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Abstract

This paper presents a model reduction method for large-scale linear systems that is based on a
Lanczos-type approach. A variant of the nonsymmetric Lanczos method, rational Lanczos, is shown
to yield a rational interpolant (multi-point Padé approximant) for the large-scale system. An exact
expression for the error in the interpolant is derived. Examples are utilized to demonstrate that the
rational Lanczos method provides opportunities for significant improvements in the rate of convergence
over single-point Lanczos approaches.
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1 Introduction

This paper explores the use of Lanczos techniques for the reduced-order modeling of large-scale dynamical
systems. A need for such reduced-order models arises in various areas of engineering such as the control of
large flexible space structures [5] and the simulation of high speed circuits [6]. The system to be modeled is
typically defined via a set of state space equations

Ei(t) = Az(t) 4+ bu(t) and y(t) = T x(t) + du(t) (1)

where for simplicity, the direct-coupling term, d, will be assumed to be zero. As this paper will restrict itself
to single-input single-output (SISO) systems, the input «(¢) and output y(t) are scalar functions of time with
b and c column vectors of length n. The system matrix, A € IR"*", and descriptor matrix, £ € IR"*", are
assumed to be sparse or structured (e.g., Toeplitz). We stress that such assumptions are met by large-scale
problems arising from most applications. However, most existing model reduction techniques (e.g., balanced
truncations and Hankel norm optimal approximations) [8] fail to take advantage of any sparsity or structure
in the system matrix and are thus typically impractical for large-scale problems.

For the case where F is an identity matrix, the zero-state (2(0) = 0) solution to the first expression in

(1)is z(t) = fot eAt="bu(r) dr. Thus determining a good k < n order approximation,

Ez(t) = Az(t) 4+ bu(t) and (1) = ¢ (1), (2)
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is intimately connected with finding a good approximation to a matrix exponential. A method based on
orthogonal Krylov projectors (the Arnoldi algorithm) is utilized in [12, 26] for approximating e“4'b. But
in fact, these concepts can be taken one step further by noting that one is really only interested in that
information in eA%h which lies in the direction of ¢ (one ultimately desires ||y — y|| small for some desired
range of inputs u). Numerous papers [4, 17, 27, 28] are beginning to explore this last fact. In particular,
these papers begin to investigate the use of an oblique Krylov projector (i.e., the Lanczos algorithm) for
generating the reduced-order model.

The Lanczos-based approaches to model reduction are in fact connected to well-known approximations
of (1) including partial realizations and/or Padé approximants [14, 29]. These approximations are centered
on the transfer functions g(s) = y(s)/u(s) = ¢ (sE — A)~1b and g(s) = y(s)/u(s) = ¢* (SE — 121)_11; which
arise out of Laplace transforms of (1) and (2) respectively. The reduced-order model is computed so that its
transfer function §(s) shares (matches) certain attributes of the original transfer function ¢(s). The Lanczos
method is known to be a preferred numerical approach for computing such a model [7, 10]. Additionally,
Lanczos-type methods only involve multiplication by A and E and/or solving linear equations involving A
and E. Thus one can take advantage of the structure of these matrices. Avenues also exist in the Lanczos
method for removing the spurious, unstable poles which may appear in the approximation [15].

Unfortunately, model reduction methods such as partial realization and Padé approximation are not
acceptable in all applications. Such approximations tend to converge in a local fashion about a single
frequency s — o € €. The dimension of the reduced-order model can grow large before becoming an
acceptable global approximation of the original system. To overcome this difficulty, several papers in the
areas of control and circuits explore the use of a multi-point Padé approximant (denoted a rational interpolant
in the systems literature) for approximating (1) (see for example [6, 16, 18, 32]). In rational interpolation
[1] (multi-point Padé [2]), a reduced-order model is constructed whose transfer function §(s) interpolates
the value and subsequent derivatives of g(s) at multiple frequencies {o1,09,...,07}. Each interpolation
point is selected to identify the dynamics of (1) in a specific frequency range. One avoids trying to acquire
information from a single, distant point.

