local minima, that correspond to cyclic permutations of the clusters A,B,C
and D in Graphs A and B.

5 Graphs with typed edges

An other extension of the general method concerns graphs with edges of different
types. The method will now rely on the projection of the nodes and of the edges
of both graphs in a lower-dimensional space. For graphs with different types of
edges, the projected edges will be constrained to a particular structure.

5.1 Coupled node-edge projections

Up to now, we have introduced a notion of projection of the nodes of two graphs,
which is then used to compare the graphs. In order to take into account edge
types, we need to introduce also a measure of similarity between the edges of
both graphs. This measure will be based, similarly to what we did for the nodes,
on a projection of the edges in a lower dimensional space.

The matching process is based on the coupled projection of the nodes and of
the edges of the two graphs in a lower-dimensional subspace by the optimization
of a certain cost function. The method is a low rank variant of the method
described in [5] and an extension of the problem presented in Section 3. The
number of nodes in GA (resp. GB) is denoted by nA (nB) and the number
of edges by mA (mB). The two graphs are compared by projecting the nodes
and the edges into a k1 (resp. k2)-dimensional space, where k1 ≤ min(nA, nB)
and k2 ≤ min(mA,mB) are typically small. The projections of the nodes are
represented by U1 ∈ IRnA×k1 and V1 ∈ IRnB×k1 and the projections of the
edges by U2 ∈ IRmA×k2 and V2 ∈ IRmB×k2 . The comparison of the graph uses
the projections as explained in Section 3.
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The matrices Ui and Vi, i = 1, 2 are obtained from the optimization of a cost
function which uses the source- and terminus-edge matrices of the two graphs.
It corresponds to

max
U1, V1, U2, V2

{〈UT
1 ASU2, V

T
1 BSV2〉 + 〈UT

1 AT U2, V
T
1 BT V2〉 :

U1 ∈ QmA,k1
, V1 ∈ QmB ,k1

, U2 ∈ QnA,k2
, V2 ∈ QnB ,k2

} (13)

which is a continuous function on a compact domain. Therefore, there always
exists a solution (Ui, Vi), i = 1, 2 such that the first-order conditions are satisfied.
These conditions are derived from the Lagrangian L(U1, V1, U2, V2,X1, Y1,X2, Y2):

L(U1, V1, U2, V2,X1, Y1,X2, Y2) = 〈UT
1 ASU2, V

T
1 BSV2〉 + 〈UT

1 AT U2, V
T
1 BT V2〉

+ 〈X1, (I − UT
1 U1)〉 + 〈Y1, (I − V T

1 V1)〉
+ 〈X2, (I − UT

2 U2)〉 + 〈Y2, (I − V T
2 V2)〉

where Xi and Yi are symmetric matrices of Lagrange multipliers for the orthog-
onality constraints. By setting the partial gradients of this Lagrangian to zero,
the first order conditions are found to be :

U1X1 =
[

ASU2V
T
2 BT

S + AT U2V
T
2 BT

T

]

V1,

V1Y1 =
[

BSV2U
T
2 AT

S + BT V2U
T
2 AT

T

]

U1,

U2X2 =
[

AT
SU1V

T
1 BS + AT

T U1V
T
1 BT

]

V2,

V2Y2 =
[

BT
S V1U

T
1 AS + BT

T V1U
T
1 AT

]

U2, (14)

where Xi = Yi, i = 1, 2 are symmetric matrices. One can easily see that the cost
in (13) does not change by multiplying each pair Ui, Vi, i = 1, 2 by a common
ki×ki orthogonal matrix. That degree of freedom can be used to choose Xi = Yi

diagonal.

