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Abstract

In this paper we try to show the relations between the Lanczos algo-
rithm and Padé approximations as used e.g. in identification and model
reduction of dynamical systems. We also explore the use of variants of the
Lanczos method in order to obtain approximations with better properties
than the ones resulting from the standard Lanczos algorithm.

1 Introduction

For simplicity we assume here that all systems are SISO, although some results
do extend to the MIMO case. Let a n-th order dynamical system be described
by

T = Az+bu (1.1)
= cr+du (1.2)

where A is a square, b is a column vector, c¢ is a row vector, and d is a scalar.
It is well-known that the transfer function of this system :

h(s)=c(sI —A) " 'b+d
has a Taylor expansion around s = oo that looks like :
h(s) = d+ cbs™' + cAbs™2 + cA%bs™3 4+ cA3bs™ + .. ..
The coefficients m_; of the powers of s~ satisfy thus
mg=d, m,ichFlb, 7> 1.

For ¢ > 1 these are also called moments or Markov parameters of the system
{A,b,c}. It follows already from the work of Hankel that the first 2n moments
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are sufficient to reconstruct the system triple { A, b, c}. This is done by solving
a n X n Hankel system of equations :

( hi ho hs ... h, 71 T Do T [ hy, 1

ho hy " 7 happ D1 hnya

hy . : - : = — : . (1.3)
L hn hpy1 -oo oo hop1 | [ Pn—1 | L hop ]

The Padé algorithm in fact produces the requested model {A,b,c} from a
LU factorization of this Hankel matrix. But this algorithm is recursive in
nature and at each step k of the recurrence it also produces an approzimate
model {A,b,é} of order k. The Lanczos algorithm is another recursive manner
to compute the same approximate models {A, b, ¢} at each step k, but now
starting from the system { A, b, ¢} as input. We thus have the following triangle
of relations :

Hankel
{m—ia ©> 0} {Aa b, c}

Padé Lanczos

{A,b,¢}

Relations Hankel, Padé and Lanczos and model reduction

In the sequel we show in more detail the connections between these methods
and stress the weaknesses and strengths of each approach. We also present
variants of the Lanczos algorithm that have particularly attractive features for
model reduction, especially for systems described by large sparse dynamical
systems. Such models are typically found in circuit simulation of electronic
devices, in power systems and in discretizations of distributed parameter sys-
tems.

The relations of the Padé approximation problem to that of Hankel matri-
ces was already observed in the late 1800’s by people like H. Hankel (1862),
G. F. Frobenius (1886) and T. J. Stieltjes (1894) (see [6] for more history on
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this). In the system theory literature the relation of partial realizations to
Hankel matrices were rediscovered — and extended to the multi-input multi-
output case — by Ho-Kalman, Youla-Tissi and Silverman, all three in 1966. The
O(n?) algorithms for these partial realizations were rediscovered by Massey and
Berlekamp in the context of convolutional codes, and later on by Rissanen in
the context of identification. Several years later, de Jong showed that these
algorithms all suffer from numerical instability. C. Lanczos was a a scientist
working in relativity with also strong interests in numerical methods to ap-
proximate the spectrum of infinite dimensional operators. His papers on the
tridiagonalization of the corresponding matrix discretizations appeared in the
early 50’s [25] and are still landmark papers in numerical linear algebra. These
methods are now very popular for solving systems of equations as well as for
computing part of the spectrum when the underlying matrix is large and sparse
(see [16] for references). The first papers that made the link between these two
problems are [17], [18] and [21].

2 Model reduction

Since the d term of the transfer function h(s) does not play a role in what follows
we may assume without loss of generality that it is zero. We are typically
interested in a low-order approximation, defined by

i = Ai+bu (

g = @ (

2.1)
2.2)
where the size of A is k < n. If the outputs are close (i.e., ||ly — | is small)
for some desired range of inputs, u, the low-order approximation is generally
considered acceptable.

The zero-state (i.e., z(0) = 0) solution to (1.1) is
t
o(t) = / A7) dr.
0

Thus determining a good low-order approximation (2.1, 2.2) is intimately con-
nected with finding a pair {A, ZA)} which yields a good approximation to the
matrix exponential, e**. A method based on orthogonal Krylov projectors
(the Arnoldi algorithm) is utilized in [15, 31] for approximating e''b when A is
sparse. But in fact, these concepts can be taken one step further by noting from
(1.2) that one is ultimately only interested in that information in e*d which
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lies in the direction of ¢. For example, the impulse response (i.e., u(t) = §(t))
of the original system is y(t) = ce’b. Taking a Taylor expansion of e4* around
t = 0 yields

K-1 tz K ti—l
— oAl ~ i — )
y(t) = ce™'b = EO cA'Db- 1= Elm,z- TRk
1= 1=

and this makes clear that matching moments m_; is a sensible thing to do.
The Laplace transform of this impulse response is the transfer function and is
also well approximated by a partial sum involving the first K moments :

K K
h(s) =c(sI — A) b~ ZcAiilb st = Zm_i st
i=1 i=1

Model reduction via Padé approximation is well documented in the literature
[32], and is known to be very fast. The complexity of computing all approx-
imate models up to order k is in fact only O(k?). The reason for this is that
each approximate model of order 7 < k has the tridiagonal form

v 0 ... 0
2 Br|ar 7 '
lﬂj} =1 0| By ay . 0 |> (2.3)
L 0]... 0 B o |

and hence only three additional coefficients 11, Bi+1, vi+1 have to be calcu-
lated to update this approximation to the one of order ¢ + 1. This is due to the
underlying three term recurrence relation of orthogonal polynomials connected
to the Padé approximation problem [21]. The complexity of such an update
is O(i) because only a few inner products between vectors (or polynomials) of
length ¢ are needed. This then explains why the accumulated complexity is

>k, 0(i) = O(k?).

