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Abstract

Rational Krylov methods are potentially one of the
most robust and efficient algorithms to compute lower
order approximations to linear time invariant dynami-
cal systems that match a specified number of moments
of the transfer function at multiple points in the com-
plex plane. The characterization of multipoint ratio-
nal interpolation in terms of bases of multiple Krylov
spaces was developed recently. In this paper, we sum-
marize some results concerning the use of approximate
solutions to the linear systems of equations that arise
on each step of the method. Such approximations are
used to reduce the space and time required to produced
the reduced order system.

1 Introduction

Model reduction, computing a low-order approxima-
tion to a linear, time-invariant dynamic system, is well-
studied in system theory, see [3] and its references. The
need to efficiently compute accurate low-order approx-
imations continues to grow as descriptions of physical
systems become more complex and potentially involve
hundreds of thousands of discrete variables. The sub-
stitution of an accurate reduced-order model in place
of the original description may significantly reduce the
time for a simulation of the system or the construction
of a controller for the original plant.

Recently, a large amount of work has appeared in the
literature which utilizes Krylov subspace projection to
generate the reduced-order model, see [5] and its ref-
erences. Requiring only matrix-vector multiplications
and/or matrix factorizations, these methods are rea-

sonably well-suited for large, sparse problems. In fact,

the methods yield reduced-order models which are par-
tial realizations, Padé approximations or rational inter-
polants [4, 10]. The more powerful Padé approxima-
tions and rational interpolations require the solution
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of sparse linear systems during the construction of the
Krylov subspaces. When this issue is discussed in the
literature of model reduction it is typically assumed
that matrix factorizations are used.

Although the matrices to be factored may be sparse, di-
rect factorizations may not be feasible—especially for
three-dimensional discretizations. As an alternative, a
large body of literature exists on the topic of iteratively
solving large-scale systems of equations. These itera-
tive solvers, frequently based on Krylov methods them-
selves, may provide low-cost but approximate solutions.
In the following, we consider the use of approximate
solves in Krylov-based model reduction methods. Ap-
proaches for both implementing the approximate solves
within the model reduction and choosing the solution
techniques themselves are addressed.

2 Exact Solution Spaces

An approach to computing a Krylov-based reduced-
order model of dimension M

Ei=Aé+bu and §=é&+du (1)
for the order-N dynamic system
Fr=Az+bu and y=cr+du (2)

follows from the following result which is proven in [6]
in a slightly more general form:

Theorem 1 IfA=2TAV, E=2ZTEV, b= 2ZTh and
é=cV where V,Z € RV*M qand if the spaces

K
U ,C‘]bk ((A - U(k)‘E)—l(A - CkE)a (A - U(k)E)_lb)
k=1

3)



and

K .
U ks, (4= e®B)T(4- 6B, (A= o P E)TT )
k=1

(4)
are in Im(V) and Im(Z) respectively then the moments
of (1) and (2) satisfy .

c{(A-ocWE)EY* " (A— oWE)1b =
- N Yy Je—1 . . .
{(A-oWEEYT (A-oWE)

forin=1,2,... . Jo,+J¢, and k=1,2,.. K, indepen-
dently of the (i values.

By Theorem 1, the reduced-order model (1) is a ratio-
nal interpolant of the original system if V and Z are
constructed according to (3) and (4). The individual
subspaces K; in (3) and (4) are known as Krylov sub-
spaces,

KJ(Gr g) = span{g,Gg,ng, . -an_lg}'

The difference between the reduced-order model and
the original system follows from a result which is also
proven in [6]:

Theorem 2 The difference between the frequency re-
sponses of the original and reduced-order systems is
rT(sE — A)~Yry where ry and r. are the residuals,

ri(s) = b— (sE — A)V(sE — A)~1h
and 5)
re(s) = el — (8E - A)TZ(SE‘ — A)"TéT_

Furthermore, the residuals satisfy the Petrov-Galerkin
conditions, ZTry(s) = 0 and WTr.(s) = 0 for all val-
ues of s.