5.2 Edges of different types

If we now have graphs with ℓ different types of edges, the previous problem can
be extended to take into account this particularity and to match together only
edges of the same type. We assume that the edges have been labelled such that
in the corresponding source- and terminus-edge matrices

AS =
[

AS1
AS2

· · · ASℓ

]

, AT =
[

AT1
AT2

· · · ATℓ

]

,

BS =
[

BS1
BS2

· · · BSℓ

]

, BT =
[

BT1
BT2

· · · BTℓ

]

,

the edges of the same type i = 1, 2, · · · , ℓ correspond to the same blocks ASi

(ATi
), BSi

(BTi
) in both AS (AT ) and BS (BT ). The blocks ASi

(ATi
) ∈ IRnA×mAi

and BSi
(BTi

) ∈ IRnB×mBi , i = 1, 2, · · · , ℓ thus correspond to edges of the same
type, where mAi

and mBi
, i = 1, 2 represent the number of edges of type i in

GA and GB respectively.
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Since the projections of the edges U2 and V2 in (13) should not mix edges of
different types, they will be constrained to have a block diagonal form:

U2 =













U21 O · · · 0

0 U22 · · ·
...

...
. . .

. . .
...

0 · · · 0 U2ℓ













, V2 =













V21 O · · · 0

0 V22 · · ·
...

...
. . .

. . .
...

0 · · · 0 V2ℓ













(15)

where U2i has dimension mAi
×ki and UT

2iU2i = Iki
, V2i has dimension mBi

×ki

and V T
2i V2i = Iki

, i = 1, 2, · · · , ℓ.
In the following, we will assume that the nodes are only of two types, i.e.

ℓ = 2 and that ki = k, i = 1, 2. All results extend to the case of arbitrary number
of types ℓ.

The optimization problem (13) becomes

max
U1, V1,
U21, V21,
U22, V22

{〈UT
1 AS1U21, V

T
1 BS1V21〉 + 〈UT

1 AS2U22, V
T
1 BS2V22〉

+〈UT
1 AT1U21, V

T
1 BT1V21〉 + 〈UT

1 AT2U22, V
T
1 BT2V22〉 :

U1 ∈ QnA,k, V1 ∈ QnB ,k, U2i ∈ QmAi
,k, V2i ∈ QmBi

,k, i = 1, 2}. (16)

The first-order conditions can be derived from the Lagrangian:

L(U1, V1, U21, U22, V21, V22,X1,X2,X3, Y1, Y2, Y3) =

〈UT
1 AS1U21, V

T
1 BS1V21〉 + 〈UT

1 AS2U22, V
T
1 BS2V22〉

+〈UT
1 AT1U21, V

T
1 BT1V21〉 + 〈UT

1 AT2U22, V
T
1 BT2V22〉

+〈X1, I − UT
1 U1〉 + 〈Y1, I − V T

1 V1〉 + 〈X2, I − UT
21U21〉

+〈X3, I − UT
22U22〉 + 〈Y2, I − V T

21V21〉 + 〈Y3, I − V T
22V22〉

where Xi and Yi are symmetric matrices of Lagrange multipliers for the orthog-
onality constraints. By setting the partial gradients of this Lagrangian to zero,
the first order conditions are found to be :

U1X1 =
[

AS1
U21V

T
21B

T
S1

+ AT1
U21V

T
21B

T
T1

+ AS2
U22V

T
22B

T
S2

+ AT2
U22V

T
22B

T
T2

]

V1,

V1Y1 =
[

BS1
V21U

T
21A

T
S1

+ BT1
V21U

T
21A

T
T1

+ BS2
V22U

T
22A

T
S2

+ BT2
V22U

T
22A

T
T2

]

U1,

U21X2 =
[

AT
S1

U1V
T
1 BS1

+ AT
T1

U1V
T
1 BT1

]

V21,

V21Y2 =
[

BT
S1

V1U
T
1 AS1

+ BT
T1

V1U
T
1 AT1

]

U21,

U22X3 =
[

AT
S2

U1V
T
1 BS2

+ AT
T2

U1V
T
1 BT2

]

V22,

V22Y3 =
[

BT
S2

V1U
T
1 AS2

+ BT
T2

V1U
T
1 AT2

]