This paper lays the foundation for a practical computational approach to rational interpolation through
the development of the novel rational Lanczos method. Being a Lanczos type method, rational Lanczos
still possesses the desirable numerical qualities lacking in explicit moment matching approaches. But in
a significant break from the standard Lanczos algorithms, rational Lanczos is no longer tied to a specific
interpolation point. By intelligently selecting from multiple interpolation points, rational Lanczos provides
an opportunity for efficiently and accurately determining models across a wide frequency range. An error
expression between the transfer functions of the original and reduced-order systems is derived which may
enhance the placement of the interpolation points. Given this set of interpolations points, a strategy for
selecting among them arises quite cheaply out of rational Lanczos and is grounded in system theory. One
does not simply match a fixed number of moments about each interpolation point. Such an approach may
be unnecessary at certain interpolation frequencies and insufficient at others. Instead, selections are made
from among the interpolation points as the model size grows with the goal of maximizing the amount of new
information being placed into the model. A surprising benefit of this last fact is that the rational Lanczos
method 1s driven to avoid the numerical instabilities present in the standard Lanczos method. Meaningful
system theory in rational Lanczos can replace the nonintuitive, complex fixes of the standard Lanczos method
(e.g., look-ahead [9, 21]).

This paper begins in §2 by describing moment matching, the Lanczos method and the connections between
the two. An emphasis is placed on defining the terminology associated with both moment matching and the
Lanczos method in a unified and unambiguous way. The techniques of §2 correspond to interpolation about
a single point. §3 discusses the limitations of interpolating about a single frequency point and thus motivates
the development of the rational Lanczos method in §4. The rational Lanczos method of §4 is constructed
in a simplified manner so as to promote an understanding of the algorithm. The relation between rational
Lanczos and rational interpolation is proven. §5 converts the rational Lanczos method into a model reduction
tool. Examples are provided to suggest the power of the approach. An error expression for the reduced-order
model is derived in §6.



2 Background

This section contains the background material necessary to proceed with the later development of the
rational Lanczos algorithm as a model reduction method. We emphasize the need for a thorough coverage
of moment matching methods, versions of the Lanczos method, and the interconnections between the two.
The terminology and credit for these topics lies strewn over several application areas. It is our goal to at
least begin to piece together these items in the following review.

2.1 Moment matching methods

The model-reduction methods of interest in this paper are those which reproduce in the reduced-order
model a set of invariant attributes belonging to the transfer function g(s) of (1). To be more specific, we
are interested in determining a reduced-order model which matches the first 2k coefficients, m;, arising in a
power series expansion of ¢(s). If g(s) is expanded about zero for example,

s? 53
g(s):mo—i—mls—i—gmg—kymg—k..., (3)
the coefficients (referred to as moments in this case) satisfy m; = —c? (A~ E)7 A='b. The reduced-order
model, a Padé approximant, is constructed so that m; = m; = —AT(A_IE)j_lb for j =0,1,2,...,2k — 1.

These moments are the value and subsequent derivatives of the transfer function g(s) evaluated at s = 0. If
g(s) is expanded in a power series about infinity,

g(s) =d4+m_1s "+ m_os I+ m_gs 4. .., (4)

the coefficients (referred to as Markov parameters in this case) satisfy m_; = (B A)=DE=1h. The re-
sulting model, denoted a partial realization, possesses moments which satisfy m_; = m_; for j = 1,2,...,2k.
These Markov parameters are the value of the zero-state impulse response g(t) (the inverse Laplace trans-
form of g(s)) and subsequent derivatives of g(¢) evaluated at ¢ = 0. Power series expansions about 0 are
generally of greater interest because one typically desires to reproduce the steady-state (versus the transient)
response of the original system over some frequency range. The steady-state behavior of the output can be
defined in terms of the frequency response of the system, g(iw), where the variable w € IR corresponds to
real frequency and i = \/—1. If the input u(t) includes a sinusoid of frequency wq, the output y(¢) contains
this sinusoid at steady-state scaled in magnitude and shifted in phase by the value of g(iwg). By replacing s
in (3) with the shifted variable s — o, i.e., g(s) = Z;'O:O(S — o) m;(a)/j!, one can generate shifted moments,
mj(o) = =T {{(A—oE)~ ' E}(A— o E)b, which match g(s) and its subsequent derivatives at a user-specified
frequency o. On the other hand, we will show shortly that the use of a shifted variable s — ¢ in an expansion
of the form (4) does not effect the resulting partial realization. For these reasons, this paper will concentrate
on matching moments which are the coefficients of positive powers of s (possibly shifted). Models of this
type fall under the title of Padé approximants.