The Padé algorithm is thus very appealing, even when the system is originally
described by a system model { A, b, ¢}. One can then evaluate the moments m_;
up to a certain index K and construct from those a lower order system which
matches these moments. This is particularly appealing when A is sparse since
the moments are then cheap to construct (this involves merely a simulation of
a discrete time system). This approach is e.g. followed in the AWE method
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for circuit simulation of electronic devices, which involves state space models
of order up to 100,000 [1], [28].

On the other hand, these AWE papers do not link Krylov projectors and Padé
approximation together. Here we show that Padé approximation of the original
system can be obtained without explicitly passing via the moments. Through
the nonsymmetric Lanczos method [16, 25], one can realize the reduced-order
system {A,b,é} directly from the original system model. Approximating and
eventually simulating the circuit through the Lanczos method requires ap-
proximately the same amount of effort as existing, explicit moment matching
techniques. More importantly, the Lanczos method provides avenues for ef-
ficiently handling the shortcomings of Padé approximants. The oftentimes
heuristic fixes developed for explicit moment matching can be replaced with
more flexible and better conditioned Lanczos techniques.

3 Moment Matching

In previous AWE papers, the response of the original circuit is typically approx-
imated via a two-step process. First, moments which correspond to frequency
domain expansions of the circuit’s impulse response are explicitly computed.
Most commonly, the expansion is performed either about s = 0 to yield the
low-frequency moments

m; = cAfi*lb, 1>0
or about s = oo to yield the high-frequency moments (Markov parameters)
m; =cA™" ', i <0.

More generally, one can expand about an arbitrary s = o to obtain so-called
shifted moments.

In the second step, the impulse response

~ (s) B nk_lsk_l +...+n1s+ng
Sk + dkflsk_l +...4+dis+dy
of the approximate realization is forced to agree with the first j low-frequency

moments and (2k — j) high-frequency moments of the original system. That
is, given the Taylor series expansions

h(s) = Zﬁ_is*i and  h(s) = Z —h;s’
i=1

1=0

(3.1)
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one forces iAz,(%,j) through izj,l to be m_(g;,_j) through m; ;. This feat is
achieved by first solving

M_(2k-j-1) M-(2k—j-2) " M(k—j) | | D=1 M (2k-j)
M (2k—j-2) Mgy || k2 M (2kj-1)
Mo (keg) (i) T TG do M (k1)

for the coefficients in the denominator of (3.1). Then if j > &, one obtains the
numerator coeflicients from

o 0O --- 0 mo dp 1
ni _ : Somy dg—2 _
= — ] :
0
N1 mo Mmp - Mp_q do

otherwise, one uses

nk—l 0 0 m_q dl
Nk—2 | : T m_1 Mm_9 :
0 . di—1
n[] m—l m_2 PP mik ].

Via these expressions, the impulse response completely defines a reduced-order
approximation (partial realization) which matches the desired moments of the
original system. Thus (3.1) is a Padé approximation of the original circuit.
Although it is not explicitly determined in existing AWE methods, a k" order
set of state space equations (i.e., {A, b, ¢}) can be obtained which correspond
exactly to 77,(3) Any k' order set of state space equations satisfying

~ ~

h(s) = é(sI — A) b (3.3)

is in fact a valid description of the reduced-order system.

As an alternative to explicit moment matching, consider using the oblique
Krylov projector m = 71']% = VkaT to produce a k" order model

(WEAV)E + (WEb)u = Ad + bu (3.4)
(cVi)T = éx (3.5)

8.
Il

<
Il
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for the original system in (1.1) and (1.2). The matrices V; € R*** and W}, €
R<k are biorthogonal, WkT Vi = I. Moreover, Vi, and Wy, are related to Krylov
spaces, K, in that

colsp(Vi) = Ki(A,b) =span{b, Ab,..., A" 1b} (3.6)
colsp(Wy,) Ki(AT, ) = span{cT, ATcT, ... AR Ty (3.7)

The utility of this Krylov projector comes from the fact that both V;, and Wy
can be generated with only inner-products and matrix-vector multiplications.
By taking advantage of the fact that the A matrix is sparse, one can compute
the projector relatively cheaply.

But regardless of how quickly 7 can be computed, one is certainly also in-
terested in the correspondence between the original system {A,b,c} and the
reduced-order system {A,b,é}. An important insight into this relationship
comes out of [18, 36].

Theorem 1 Let the reduced-order system {fl, 13, ¢} be a restriction of the sys-
tem {A,b,c} by the projector nty, where Vi, and Wy, are defined as in (3.6) and
(3.7) respectively. Then the first 2k Markov parameters of the original and
reduced-order systems are identical, i.e.,

cATp = eA 1)

for 1 <11 <2k.

Restating Theorem 1, the reduced-order model is a Padé approximation (par-
tial realization) of the original system. And again, in a slightly different nota-
tion, the Krylov projector implicitly matches the first 2k high-frequency mo-
ments of the original system.

Through a projector corresponding to K (A, b) and K (AT, ") one can obtain
a state space realization which matches moments about s = oco. In a completely
analogous manner, a projector corresponding to Kp(A~!,b) and Ky (A~T, cT)
could be employed to generate a state space realization which matches mo-
ments about s = 0. And in fact, projectors can also be constructed (based on
Ki(A, A=9/2b) and Ki(AT, (cA~9/2)T)) which are combination of both of these
approaches.
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4 The Nonsymmetric Lanczos Method

A popular technique for computing Vi, and Wj, in the Krylov projector is due
to Lanczos [25]. This section serves as a brief review of the nonsymmetric
Lanczos process. A standard implementation of the method is given below.