Note the residuals correspond to the approximate so-
lutions &;(s) = V(sE — A)~b and &.(s) = Z(sE —
A)"T&T for the dual systems of linear equations

(sE—-Azy=b and (E—-A)Tz. =" (6)

Theorems 1 and 2 can also be extended to handle
multiple-input-multiple-output systems. It is also pos-
sible to show Galerkin conditions when solving matrix
equations. For example, if an RK method is used to
create a reduced order Lyapunov equation and its so-
lution is projected from the low order space back to
the original space of dimension n, then the projected
solution satisfies a Galerkin condition.

Attempting to compute an exact rational interpolant as
in Theorem 1 requires (at least implicitly) the knowl-
edge of the exact inverse (A — ¢®*)E)~1 in V and Z.
For this reason, the V and Z in (3) and (4) are denoted
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exact subspaces. However, the ability to solve systems
of large-scale equations involving (A — 0(¥) E) may not
be practical due to work or memory constraints. An
alternative point of view follows by attempting to min-
imize the residual expressions ry(s) and r.(s) in the
error expression of Theorem 2.

3 Preconditioned Solution Subspaces

Theorem 1 characterizes the subspaces K; for which
bases must be produced and combined to form the ma-
trices V and Z. It does not specify how they should
be constructed or what constraints should be imposed
in order to determine which bases are chosen. The
Rational Krylov (RK) family of methods for model re-
duction (both multipoint moment-matched and those
based on approximate solutions) can be represented by
Algorithm 1. (The subscript pn, is the index of the
iteration on which o(*~) was last used as an inter-
polation point.) By choosing the parameters appro-
priately various RK family members can be produced.
Common to all that match moments is the selection of
B = (A — o*m) E)~1 where ¢*m) € {oM), ..., oK)},
i.e., it is the interpolation point chosen from the set of
K possible points for use on the m—th iteration. The
various moment-matching members are then distin-
guished by the constraints placed on the relationships
between the matrices Vi, 2, @m and Wy,. The mul-
tipoint Rational Arnoldi (RA), Rational Lanczos (RL),
Dual Rational Arnoldi (DRA), and Rational Power
(RPM) methods are explored in detail in [6].

Table 1: Rational Krylov Algorithm (Approximate Gen-
eral Version)

Initialize: g1 = (/)16 and w1 = (BY) 1T
Form=1to M,
(S1.1) Input: o(¥), the interpolation
point for m*? iteration;
(S1.2) Bm = Bmdp,, 41
and Zp, = @ w, 41;
(S1.3) o vm = Um — Vi—10m
and 32, zm = Zm — Zm—12m;
(S14) Gmpr = (A — CnE)om
and Wma1 = (A — Cn E) 2
(S1.5)  ¥hi18m+1 = Gmt1 — @mTm4r
and By 11 Wmt1 = Wma1 — Win®myi;

end




The approximate form of the algorithms allow the
choice of the two parameters, ®,, and (,,. The op-
erator ®,, approximates the action of (4 — o(¥m) E)~1
on a vector. Numerous possibilities exist for finding
preconditioner that approximates (4 — c(¥=)E)=1 [7].
Alternatively, and more generally, one can think of ®@,,
as an operation that takes in the vectors gp,. 41, Wy, 41
and outputs the vectors ¥y, , Z,,. Hence, ®,, can repre-
sent an iterative system solver that computes approxi-
mate solutions to the equations. However, in this case,
®,,, represents a nonlinear operation which is no longer
associated with a fixed matrix P;. This is due to the
fact that a single interpolation point ¢*) may be used
in more than one step of the iteration with different
right-hand side vectors and therefore there would be
more than one approximation to (4 — c*)E)~1, If the
methods are always iterated to near working precision
then this can be analyze as roundoff and covered by
the appropriate error bounds. If, however, to reduce
the time required the iterations are stopped early then
the theory must be generalized. As can be seen from
the experiments in [2] and [6], in practice it is not an
important distinction.