U22

where Xi = Yi, i = 1, 2, 3 are symmetric matrices which can be chosen diagonal
without affecting the value of the objective function.
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5.3 Computational aspects

An iterative algorithm to compute a critical point of (16), which in fact reduces
to (13) for ℓ = 1, is very similar to the algorithm presented in Section 4.2.
This recursive algorithm is once again based on the SVD. The convergence has
not yet been proved but numerical experiments show linear convergence to an
equilibrium point, provided the shifts si, i = 1, 2, 3 are chosen appropriately.

The proposed iterative algorithm is the following:

U1+Σ1+V T
1+ + U1−Σ1−V T

1− = AS1
U21V

T
21B

T
S1

+ AT1
U21V

T
21B

T
T1

+ AS2
U22V

T
22B

T
S2

+ AT2
U22V

T
22B

T
T2

+ s1U1V
T
1 (17)

U21+Σ2+V T
21+ + U21−Σ2−V T

21− = AT
S1

U1V
T
1 BS1

+ AT
T1

U1V
T
1 BT1

+ s2U21V
T
21 (18)

U22+Σ3+V T
22+ + U22−Σ3−V T

22− = AT
S2

U1V
T
1 BS2

+ AT
T2

U1V
T
1 BT2

+ s3U22V
T
22 (19)

where Ux+ and Vx+ are orthogonal complements of Ux− and Vx−. The scalars
si are positive numbers sufficiently large and Σi± are diagonal matrices. The
updating of the matrices is done at each iteration according to

U1 := U1+, U21 := U21+, U22 := U22+,

V1 := V1+, V21 := V21+, V22 := V22+. (20)

It is easy to see that U1+Σ1+V T
1+, U21+Σ2+V T

21+ and U22+Σ3+V T
22+ are the best

rank ki approximations of the respective right hand sides. In practice the previ-
ous iteration is realized by the application of the SVD algorithm to the right-hand
side of the equation, which is a matrix of rank at most 5ki. This can of course
be exploited in the application of the SVD algorithm to these right hand sides.

One can show that the critical points of the cost function (16) are fixed points
of the iteration (17), (18), (19), (20) and vice-versa. The proof of this is very
similar to that of the one block case [3] and is omitted here.

5.4 Examples

As illustration of the method, we compare two directed graphs represented in
Figure 7, the edges of which have been divided into two types, the red and the
blue ones. We apply the algorithm of Section 5.3 which provides the projections
of the nodes of the two graphs U1 and V1. The normalized projected nodes
are plotted in Figure 8. The nodes are correctly grouped according to the type
of their source and terminus edges. This solution represents a particular local
minimum of the cost function.

6 Conclusion

In this paper, we extend the projected correlation method described in [3], which
can be used to perform graph matching between two graphs represented by their
adjacency matrices A and B.
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Fig. 7. Graphs to be compared.
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Fig. 8. Projected nodes of Graphs A and B

The first extension concerns the graphs with nodes of different types. Such
graphs represent e.g. molecules where the nodes represent atoms of different
types (say C, O, N , . . . ). The proposed extension constrains the matching such
that the nodes of both graphs can only be compared when their types are the
same : both graphs are thus assumed to be partitioned in subgraphs of equal
type. The proposed cost function nevertheless uses the connectivity between
nodes of different type in the global cost, to be minimized.

The second extension of the general method concerns graphs with edges
of different types. An example of such a graph is a social graph, i.e. a set of
people with some pattern of interactions between them. In such a graph, the
nodes represent e.g. the individuals and the edges the relationships between
them (friendships, business relationships, family ties, . . . ). The method will now
rely on the projection of the nodes and of the edges of both graphs in a lower-
dimensional space. For graphs with different types of edges, the projected edges
will be constrained to a particular structure.

The case of graphs with different types of nodes and edges could easily be
treated by combining both approaches.
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