Algorithm 1 (A Standard Lanczos Algorithm)
(A1.1) Initialize vi =b/p1 and wy = CT/’yl so that By = v, and w{vl =1.
(A1.2) For j =1 tok,
(A1.2.1) set aj = wJTAvj.
(A1.2.2) set Ty = Avj — OV — YV5—1 and q; = Aij — Wy — ﬁjwj_l.
(A1.2.3) set Bj11 = \/|7"qu| and yj11 = sz’gn(r;quj) Bit1.
(A1.2.4) set vj1 = rj/ﬁj+1 and W1 = q]'/")/j+1.
Given the starting vectors v; and wy, the Lanczos algorithm produces the

rectangular matrices Vi, = [v1,...,v;] € R™*F and W}, = [wy, ..., w;] € R¥*F
which satisfy the recursive identities

AV, = ViTk + Brs1vkrier (4.1)
ATWk = WkaT—I—’ykJrlwarleg.

The vector e, is the k" standard basis vector and

a2

| #

Yk
Br ay

is a truncated reduction of A. Generally, the elements 3; and ~y; are chosen so
that Vka1Wk+1 = I. The particular implementation in Algorithm 1 achieves
this biorthogonality with v; = £0;, i.e., T is sign-symmetric. When Vj 1 and
W41 are biorthogonal, multiplying (4.1) on the left by W) yields the rela-
tionship W,;f AVy, = Ty. 1t is also convenient to denote the residuals fy11vk11
and yg+1wgy1 as the vectors ri and g, respectively. Then the expressions
i € Kpe1(A,v1) and g € Kp1(AT,wy) come from the Lanczos identities in
(4.1) and (4.2).
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The relationship between the residuals and the corresponding Krylov spaces
indicates the clear choice for the starting vectors v; and wy. Mainly, if v =
b/B1 and wy = ¢! /1, the matrices Vj and W}, correspond to the Krylov spaces
Kr(A,b) and Kp(AT, cT) respectively. Hence Vj, and W), meet the desired form.
And more importantly from (3.4) and (3.5), A = WAV, = Ty, b= Wb =
e1f and é = ¢V}, = el'y;. Note that the Lanczos algorithm generates directly
a tridiagonal A and vectors b and é with all components zero except the first
one. This shows again the relation with the Padé algorithm since it produces
the same tridiagonal form (2.3).

5 Advantages of Lanczos-based Model Reduction

Compared to explicit moment matching, the Lanczos method provides superior
results and/or greater flexibility in several areas, which are explored in some
detail in the remainder of this section.

5.1 Sensitivity of the Realization

In past AWE papers [28], the reduced-order model is expressed via the partial
fraction expansion (PFE) of (3.1)

k .
h(s) =3 ——. (5.1)

The poles, p;, are the roots of the denominator of (3.1), which for simplicity
are assumed to be unique. The residuals, r;, are computed as

rj = (s —pj)h(s)

5=p;

Note that given (5.1), it is simple to obtain a state space representation in
Jordan canonical form

Cy 1| P1
~ = . 5.2
l by | Ay ] : (52)

Tk Pk
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It is also a simple matter to show that {A;,bs,é;} satisfies (3.3). Unfor-
tunately, given an arbitrary representation {A,I;, ¢}, the transformation re-
quired to obtain the Jordan canonical form is oftentimes poorly conditioned
[37]. More specifically, computing the eigenvectors and eigenvalues of an arbi-
trary A (which is related to computing the residuals, r;, and frequencies, p;)
can be extremely sensitive.

On the other hand, the realization produced by the Lanczos method takes the
tridiagonal form

_ " -
) Biloar 7
Cr, . .. ..
l i TAL ] = Bo | . | . ) (5.3)
e Yk
i By ay |

The transformation to obtain such a realization is known to be better condi-
tioned in general [16].

As an example, consider the simple system defined by

| 1 45-107% 6.75-100* 3.3375-10°°

. 1/—301 —3.03 —1.03  —(0.0I+ 10T
[ﬁ]: 0o 1 0 0 0 . (5.4)
0] 0 1 0 0
0

0 0 1 0

Via implicit state space transformations, one can also realize this system in
Jordan form (moment matching) and tridiagonal form (Lanczos method).

One of the eigenvalues of A is at —0.01 while the remaining three lie clustered
around —1, {—0.9997, —1.0001 £ 0.0002;}. Although these three eigenvalues
are close to each other, they are by no means identical relative to the machine
precision. Yet the proximity of the three eigenvalues is sufficient to demonstrate
the ill-conditioning of the Jordan realization. In Figure 1, relative errors are
plotted which correspond to the step responses of the initial (5.4), Jordan, and
tridiagonal realizations.

As one would expect, the response error (dashed line) between the initial and
tridiagonal realizations,

error (t) = |yinitial(t) - ytridiag(t”
dash [Yinitial(?)] ’
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o Initial vs Jordan Response b

10" F - - - - Initial vs Tridiagonal Response b

Relative Error

0 2 4 6 8 10
Time(s)

Figure 1: Relative error in the step responses of the Jordan and tridiagonal
realizations vs. the step response of the original realization.

is nearly on the order of the machine precision. Yet the error between the
responses of the initial and Jordan realizations (solid line) demonstrates a
significant loss of precision in the Jordan realization. In fact, no digits are
accurate during most of the response of the Jordan realization. Moreover, this
difference is only for a fourth order system! In general, Jordan forms (5.2) are
to be avoided. Better conditioned realizations (such as the one produced by
the Lanczos method) must be employed when approximating the system.