If (and only if) ®,, is chosen so that moment match-
ing results then the choice of ¢, in (S1.4) does not
contribute to the specification of the V and Z column
spaces and (i can be replaced in Theorem 1 by a vari-
able s and removed from the algorithm, i.e., {,, = co.
When P, = (A — o*~)E)~1 it is possible to tune (m
to improve the results. For example, { = oo can still
be used, or more commonly, the setting {,, = obm) is
used. This can be motivated by subspace and/or eigen-
value mapping considerations [6]. As the experiments
below indicate, the choice of { can lead to significant,
but often unpredictable differences in the convergence
of the reduced-order model. In practice, {, can be
tuned between oo and ¢*=) by using available infor-
mation on the preconditioner quality and/or the con-
vergence behavior of previous solves. Various choices
for ¢, appear in related approaches to problems in the
eigenvalue literature {8, 9]. Alternatively, more sophis-
ticated approaches for implementing the approximate
solvers can be used to reduce signifcantly the impor-
tance of (.

When P, &~ (A—o(*¥=)E)~1 the V and Z generated by
any version of the approximate RK algorithm no longer
form bases for the unions of Krylov subspaces required
for rational interpolation. However, the residuals of the
reduced order model still satisfies the Petrov-Galerkin
conditions, ZTry(s) = 0 and WTr.(s) = 0 for all val-
ues of s. As long as reasonable approximations Vx; and
Zx. to x3 and x. are acquired, a good reduced-order
model is achievable. It is interesting to note that even
the exactly preconditioned V and Z do not necessar-
ily lead to optimal approximations to x; and x. at all
s. Rational interpolation leads to exact precondition-
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ers, which are only optimally suited for a few discrete
points, i.e., the interpolation points. For frequencies
away from the interpolation points, it is uncertain as
to whether (A — c(*)E)~! is necessarily a better pre-
conditioner than some P ~ (A — ¢(*)E)~1. We are
therefore interested in finding approximate solutions to
the equations in (6) which lie, respectively, in the dual
solution subspaces

Im(V) = Ui Ks,(@k(A — G E), @xb)

Im(2) = UL, K, (87(4 - G B)T, 87y ()

The loss of moment matching is not the only conse-
quence of the use of an approximate RK method. Care
must be taken to assess exactly how the constraints
that relate V,,,, Z,n, @ and W, in the rational inter-
polation case are effected. More than other RK variants
seen in [6], the rational Lanczos (RL) algorithm relies
on the properties of the exact preconditioner. This re-
liance allowed the development of efficient algorithm to
produce a sparse reduced order model (hence, short re-
currences and less storage); it also makes the approach
a questionable one for inexact preconditioning. If ap-
proximations to (A — o{*)E)~! are used in the RL al-
gorithm, the reduced-order systems matrices become
dense. Either these now nonzero off-diagonal terms
must be computed or an error is incurred. Comput-
ing all of the elements in A or E corresponds to full-
length biorthogonality recursions which increases the
cost of an approximate RL algorithm to levels compa-
rable with the DRA approach which is is numerically
more reliable; an O(M2N) version of the RL algorithm
is of little value. However, an option in dealing with an
approximate RL algorithm is to simply ignore the prob-
lem, i.e., the error between ®,, and (4 — o(*=) E)~1).
In this case, simply edit the RL algorithm to use @,
and use the algorithm as if all was well. Under appro-
priate assumptions about the point ordering, sparse A
and E are produced by this algorithm; they are still
formed implicitly by using coeflicients of short recur-
sions. The error in this theoretically unsupported ap-
proach is characterized by Theorem 3.

Theorem 3 The output residual expression for the ap-
prozimate RL algorithm is

ro(s) = Busimrrwmpien(sE — A) Te(a®r) —5)
—~R(sE — A)7T¢, (8)

where the m'® column of R is

W, — (A = o) EYT (T wi), (9)

the residual associated with the approxrimate system
solve in the m** iteration.