For quick reference, various sources for the moments to be matched are summarized in Table 1. The
only listed type of approximation yet to be covered is the rational interpolant or so-called multi-point Padé
approximant. The rational interpolant (which includes Padé approximation as a special case) matches
moments arising out of multiple (say 7) power series expansions. These expansions are about 0 but each is
shifted by a different amount, o;, ¢ = 1,...,2. The resulting reduced-order model is defined by the matrices

{A, E.b, ¢} which satisfy

mj (o) =my (o), Jji=0,1,...,25,—1, i=1,2,...1 (5)
where

mi (i) = —T{(A=aE) " "EY (A= o)™, (6)

mj, (o) = —éT{(A—aiE)—lE}j’(A_aiE)—lzs (7)



and 2;1 Ji = k. The value and and subsequent derivatives of §(s) are thus equivalent to those of g(s) at
multiple interpolation frequencies. The number of data pieces matched about a given interpolation point o;
is twice the user-selected value of ;.7

Table 1: Possible Choices for the Moments to be Matched

Approximation Power Series jth
Name(s) Expansion Moment
Partial Realization, g(s) = 25021 m_;s™I m_; =c(E~YAY1E"h = g9 (t)]i=o0
Padé at co
Padé g(s) = Z;O:O m]j—f | mj = —c(ATTEY A = g9 (5)|s=0

Padé (shifted) g(s) = Y52y my =7l m; = —c{(cE — A)~" Y (o E — A)~'b = g (s)]s=0

Rational Interpolant, | g(s) = Z;?:O m;,(03) gs_ﬁ# mj,(0;) = —c{(o;E — A)" EYi(cE — A)~1b
Multi-point Padé fori=1,2,...,2 fori=1,2,...,2

2.2 Moment matching through Lanczos methods

From a systems point of view, our interest in the nonsymmetric Lanczos method [19] (presented as
Algorithm 1) centers on its ability to compute rectangular matrices Wy, Vi € IR™* which satisfy (7) the
biorthogonality condition WV}, = I and (ii) the Krylov subspace conditions colsp(Vi) = K (¥, 7o) and
colsp(Wi) = K (T, qo) where the Krylov subspaces are

T
K (7, ro):span{ro,lflro,...,wk_lro} and ICk(WT,qO) :span{qo,Wqu,...,Wk_l qo}-

It is the construction and use of these two Krylov subspaces which connects the Lanczos method to moment
matching [29]. Note that the Krylov subspaces are shift-invariant; replacing ¥ with ¥ — oI does not change
the resulting subspaces.

Besides those features already mentioned, it can be easily shown that Lanczos method leads to the
recursive identities

lp‘/k = ‘/ka +'yk+1vk+1eg and LDTWk = WkaT + Bk+1wk+leg~

The standard unit vector ey is the k' column of an identity matrix of appropriate length. The matrix
Ty = WIWV, takes on the well-known tridiagonal form which is composed of the scalars v; below the
diagonal, «; on the diagonal and 3; above the diagonal.

For the model reduction problem, it is important to point out that the matrix ¥ (or at least the action
of ¥ on a vector) has historically been assumed to be known a priori in step (A1.4) of Algorithm 1. This
condition was met by the first Lanczos-based model reduction papers in the control area [4, 17, 28]. The
choices = A, rg = b and gy = ¢ were made while £ was assumed to be an identity matrix. Given that
¥ = A is sparse, the matrix-vector products in (A1.4) are obtained with only pn operations where p is the
average number of non-zero entries in a row of A. The resulting model, A=T, = WI AV, b= WIb and
¢ = Vch, is a partial realization of the original system [14]. However, as noted in §2.1, k must typically
grow large before a sufficiently accurate partial realization is acquired. The use of shifts does not help here.
For example, if one replaces s in (4) with the shifted variable § = s — ¢ and assumes for simplicity that
FE = I, the resulting shifted Markov parameters are m_; = cT(A — oI)?~1b due to the Neumann expansion

of (sI — A"t = ((s—o) — (A—0al))™! = (3] — (A — oI))~L. Thus the choice ¥ = A in Algorithm 1

TThe restriction that an even number of moments be matched about each interpolation point is due to the form of rational
Lanczos but need not hold in the most general definition of rational interpolation.