5.2 Moment Scaling

Besides the sensitivity of the final realization, one must be concerned with the
scaling of the moments (to simplify the discussion in this paragraph, consider
only high-frequency ones for the time being.) If certain eigenvalues of A are
extremely large, the size of the moments, cA’b, will increase rapidly. As cA%b
becomes much larger than cb, the Hankel (moment) matrix in (3.2) will become
singular to working precision, which results in a situation where realizations of
size > i cannot be computed. To overcome this difficulty, [28] proposes scaling
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the eigenvalues of A to keep the Hankel matrix nonsingular. Unfortunately,
scaling does not address a second difficulty inherent to computing matrix-
vector products containing increasing powers of A. Consider an A with one
eigenvalue, A1, significantly larger than the others. Then as 7 increases, the
product A%b will converge to the eigenvector corresponding to A;. In finite
precision, the information corresponding to the other eigenvectors will be lost
in the higher moments. Regardless of how many moments are matched in this
situation, the computed approximation never converges to the original circuit
(see [1, example 1]). To contend with this difficulty, [1] suggests working around
the problem by attempting to appropriately shift the moments. If forming a
certain type of moment emphasizes an extreme eigenvalue of A, one must select
other types of moments which emphasize information from other portions of
the spectrum.

The Lanczos method, on the other hand, completely avoids both issues because
it never computes the moments. Rather {fl, 13, ¢} are computed from the Krylov
spaces Kj(4,b) and Kix(AT,c"). As an example, consider the state space
equations arising from a small, stiff RC ladder circuit

| 1 -1 0
c| |t =20t ot 0
blA| | o | ot —20yt ot
0 0 oyt -yt

where C; = 1073, Cy = 107%, and C3 = 10~°. Allowing k = 3, the eigenvalues
of the realization obtained with both explicit moment matching (about s = 0)
and the Lanczos method (corresponding to K (A~ b) and K (AT, cT)) are
presented in Table 1. Due to the poor scaling of the moments, explicit moment
matching is unable to accurately determine the fastest pole. The Lanczos
method, on the other hand, is able to capture all of the eigenvalues of A.

Table 1: Computed Eigenvalues of A
eig 1 eig 2 eig 3
Exact -9.98999000e2 | -1.00000100e6 | -1.00100100e9
Moment Match | -9.98999000e2 | -1.00000078e6 | -5.45486876e6
Lanczos -9.98999000e2 | -1.00000100e6 | -1.00100100e9
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5.3 Stability of the Approximation

When moment matching is employed, the reduced-order model for a stable
circuits may be unstable [8]. To handle this problem, existing AWE papers
prescribe searching the Padé table until a stable realization is located. Al-
though such a technique must eventually succeed for a large enough k, it is
both heuristic and potentially expensive. One cannot know a priori how many
realizations must be generated before a stable one is acquired. Moreover, when
a stable realization is determined, its size may exceed some desired value.

As an alternative to searching the Padé table, [20] stabilizes a realization of
specified size k by incorporating implicit restarts into the Lanczos algorithm.
With implicit restarts, the projector m; is modified to m, = WkT Vi which
corresponds to the new starting vectors

v = (A — ,upI)(A — Mp—lI) ... (A — /“I)vl (55)
w; = (AT — p,D)(AT — pp 1) .. (AT — Dy (5.6)

These implicit restarts (which correspond to LR-steps [37] or H R-steps [9] with
the tridiagonal matrix, T} ) incorporate information from higher moments into
the reduced-order model. Strategies for choosing the parameters p; in (5.5)
can be employed to insure that this extra information stabilizes the partial
realization. In a later section we demonstrate that when properly employed,
implicit restarts can stabilize a realization with negligible computational effort.

5.4 Singularities in the Padé Table

Singularities can occur in the Padé table. Where these singularities exist in
the table, partial realizations of the form (2.1) will not be possible. As pointed
out by de Jong, the loss of numerical stability occurs in fact when “near sin-
gularities” are encountered in the Padé table. Such poorly conditioned entries
in the Padé table should be avoided.

To the best of the authors’ knowledge, this issue is not addressed in previous
AWE papers. Yet the occurrence of ill-conditioned table entries is well-studied
in the Lanczos algorithm [27], where it is termed a “serious” breakdown. By
employing “look-ahead” into the Lanczos method, [21, 10, 26], one possesses
a powerful tool for detecting and avoiding ill-conditioned table entries. In the
sequel we show also different techniques to avoid near singularities in the Padé
table, based on implicit shifts and multipoint expansions.
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5.5 Reduced-order Simulation

One of the greatest advantages of the partial fraction expansion (5.1) is its low
complexity in the evaluation of the discretized response of the system. After
multiplying the summation, (5.1), by u(s), one can determine the time response
due to each individual frequency mode (eigenvalue) by analytically determining
the inverse Laplace transform of the product. Then when calculating y(t), the
complexity per time step for the PFE representation is linear in the number of
terms, k, in the expansion. At most 2k operations per time step are required
if second order terms are included.

When using a tridiagonal representation (5.3) for {fl, b, ¢}, a simple integration
scheme requires either multiplying with a tridiagonal matrix at each step or
solving a system of equations involving such a tridiagonal matrix. In both
cases, the complexity is again linear in £, requiring at most 3k operations per
time step. If A is appropriately normalized, the number of operations can be
reduced to 2k for the tridiagonal representation as well.