Tm =

In the exact case, the output residual resulting from
the RL algorithm is a scaled version of wary1. This



vector war4y stays biorthogonal with at least the re-
cent directions of V. Moreover, the scaling of wg,41
drops to zero in regions around the interpolation point.
When approximations are employed, the output resid-
ual is corrupted by the error in ®,,. The residual
Tm, associated with the approximation for the vector
(A—o¥*m) E)~Tu,,, appears in r,. Several facts should
be noted concerning this corruption:

1. The corruption of r.(s) is proportional to the er-
ror in ®,,.

2. Unlike the exact case, the residual r, in approx-
immate RL i1s not generally forced to zero in the
regions about the interpolation point.

3. Errors in the computation of (4 — o(k=)E)~1
in the m®* iteration continue to appear in the
reduced-order models of later iterations (the en-
tire matrix R appears in (8)).

4. The total corruption behaves as the sum (rather
than product) of previous errors in the compu-
tation of (A — o*=) E)=1, because the matrix &
appears in a matrix-vector product in (8). This
fact is good news for moment matching versions
of the RL algorithm that are implemented in fi-
nite precision. Machine-level precision errors in
the linear system solvers are not blown up in later
steps.

In summary, significant errors between (A-—U("’m)E)‘1
and ®,,, do not appear to be acceptable in any iteration
of the approximate RL algorithm. Limited numerical
experience supports this result.

While the approximate RL algorithm produces the re-
duced model implicitly, it is possible to create versions
of the approximate RK algorithm that are theoretically
well-founded by producing the bases V and Z explicitly
and forming the reduced system explictly by applying
them to A and E. The approximate DRA algorithm
produces orthogonal V and Z matrices by effectively
running two preconditioned Arnoldi iterations simulta-
neously. This method is costly but also very reliable
in both its exact and approximate form. The explicit
production of the reduced model has important con-
vergence consequences, Approximate forms of other
methods are possible, e.g. for RPM, and are discussed
along with some unconventional ways of reducing stor-
age and computation in [6].

4 Experiments

In this section, we present some experiments that indi-
cate the trends that occur when using the approximate
RK model reduction algorithms. The full sets of ex-
periments can be seen in [2] and [6]. We first.explore
the effect of altering degrees of precision used in solv-
ing the linear systems on each iteration. The PDE

24(v,2) = 2,5 + Ty + 202, + 180z + (v, 2)u(t) was
discretized using central differences. The input vector
f was taken to be random and the output vector is
taken to be the same as the input vector for simplicity.
The results for approximate DRA and approximate RL
for 2 and 10 digits accuracy in the solves using purely
imaginary interpolation points are shown in Table 2 as
a function of model size. A small problem illustrates
the salient points so a 7 x 12 grid is used. The trend
predicted by the analysis is clearly shown. The ap-
proximate RL algorithm converges until it reaches a
stagnation point reflecting the solve accuracy. It is in-
ferior in accuracy to the approximate RA even when
a significant number of digits are found in the solves.
(Of course, it requires less work to produce a given or-
der model but, doing more work does not improve the
accuracy.) The approximate RA steadily improves as
the outer iteration helps damp the inner errors.

Table 2: Effect of linear solution accuracy

m Modeling Error
10 digits 2 digits
RL DRA RL DRA

10 || 7.6e-02 | 7.6e-02 | 4.8¢-01 | 3.7e-01
20 || 1.0e-06 | 5.7e-08 | 2.1e-01 | 8.9e-02
30 |1 1.9e-08 | 2.2e-13 | 1.6e-01 | 1.2e-01
40 || 1.9¢-08 | 2.4e-13 | 5.8e-01 | 4.8e-02
90 1| 1.9e-08 | 6.6e-13 | 1.1e-01 | 7.1e-02
60 || 1.9e-08 | 1.3e-12 | 1.2¢-01 | 1.4e-03
70 || 1.9e-08 | 2.9¢-12 | 1.0e-01 | 4.1e-04
80 || 1.9e-08 | 3.9e-13 | 1.5e-01 | 1.8e-04