Algorithm 1 Nonsymmetric Lanczos [19]

Input: starting vectors rg and gg of length n;
For k =1 to k,
(AL1) v = \/IrT_ ak—1| and Bx = sign(r]_ gx_1)x;
(A1.2) vy = (rg—1/vx) and wy = (gx—1/6r);
(ALl.3) ap = wElI/vk;
(A1.4) rp = Pvg — agvg — Brvp—1 and g = ¥ Twy, — apwy, — Yewk_1;

end.

need only be shifted by o7. But since the underlying Krylov subspaces are shift invariant, shifting s has no
effect on the final partial realization. Only when shifting s does more than shift ¥ (e.g., Padé approximation
where (A — o)~ # A=1 — ¢1) will & make an impact on the reduced-order model.

For improved accuracy, other papers select ¥ to be a rational function of A and/or E. For example,
the earliest known papers on Lanczos-based model reduction (arising in structural dynamics [20, 27, 30])
chose ¥ = A=1E. This selection corresponds to Padé approximation with ¢ = 0 [29]. Although this choice
of ¥ still fits the notation of Algorithm 1, it differs in a significant computational way from the commonly
assumed choice of ¥ = A. On the surface, selecting ¥ to be a rational function of A and/or FE still leads to
a matrix-vector product in (A1.4). However, such a ¥ is not known a priori; more to the point, an inverse
involving A and/or E should not be explicitly computed. Choosing ¥ to be a rational function requires that
each matrix-vector product in (A1.4) involve the solution of a large-scale system of linear equations. But
solving systems of linear equations can be much more computationally intensive than simply multiplying
a known, sparse matrix times a vector. Using rational functions for ¥ (to improve accuracy or to simply
handle E # I) does not come without a cost. We comment on some possible approaches to minimize this
additional cost in §7.

As noted above, the Lanczos algorithm is typically treated as involving a known, easily accessible ¥.
However, the use of rational functions of A and F in ¥ is examined in [23]. The so-called rational Krylov
space was defined as span{rg, ¥17q, Warg, ..., W,_179} where ¥; could be a rational function and where the
restriction that ¥; = ¥ ¥;_; was dropped. Hence those model reduction approaches which select ¥ to
be a fixed rational function are special cases of a rational Krylov method since they enforce the relation
U; = UnW;_q. The resulting reduced-order model is a Padé approximant associated with a single shift o.
But the following section motivates interpolating ¢(s) at multiple frequency points. To achieve interpolation
at multiple points, this paper drops the restriction that ¥; = ¥ ¥;_;. The result is a rational Lanczos
method.

3 Limitations of single-point interpolation

As discussed in §2, Lanczos-type algorithms with W = (A — ¢ E)~1 E are a desirable numerical approach
to computing Padé approximants. The resulting reduced-order model interpolates the transfer function
g(s) and subsequent derivatives of g(s) at a single point, . However, even if one can accurately match
attributes of g(s) at s = o, the resulting reduced-order model may not be acceptable. Properties of Padé
approximation and the Lanczos algorithm are combined in this section to indicate why the frequency response
of a Lanczos-generated model tends to be only locally accurate about o for reasonably small values of k.
Specifically, we are interested in two convergence properties of single-point Padé approximations [2, 6]: (P1)
Padé approximants are exact at the point of interpolation while accuracy is lost away from o and (P2) the
accuracy of the Padé approximant is lost away from o more rapidly when pole(s) of the original system
(the generalized eigenvalues of the pencil A — AFE) are near o. This second property implies that even non-
dominant eigenvalues in the neighborhood of & (eigenvalues near ¢ whose presence has negligible impact
on the system’s frequency response g¢(iw)) can block the modeling of essential eigenvalues away from the
interpolation frequency. Related to these properties are two important characteristics of the Lanczos method:



(P3) those eigenvalues which are on the outer-edge of the spectrum of the Krylov matrix W = (A —oE)™'E
tend to be well approximated by the Lanczos method and (P4) the Lanczos method tends to converge to
well-separated eigenvalues first. Corresponding to this last property, the Lanczos method typically does a
poor job of identifying the multiplicity of identical (or nearly identical) eigenvalues.