In addition, the implicitly restarted Lanczos method [20] provides the flexibility
of “filtering” certain frequencies of the original circuit out of the realization.
By removing undesired frequencies, one obtains an A;, whose eigenvalues are
not too different from each other in scale. Since Ay is then not stiff, the step
size needed for integrating # = A2+ by u will not be too different from the step
size used in the PFE approach (which is based on the individual eigenvalues
of A).

In a later section we show how to perform moment matching about multiple
points to insure an accurate approximation of both the transient and steady
state poles.

6 Implicitly Restarted Lanczos

The degree of success achieved in applying a Lanczos-type method is dependent
upon the choice of starting vectors, v; and w;. In some cases, such as the
model reduction problem, one can make an educated initial guess for these
starting vectors (v; = b/B; and w; = ¢’ /vy;). But the stable plant, unstable
reduced model issue demonstrates that what may appear as a good choice for
the starting vectors can yield disastrous results. To overcome the results of
a poor starting vector, one could repeatedly and explicitly recompute Krylov
spaces with a modified pair of initial vectors. For lack of better data, one should
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use information from past results to refine these new starting vectors. Yet such
an approach becomes computationally expensive when several such restarts are
required. Each restart costs O(k?n) flops when implemented in a numerically
reliable manner (this requires re-biorthogonalization of the modified bases at
each step of the recursion).

In this section, an implicit approach (analogous to implicitly restarted Arnoldi
[33]) is developed for generating the modified projector corresponding to the
starting vectors in (5.5, 5.6). It will be shown that given V;, and Wy, one can
generate the new matrices Vj, and W), more efficiently with implicit restarts.
Also, experiments indicate a higher precision in 7 for the implicit method.

As a simple step between the standard Lanczos method and the new factoriza-
tion corresponding to (5.5, 5.6), we will first derive a technique for implicitly ob-
taining a Vj, and W), which correspond to the starting vectors o = p(A—pl)vy
and 1w = +p(AT — pl)w;. For the time being, the parameter, p, is assumed
to be real.

The first step in an implicit restart is obtaining the H R-decompositions HR =
(Ty, — pI) where R is upper-triangular and H is a product of Givens and
hyperbolic rotations. An H R-step on T}, is similar to the well-known ) R-step
and preserves both the tridiagonal structure and sign-symmetry of the matrix
[9]. Given the defined H R-decomposition, (4.1) and (4.2) can be updated to

AViH = ViH(H "TyH) + rpel H (6.1)
ATWi,HT = WH T(H'T)H)" + qrel H™T.

If one defines V, = Vi, H, W), = W, H T and T, = H T, H, then (6.1) and
(6.2) become

Af/k = Vka—FTke%H (6.3)
ATWk = WkTE—Fqke%H*T. (6.4)

To see the relationship between the new and old starting vectors (i.e., v; and
wy versus 77 and wq), rewrite (4.1) as

(A—pul)Vy = Vi(Ty — pl) + rief
ViHR + riel. (6.5)

Multiplying (6.5) on the right by e; yields

(A — pul)Vyey = ViHRey = ViRe; = t1p *
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where p~! = el Re;. It can also be shown that that @1p~! = (AT — pl)w.
Clearly the desired result is near; new starting vectors can be obtained which
fit the desired form. Unfortunately, the corresponding expressions in (6.3, 6.4)
do not define a valid Lanczos factorization. Let h;; and hi’gl be the (i, )%
entry in H and H ! respectively. Then the residual terms in (6.3) and (6.4)
are

rk(hk,kqe{,l —|—hk,ke;‘f) and qk(hz(.f_ll),ke{,l +h,(€7_k1)e£)

rather than just vectors times ef. This difficulty can be remedied however by
truncating off a portion of (6.3, 6.4). That is, (6.3) and (6.4) can be rewritten
as

. . Ty Vk€k—1
AVk == [Vk_l,’ljk,’l‘k] ﬁkeg_l &k (66)
hik-1el || P
and N N
T, Brer—1
ATWy = Wi, e, ] ek ap (6.7)

-1 -1
hgcfl),ke?cll hgc,k)

so that equating the first £ — 1 columns of (6.6) and (6.7) results in the new
Lanczos identities

AVioy = Vi Tpoy + Fr_rer
ATWk_l = Wk_lTE_1+qk_16£_1.

The starting vectors v1 and w; are not affected by the truncation but the new
residual vectors are derived from (6.6) and (6.7) :

- = - - —1
Tk—1= POk + hgr17r  and  Gr 1 = YWk + h;g_l),qu-

One can easily show that Vi_1, Wi_1, 7k—1, and §_; meet the biorthogonality
condition. Thus (6.8, 6.9) is indeed a valid Lanczos factorization for the new
starting vectors.

From the above work, the extension of this technique to the multiple shift case
is straightforward. One is now interested in a series of HR decompositions.
The i*" decomposition is

H;R; = (H \TH; 1 — )

where

H; =HHy---H; ;.
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In practice, the decompositions are performed implicitly so that the H’s are
never explicitly formed. Pairs of complex conjugate shifts may be handled via
double H R steps in real arithmetic just as in the implicitly shifted QR setting.

Applying p implicit restarts yields the new Lanczos factorization
AVk_p = Vk_ka_p + fk_pef_p
T11 = =T - T
A Wk—p = Wk—kafp + qk—pCk—p>

where Tk_p, I_/k_p and Wk_p are the appropriate submatrices of Tj, = It_lp_ 1Tkﬁp,
Vi = VkIt_Ip, and W, = WkIt_Ip_T. The new residuals are

Thep = PBr—pt1Ok—pt1 + Pir—pTk

- 5 = 7(=1)
Te—p = Vh—p+1Wk—p+1+ Py 1,
and the new starting vectors are

v = G(A—ppl)-(A—pl)v
w = Cu(AT = ppl) -+ (AT — pIwy.