The effects of using an iterative method with differ-
ent numbers of iterations and varying the value of (,,
are considered using the PDE on a 40 x 60 grid. This
grid leads to an A matrix of dimension N = 2400 with
11800 nonzero elements. The approximate dual RA al-
gorithm was applied to this problem with a real shift of
27. The systems of linear equations are approximately
solved with k iterations the GMRES method precon-
ditioned with ILUT(4,0) [7]. (We refer to this as the
inner preconditioner.) Therefore, the operator ®,, that
preconditions the model reduction problem, combines
both a fixed preconditioner of the linear system and an
iterative solver.

The results of 100 dual RA iterations with k = 5 and
k = 20 presented in Table 3. A total of 560 GMRES it-
erations take place in the first case and 2000 in the sec-
ond (these iterations only involve matrix-vector prod-
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ucts).

Table 3: Effects of shift and GMRES iterations

m Modeling Error
w/ k GMRES steps
Cm = o0 Cm = o(km)

k=5 | k=20 | k=5 | k=20
10 9.9-01 | 1.3e-03 || 5.9e+00 | 1.6e+00
20 || 1.1400 | 1.9e-04 || 9.0e-02 | 1.0e-+00
30 2.1400 | 4.5e-05 || 3.7e-01 | 1.1e+00
40 1.2400 | 2.7e-04 || 9.2e-03 | 1.2e+00
50 3.4400 | 3.4e-04 || 3.2¢-02 | 1.6e+00
60 3.4400 | 8.7e-05 || 2.7e-02 | 3.2e-01
70 1.2400 | 8.2e-05 || 8.1e-02 | 1.2¢-01
80 || 2.0400 | 5.0e-05 || 1.1e-01 | 1.2e-02
90 1.0400 | 2.7e-04 || 4.0e-01 | 7.1e-02
100 || 2.5e+00 | 2.0e-05 || 4.5e-02 3.3e-01

Note that the ¢ = (k=) case performs well when the
model reduction preconditioner, ®,, is poorer (fewer
GMRES steps), but is unacceptable when the ®,, is
more accurate. This is similar to behavior observed in
the eigenvalue literature. The opposite behavior occurs
when (, is oo, i.e., (A — (nFE) is replaced with E.
Although the best results are obtained in the second
column, the results with a well-chosen (,,, and only five
GMRES iterations in column three are reasonably good
and are achieved at lower cost.

The data in Tables 2 and 3 demonstrate the fact that
accuracy in solving the linear systems cannot be sacri-
ficed for the sake of efficiency. While the explicit model
production of the approximate DRA can damp the in-
ner errors it does so at a cost of increased order for
the reduced model. The choice of {,, can also be diffi-
cult and suffers from the same unpredicability of effect
seen in the eigenvalue literature. Of course, the details
of the performance are intimately related with choice
of iterative method and the inner preconditioner when
computing reasonably accurate solutions to the dual
system of equations [2].

The discussion of setting ®,, and (,, has ignored the
fact that at step m a reduced order model of size m—1
and its projectors Vi, ; and Z,_1 are available. So
the vector

h= Viy(Am — e+ E ) 12T (A — G, E)vp,, (10)
~ (A —ogbm+ ) BY"HA — G E)vy,,.

can be used as an initial guess, 33, ,,, for the iterative
solver.

This initial guess finds an approximate solution in the
column space of V,, that satisfies a Petrov-Galerkin
constraint with respect to Z,,. Using the projection
associated with model reduction to generate an initial
guess 93, can lead to better inner-solver results than
simply choosing 2, +1 to be arandom vector or a vector
of zeros.