To examine the impact of these properties on single-point approximations, a simple 22"%order system is
considered for the remainder of this section. The F matrix in this example is the identity matrix. As for A,
18 eigenvalues are in the neighborhood of 0 while the remaining four have an imaginary component of +500.
Of these, only four eigenvalues close to the imaginary axis (—0.21 47 and —0.2 £ 500i where i = \/—1) play
a significant role in the frequency response of the system (the two peaks on the system’s frequency response
in Figure 1 corresponds to these two eigenvalue pairs). Thus one expects to be able to model the original
system of this example with k& < 10.

Unfortunately for & < 18, the single-point Lanczos generated model about 0 (a standard choice for o) fails
to reflect the actual system’s peak in magnitude at w = 500, see Figure 1. Even though most are unimportant
to modeling the system, the eigenvalues around ¢ = 0 are almost perfectly approximated before the high-
frequency eigenvalues make an appearance. Such behavior is consistent with the two Padé properties P1 and
P2. From a Lanczos point of view, one must consider the Krylov subspaces K (A~ A71b) and Kx(A™T, ¢).
The eigenvalues of A~ are shown in Figure 2. Note that those eigenvalues of A which are near ¢ = 0 have
reciprocals which are spread out in the spectrum of A='. On the other hand, the high-frequency eigenvalues
of A correspond to four eigenvalues of A~! which are all basically zero. More importantly, those eigenvalues
of the system near the imaginary (iw) axis appear on the outer edge of the spectrum of A~!. By property
P3, the eigenvalues of A close to zero and the imaginary axis converge quickly in the reduced-order model.
The desired high-frequency eigenvalues are also on the outer edge of A~!’s spectrum, but their convergence
is hindered by property P4. Until & becomes large, the Lanczos method sees the four nearly identical
eigenvalues of A1 at 0 (the high-frequency poles of the initial system) as a single, real pole. The Lanczos
properties confirm that & must be large before the high-frequency behavior can be modeled.
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Figure 1: Frequency response of Example 1. Figure 2: Eigenvalues of A1,

In general, we stress that a single-point Lanczos model will eventually model the frequency response of
the system (e.g., when k > 18), but the size of the reduced-order model may become large in doing so. The
convergence of the single-point method is dependent on eigenvalues which are unimportant to the model.
Moreover, these non-dominating eigenvalues appear in the reduced-order model. Yet if k i1s large and the
model contains a large quantity of non-essential information, there is little value in obtaining the model.
The above example is admittedly simple to clearly demonstrate these points. In §5, we obtain similar results
with a real-world problem. Finally, note that one may improve the single-point results by using a different
interpolation frequency. For instance, a good model arises for the above example when &k = 12 and o = 20.
However, it is not easy to locate such an interpolation point a priori. And in this example, even an optimal
single-point interpolation falls short of the multi-point Padé approximation of §5.



4 Rational Lanczos algorithm

To avoid the difficulties inherent to single-point interpolation, one can turn to model reduction via multi-
point Padé approximation [16, 32]. In multi-point approximation [2], the moments of the reduced-order
model, the m;,(o;) in (7), satisfy the moment matching condition (5). Every interpolation point, ¢, is
chosen to identify dynamics from a specific frequency range. One avoids trying to acquire information from
a single, distant interpolation point. It is stressed once more that a Lanczos-type method is desired to avoid
the numerical difficulties encountered in previous explicit moment matching methods [10].

To simplify the development of rational Lanczos, we assume in this section that a fixed number of moments
(2)) are to be matched about each interpolation point. This restriction is not conducive to model reduction
however and will be dropped in §5. We will also assume in this section that no breakdowns (divisions by
zero) occur in the rational Lanczos algorithm. This second assumption is related in some ways to the first
and will also be addressed in §5.