In this case, p additional standard Lanczos steps are required to obtain the
order-k Lanczos factorization,

AVk = Vka—i-fke{
AWy, = Wi + aref,

corresponding to v; and w;. However for p < k, this implicit approach repre-
sents a considerable saving in computations over the k standard Lanczos steps
required for an explicit Lanczos restart.

We conclude by noting that the decomposition of (T}, — ul) used above in the
implicit restart is not unique. For example, in [19] double LR-steps were used
instead of the H R-step. The H R-step is preferred however because it is better
conditioned in general [20]. Moreover, the existence of the H R-decomposition
is tied to the lack of serious Lanczos breakdowns. Avoiding breakdowns is thus
linked to finding shifts such that the H R-steps exist (see [20]).

7 Example: The Portable CD Player

The Compact Disc player is a well-known mechanism for reproducing sound
from a disc. At the heart of the CD player is an optical unit (consisting of a
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laser diode, lenses, and photodectors) which is mounted on the end of a radial
arm [5]. In particular, we will be interested in the relationship between the
voltage applied to the magnetic lens actuator and the resulting lens position.
Traditionally, the behavior of the lens position is represented by a third-order
set of equations. However, controllers designed from these simple, low-order
systems experience difficulties when employed in newer, portable CD players

[5].

To obtain a higher-order controller for the CD player, a better model of its
behavior is required. Via finite element approximation, various portions of the
CD player were modeled and combined to yield a system of equations of order
n = 120. It is unfortunate that the size of A is relatively small. But, this
example is very adequate in demonstrating both the severity of the unstable
partial realization problem and the power of implicit restarts in solving this
problem.

A very valid concern is the total number of Lanczos realizations (T, W,;‘F b, cVy,
1 < k < 120) which are actually unstable. If there are only a few values of k
for which T}, is unstable, then incorporating implicit restarts into the standard
Lanczos method is unnecessary work. But Figure 2 demonstrates that T} stable
is the exception, not the rule, for this example. In general, one cannot count
on stumbling upon stability at the appropriate recursion step k.

However, employing implicit restarts with appropriate choices for the parame-
ters, i, (see §8) quickly stabilizes the reduced-order model. The number of
restarts needed to obtain a stable 1" given various 7}’s is indicated in Table 2.

Table 2: Restarts Needed to Stabilize an Order-k Model
k=20 k=30 k=40 | k=50 | k=60

Restarts 5 0 2 3 1

It is also important to note that in this example, implicit restarts do not have
a detrimental effect on the accuracy of the final, stabilized model (and, in
fact, they are extremely beneficial when the original model is unstable). For
example, Figure 3 displays the impulse responses for both an initially stable
Lanczos model (Ty7) and a restarted (stabilized) Lanczos model (Tsg). Even
with a modified projector, 7, the restarted model’s response is closer to that
of the actual system.
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Figure 3: Impulse responses for CD player models.
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8 Implicit Restart Implementation Remarks

Until now, several important implementation details have been glossed over.
This section will quickly address some of these issues.

Paramount in arriving at a stabilizing projector from an initial projector is
proper selection of the parameters (shifts), p;. Although there is certainly an
endless number of possibilities for the shifts, the following theorem (an analogue
to one in [33]) indicates a practical policy for choosing the restart parameters.

Theorem 1 Let {01,...,0,}U{p1,...,up} be a disjoint partition of the spec-
trum of Ty, and define Ty, to be the the tridiagonal matriz resulting from p im-
plicit restarts with shifts 1 through p,. The eigenvalues of Ty, are {01, ...,0;}.

Restarting with exactly p eigenvalues of T}, as the shifts “tosses out” these p
eigenvalues from T},. For our application, given that T} is unstable, one needs
to proceed until a T}y, is determined with less than p unstable poles. Then via
implicit restarts and Theorem 2, one can remove the unstable poles to yield a
stable Tk+q, 0 < g < p. Note that the condition “find Ty, with less than p
unstable poles” is much less restrictive than finding a stable Tj,.

In practice, the H R-decompositions should be performed implicitly, see [7].
That is, a series of elementary transformations should be used to chase a bulge
down the tridiagonal of T}. For the single-shift case, generating Tj_; in this
manner costs only O(k?) flops while Vj_; and Wj_; can each be generated
with O(kn) flops. An additional O(kn) flops is needed for the single Lanczos
iteration (full reorthogonalization) yielding Tj. Note that an explicit restart
(with full reorthogonalization), on the other hand, requires O(k?n) operations.

9 Multi-point Padé approximation with Lanczos

In this section, we extend the results and benefits of existing Lanczos methods
to the case of generalized state space systems :

FErx = Az +bu

Yy = cz. (9.1)

This new technique possesses the additional advantage of allowing for multi-
point Padé approximation. That is, the resulting reduced-order model of di-
mension k = 77 satisfies

mj(sz-) = ’ﬁ’Lj(Si), i=12,...,25, 1=1,2...,%, (9.2)
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where

mj(si) = c{(A=sB) B} (4 sE) T,

is the 7" moment of (1.1) about the expansion frequency s; and

(i) = ¢ {(A— i) B) T (A- s B)
is the j» moment of reduced-order model about s;. It will be assumed for
notational simplicity that 27 moments are to be matched about each of the
frequencies s; through s;. In general, the number of moments matched may
vary from expansion frequency to expansion frequency. One can easily modify
the following results to handle this case.