Unfortunately, (10) is not enough by itself. Because
the purpose of solving the inner system is to compute
a new direction ¥y, 41, an approximate solution that lies
entirely in the existing directions of V,,, is not accept-
able. The initial guess in (10) must be improved upon.
This improvement can be accomplished by incorporat-
ing the initial guess into (10) which yields a correction
to 92, +1 by approximately solving

(A_O'(km“)E)QmH = (A=, E)vp,, '“(A"U(km“)E)ﬁgnH

and adding 93, to the result. This can be reworked
to get

Umy1 = (”(km+l) = Cpm)®mt1 {Evp,, —u} (11)
where

u = —(A—o BV, (Ay — oEmt) )12T By,

There are two important things to note about
(11). First, the update @41 consists of the vec-
tor ®,41Fv,,,, which is perhaps the most naive
approximation to the ideal new direction (A —
ockm+1) )1 By,  and a correction vector

®py1 (A — cE DBV, (A — o¥m)E) 1 ZT By,

which incorporates information from the exist-
ing reduced-order model. When @41 nears
(A — o=+ E)"1 the vector ®m41Fvp, nears
the ideal direction, while the correction Vm(/im -
o*m+1) £)=17T By, s contained in Im(V,) and is,
hence, irrelevant. On the other hand, if the reduced-
order model is accurate (a fortunate event), then
V(A — om+) EY-127T nears (A — o=+ E)~! and
the update @m,+1 becomes small. A second important
feature of (11) is that the parameter (;,, only comes
into play as a scaling. However, scalings do not matter
in constructing subspaces, it can be removed from the
vector, i.e., set (p,, = 0. Even though ®,, is an approx-
imation, the choice of #3, ,; as a starting guess leads to
a new direction that is independent of {. We have thus
found a second way (®,, taken as exact was the first)
for generating V directions that are independent of the
evaluation point ¢. As a side note, it is claimed that
the derivation above provides an alternative path for
obtaining Davidson’s method for the eigenvalue prob-
lem.

If the discretized PDE on the 40 x 60 grid is solved with
the improved initial guess for 100 modeling iterations,
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the data in Table 4 are the result. The use of the
improved starting vector leads to a convergence which
is slightly improved or comparable to the best cases in
Table 3. However, the best results in Table 3 required
careful choices for ¢, an issue that is no longer a concern
here.

Table 4: Effects of improved starting vector in PDE

m Modeling Error
k' GMRES steps

=5 | k=20
10 || 1.1e400 | 1.0e-02
20 4.7e-01 | 4.3e-04
30 6.1e-02 | 1.0e-03
40 || 2.7¢-02 | 1.8e-04
50 1.4e-02 | 3.2e-04
60 || 4.1e-02 | 2.3¢-04
70 || 4.6e-02 | 7.1e-05
80 3.1e-03 | 5.2¢-04
90 9.5e-03 | 6.1e-05
100 || 4.5e-03 | 1.8e-04

5 Current Work

Work currently in progress focuses on determining de-
sirable approaches for constructing ®,, and developing
more efficient variations of the ADRA method. One
may for example employ a variety of iterative methods
to implicitly apply some @, to (A — (nE)vy-1. Al-
though the ADRA is robust, one might hope to find al-
gorithms based on shorter orthogonalization recursions
in-the spirit of the Lanczos method. The search is based
on the results of using approximate solves via GM-
RES, GMRESR, GCRO, QMR and GMRES(k) with
and without preconditioning via. SSOR and ILU in the
approximate RL algorithm contained in [2]. They show
that it is possible to use the approximate RL algorithm
to achieve reasonably accurate reduced order models if
" the linear systems are solved to reasonable accuracy.
The choice of interpolation points is also shown to be
very important for the approximate solves. If one takes
points far from the spectrum (say, large real interpola-
tion points) then the spectrum of A — oc®)E appears
more “clustered” and the number of iterations needed
- will drop. - Notice that this corresponds to a “global”
approximation of the frequency response and is also
discussed in detail relative to point selection and place-
ment algorithms in [6].
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