The variant of the Lanczos method employed to generate a reduced-order model {E,A,B, ¢} satisfy-
ing (5) is denoted the rational Lanczos algorithm as it was inspired by the rational Arnoldi method of
[24, 25] for computing eigenvalues. In a rational Krylov method, the Krylov subspace is replaced with
span{rg,¥1rg, ..., Ws_17ro} where the ¥; are arbitrary rational functions in A and E [23]. The rational Lanc-
zos method developed below actually computes two rational Krylov subspaces, yielding biorthogonal Vj and
Wy in place of rational Arnoldi’s orthogonal Vj. There are, however, numerous subtle differences between
the two rational methods which are needed to insure that the oblique projector, Iy = VW, of rational
Lanczos yields a rational interpolant.

Strong similarities exist between the standard nonsymmetric Lanczos algorithm (Algorithm 1) and ra-
tional Lanczos (Algorithm 2). The key difference between the two lies in step 4 of Algorithm 2. Tn rational
Lanczos, the matrix, (A — o; E)~1 E, multiplying a previous v vector varies with the interpolation point.
Because this matrix is a function of o;, the union of several Krylov subspaces is computed (see Theorem
1 below). In fact, we will see that each of these Krylov subspaces corresponds to 27 moments about an
interpolation frequency, o;.

We begin our analysis of Algorithm 2 by examining the case where k is a multiple of 5. This case involves
the execution of step (A2.4.2) and corresponds to a change in the interpolation point from o; to o;41. Note
that yx+1 xvk+1 = 7k due to (A2.3). Then placing 7 from (A2.4.2) into the expression for r; in (A2.6) yields

1,k
Vk+1 = (A—O'H_lE)_lbI’yl’o(A—O'H_lE)_l(A—UlE)‘/kel (8)

Y41,k

since 1 0v1 = (A — o1 E)~'h. Note in (8) that the vector e; is the j standard unit vector of appropriate
length. Multiplying (8) on the right by (A — 641 F) and rearranging the expression results in

Y1,k Y1,k
AVt : —vi0e1 | = EVigr | 0541 : — 0171,0€1
YE+1,k Ve+1,k
which can be rewritten as
Y1,k Y1,k
(A=01E)Vipy : 7061 | = EVip : (Git1— 01) (9)
Ve+1,k Ve+1,k
0 0
hk kk

where k = 27. When k is not a multiple of J, step (A2.4.1) is executed and the next v vector computed is
still associated with the interpolation point ;. For this case, placing the 74 of (A2.4.1) into the expression



Algorithm 2 Rational Lanczos [11]

Input: ro = (4 — crlE)_lb and go = c;
For i =1 to 7,
For j =1 to 7,
(A2.1) k= (i — 1)7+ J;
(422) i s = /T
(A2.3) v = (rp—1/ve,r—1) and wy = sign(r]_ qx_1) - (qr—1/Vk,k—1);
(A2.4)if j < Jand i <7,
(A2.41) 7, = (A — 0, E) ' Evy, and g, = ET(A — 0, E) " Twy;
elseif j = 7and 7 < 7,
(A24.2) 7y, = (A—oipE)'band § = ET(4A — 0,41 E) " T¢;
else
(A2.4.3) 7, = (A — 01 E)"'Evy and g = ET(A — 01 F)~Twy;
end
(A2.5)if § > 2 and k # 77,

(A2.5.1) [Wl,k kak]T = [0 ...0 wg_lf’k wgfk]T and [ﬁl,k ,Bkyk]T = [0 ...0 Ug_lljk vgq}];

else
9K T T T T
(A2.5.2) ['Vl,k ,yk’k:l = Wk Tk and [ﬁl,k /Bk,k] = Vk qk3
end
- T - T
(A2.6) r, =7 — Vg [’Vl,k ’Vk,k] and g = q — W [ﬁl,k ﬁk,k] ;
end
end

Vi = (TE/WE_I_LE) where vz 11 £ = 4 /|7’gq7€| and k = 77.

for r; in (A2.6) yields
M,k
Ve | 0| =(A-0B) Elier. (10)
Yk41,k
Multiplying (10) on the left by (A — o F) produces