The variant of the Lanczos method employed to generate a reduced-order model
{E, A, b, ¢} satisfying (9.2) will be denoted the rational Lanczos algorithm as it
is an adaptation of the rational Arnoldi method of [29, 30]. The most glaring
difference between the two rational methods is that rational Lanczos computes
a biorthogonal Vj and W}, rather than an orthogonal V. There are, however,
smaller dissimilarities between the two methods which are necessary to insure
that the oblique projector, mp = V3 Wy, of rational Lanczos yields multi-point
Padé approximants.

Strong similarities exist between the rational Lanczos algorithm (see Algorithm
2) and the traditional Lanczos algorithm (Algorithm 1). The key difference
between the standard and rational Lanczos algorithms lies in step (A2.4) of
Algorithm 1. In rational Lanczos the matrix, (4 — sE)~'E, multiplying the
previous v vector changes with the expansion frequency. By making this matrix
a function of s, the following sequences of Krylov spaces are computed (see [14]
for a proof).

Theorem 1 If Vi and Wy are the results of the first k steps of the rational
Lanczos algorithm with 1 < k <17 then

colsp(Ve) € {Kk si 1) (4= 5:E) B (A= siB)™'D
UiZi K3 ((A—sB)'E, (A — 5,E)"'b) }
where i — 1 is the quotient of k/7. Correspondingly,
colsp(Wy) € {’ij(z'l)Jrl (ET(A - Sz'E)_TaCT)

U;;% K1 (ET(A — le)’T, cT) }
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Algorithm 2 (Rational Lanczos Algorithm)
Initialize ro = (A — 51E)7'b and qo = c';

Fori=1 to1,
For 3 =1 to ],
(A2.1) k=(i—1)7+j4;
A2.2) hg g1 = \/IrF Lqr—1]

(A2.2)
(A2.3) vy = (rp_1/hip—1) and wy = sign(ri_1qr—1) - (qk—1/hkg—1);
(A2.4) if j <7 andi<u,
(A2.4.1) v, = (A — s;E)"'Evy, and q;, = ET(A — 5,E) Twy,;
else if 1 =7 and 1 <7,
(A2.4.2) 1y = (A—3;11E) 'b/h1g and g, = ET(A—s; 1 E) Tl
else
(A2.4.3) 1, = (A—s1E) 'Ev; and qp = ET (A — s, E) Tw;
end
(A2.5) hi_ ki = Wilrg and g1 kr = Vil qi;
(A2.6) i, =1 — Vikhi ki and g, = qp — Wig1. i ks
end

end

Vi1 = (ro3/hagi1,07) where hagpr ;= |7"%:sz|'

Recall that the V; and Wj matrices resulting from the standard Lanczos
method each corresponded to a single Krylov space. In the rational Lanc-
zos method, multiple Krylov spaces are computed. Each space corresponds
to an expansion frequency s;. The cost of combining multiple Krylov spaces
into Vi and W, is the loss of a three-term recurrence in step (6) of the algo-
rithm. Thus one should expect to see upper-Hessenberg rather than tridiagonal
matrices appearing out of the rational Krylov projection.

For the remainder of this section, it will be assumed that Algorithm 2 is exe-
cuted to completion and the value of k£ will be fixed as k = k =77. Then given
the results of the rational Lanczos method, we will define the reduced-order
model so that

A=Ky + s1Hg g, E = Hyy,

A (9.3)
b= WkT(A—SlE)flb, ¢ =cVip Ky



Modified Lanczos and Padé 23

where Hj 1) and Ky are upper-Hessenberg matrices resulting from Algo-
rithm 2 which satisfy

(A — SIE)Vk—l—lﬂk—l—l,k = EVkKng

To begin to motivate the choices in (9.3), rewrite the definition (1.1) of the
original system as

(A—s51E) 'Ei=(A—-s1E) Y A—-s51E+s5E)x+(A—s5E) bu

Y = cx.

The restriction of the original system by the projector 7 is formed by replacing
the state vector, z, with Vng z and multiplying on the left by WkT to yield

WHA-$1E) 'Eri =Wz + s\ W] (A—s1E)"'Erz + WI'(A—s1E)"'bu
J= chWka.

By temporarily assuming that K} j is invertible, one can rewrite this most
recent expression as

Hy o Ky Wik = s1Hy y Ky Wie + We + W (A= s1B) bu
7y = chWkT:v

which in turn becomes

Hk’k.’i‘ = (Kk,k + SlHk,k)f% + WkT(A — SlE)flbu

4
§ = Vi Ky . (94)

by defining & to be Kk_,,iW,;f:v

Comparing (9.1) and (9.4) indicates that the prescribed choices for A, E, b and
¢ are quite logical. However, (9.4) was obtained assuming K} to be invertible.
This assumption is in fact not necessary for our purposes. The following result
(see [14] for a proof) states that the reduced-order model corresponding to
(9.3) matches the desired moments of the original system without placing any
restrictions on the invertibility of K} ; or E.

Theorem 2 Let the j'* moments of the original and reduced order systems
about the expansion frequency s; be m;j(s;) = A{(A—s;B)'EY Y (A—s;,E)'b
and 1j(s;) = ¢{(A — s;iE) LEYV TV (A — s;E) ' respectively. If A = Kir +
SIHk,k; E = Hk,k; i) = WE(A — SlE)_lb and ¢ = CVkKk,k where Hk+1,k7
Kii1k, Vi1 and Wiy are the results of Algorithm 2 with k = 77, then
mj(s;) =m;(s;) fori=1,2,...,0and j =1,2,...,27.
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The matrices Kj j and Hy j are no longer tridiagonal but are still gnaranteed
to be upper Hessenberg. In fact one shows that they are essentially tridiago-
nal, except for two nonzero columns above the diagonal at each transition to
another expansion point. For a 2-interpolation point, 8-dimensional model, the
matrices Ky and Hy j have thus the form :

[ '

x
r X
x

8 8 8
8 8 8
8 8 8 8 8 8
8 8 8 8 8 8 8

8 8 8

T
| 2
The projection resulting from the rational Lanczos method satisfies the multi-
point condition of (9.2). It appears that the benefits of the standard Lanczos
method can be easily extended to the rational Lanczos approach. These are :
avoiding computing the moments, avoiding break-downs and look-ahead meth-
ods, and possibly utilizing fast simulation methods.

We finally point out that just as Padé approximation comes up in system theory
as the partial realization problem, the multi-point Padé approximation prob-
lem has been studied in system theory under the name rational interpolation.
References include [3] and [11].

10 Example

As a brief example of the utility of multi-point Padé approximations, we take
now the 120% order system describing the effects of a magnetic actuator on
the radial tracking arm of a portable compact disc player, see [20]. Figure 1
plots the frequency responses of the original system (solid line), a 24" order
Padé approximation about sg = oo (dashed line), a 12" order Padé approxi-
mation about sy = 0 (dotted line) and a 6 order multi-point Padé approxi-
mation (dashed-dotted line) for the CD player. The multi-point approximation
matches six moments expanded about s; = 0, four moments about s, = 10°,
and two moments about s3 = 10%. To keep this example short, we do not
discuss the algorithm used to choose these expansion points here.

Note that the frequency response of the original system displays two sharp
peaks at w ~ 30 and w =~ 30*. The frequency response of the multi-point Padé



Modified Lanczos and Padé 25

300

200

100

gain (db)

------- Original system

- Pade approximant about s=infty
-100- .-+ Pade approximant about s=0
.- Multi-point Pade approximant

-200 . . . . 3 . ” .

10 10 10" 10° 10 10 10
frequency (w)

Figure 4: Frequency responses for the example.

approximation captures both of these peaks and is almost indistinguishable
with the response of the original system. As one should expect, the Padé
approximation about sqg = 0 displays the first peak but demonstrates significant
error at high frequencies. The approximation about infinity, on the other hand,
captures the second peak but smoothes over the peak at w ~ 30.

The impulse response of the stable, original system is dominated by those
modes corresponding to the frequency response peak at w = 30. The multi-
point approximation is stable and its impulse response recreates that of the
original system with great precision. The Padé approximation about sy = 0
identifies those modes corresponding to the low-frequency peak but its impulse
response is unstable. However, the techniques of Section 6 can stabilize the
so = 0 approximation so that the sp = 0 response to an impulse (which may
or may not be the input of interest for a given application) follows that of the
original system with great precision. Finally, the Padé approximation about
infinity is not stable nor does it capture those modes corresponding to the
low-frequency peak. As a result, even a stabilized model about sg = oo does a
poor job of approximating the system’s impulse response. Note that because
the Krylov sequences corresponding to s = oo do not invert A, the oftentimes
desirable low-frequency information is lost.
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11 Block Lanczos Extensions

All of the methods and issues raised until now were concerned with SISO
systems. However, most dynamical systems actually possess multiple inputs
and outputs which suggests the need for block Lanczos techniques. Block
Krylov subspaces such as

Ki(A,B) = span{B,AB,...,Ak*IB},
Kip(AT,CcT) = span{CT,ATCT,...,Ak_lTCT}

are utilized where B € R"*™ and C € RP*" take the place of b and c¢. Corre-
sponding to p > 1 or m > 1, block tridiagonal or Hessenberg matrices appear.
One of the first block Lanczos routines for model reduction may be found in
[23]. More recent and robust block Lanczos implementations include [2] and
[24]; the former of which begins to investigate look-ahead for the MIMO case.

Just as the block Lanczos routine of [23] is a relatively straightforward gener-
alization of the Lanczos routine, it is not difficult to propose a MIMO version
of the rational Lanczos method. One can simply place the steps of Algorithm
2 into a block format. There are however difficulties however which arise in the
MIMO case for both block Lanczos and rational Lanczos approaches. Primary
among these is the issue of identifying and correctly treating serious break-
downs. One possible solution is to try to extend look-ahead to the MIMO
case, see [2]. Alternatively, one may be able to entirely avoid breakdowns
through a more careful selection of the moments matched in each iteration of
rational Lanczos [14]. The subtleties of MIMO Lanczos techniques are areas
of continuing research.

12 Conclusion

Both explicit moment matching and the Lanczos algorithm are efficient tech-
niques for generating partial realizations of large-scale systems. But by ei-
ther avoiding a difficulty or providing well-defined techniques for fixing it, the
Lanczos method is better suited for handling the problems inherent to Padé
approximation.

Through Algorithm 2, the Lanczos method can be extended to treat multiple
expansion frequencies. Multi-point approximation shows promise in several
applications [11, 28, 38] as an approach for handling false instabilities and
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frequency response errors in the reduced-order model. However, the techniques
for choosing the expansion frequencies are still rather heuristic; a more formal
approach should be explored in future work.

Finally, we note that the inversion of (A — s;E) is an area requiring additional
work. Regardless of whether explicit moment matching or the Lanczos method
is being employed, one must avoid explicit inversions and instead utilize sparse
factorizations of the matrix or iterative techniques. One must further insure
that the values for s; are chosen so that (A4 — s;F) is well-conditioned.
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