M,k
EVkek = (A — O'iE)Vk-H
Ye+1,k
which can be rewritten as
Y1,k Y1,k
(A—01E)Viy,y : =EVi, : (i —01)+ex |- (11)
Ve+1,k Ve+1,k
0 0
N———
hk kk
Combining all k steps of Algorithm 2 yields
(A_UlE)V/QHHEH,/% = EV12+1K12+1,E (12)

where the columms, hy and kg, of Hg,,  and Kp . j are defined via (9) and (11). Specifically, columns j,
2j,...(1=1)j of Hgyy 5 and Kg,  fit the form of (9) while the remaining columns satisfy (11).



The matrices Hg 4 ; and K4 i are upper-Hessenberg. The elements, v, of these matrices are computed
in Algorithm 2 so as to enforce a biorthogonality condition, i.e., WET Vs = 1. However, as indicated by step
(A2.5.1), a majority of the elements above the diagonals of H,, ; and Kp, ; are typically zero and thus
need not be computed in theory. To be precise, Hy ., j is tridiagonal except for off-tridiagonal fill-in occurring
in those columns where (using the notation of Algorithm 2) j = 1 or j = 2. The structure of Hg,, z and
Kgyq 5 follows from Lemma 1 (see appendix) and is a generalization of the three term recurrences present
in the standard nonsymmetric Lanczos algorithm. For example if k = 7+ 2, the element v, = wl7, =
th(A—O'Q E)_1E0j+2 is zero for ¢t < k—1. This last fact 1s due to the biorthogonality of V, and W}, and also by
(37) of Lemma 1, i.e., wl (A— 09 E)~! € Ky (ET(A — o B)" T ET(A - O'QE)_TC> UK; (ET(A - B)7 T, c)
ift < k—1.

Special mention should also be given to the k" columns of Hpyy 5 and Kgy g 5. Due to step (A2.4.3) | the
k" columm satisfies the general form of (11) with ¢; = 1. Thus k = [ejT 017 so that Vi Kiyq = Vi Kz z-
Making use of this last fact when multiplying (12) on the left by WET (A—o1E)~! yields

Hpz=W{(A—-a1E) 'EViKzz (13)

where k = 2. Expressions (12) and (13) serve as the initial relations between the projector Vi WET and F
and A.
Under the assumption that F is invertible, the relations (12) and (13) were utilized in [11] to argue for

A=Kpp+oHyp, E=Hpp, b=WI(A-01E)"", and ¢ =c"ViRg; (14)

in the reduced-order model, (2). In this paper, the assumption that E is invertible is dropped. Furthermore,
the remainder of this section combined with several lemmas provided in the appendix actually proves that
(14) corresponds to a multi-point Padé approximation of (1) (i.e., (5) is satisfied by the model selected
by (14)). To arrive at this final result, we begin by obtaining a relationship between the rational Lanczos
projector VkaT and Krylov subspaces.

Theorem 1 If Vi, and W}, are the results of the first k steps of Algorithm 2 with 1 < k < k then

i—1
colsp(Vi,) = {Kk_](i_l) (A— o E) "B, (A—0:E)™'h) U K; (A= o BE) "B, (A— o E)™'b) } (15)
=1
where i — 1 is the quotient of k/j. Correspondingly,
i—1
colsp(Wy,) = {Kk_](i_l) (ET(A — 0BT, ci) U K; (ET(A - E)7 T, cl) } (16)
=1

where the vector ¢; is ¢ ifl = 1 and (A — oy E)~Tc otherwise.

Proof: We prove (15) via induction. The result clearly holds for k = 1 since v1 gv1 = (A—a1 E)~1b by choice.
Assume

i—1
colsp(Vi—1) = {Kk_](i_l)_l (A= B) "B (A= i B)" ') | K7 (A= i E) "B, (A= o E)™'b) } (17)
=1
For k > 1, steps (A2.4) and (A2.6) in the k'* iteration of Algorithm 2 yield

k=1
Vi 1k = (A — 0 B) ' By +Z%,k—1vt (18)

t=1

where 91 = b if (A2.4.2) is executed and 9x_1 = v_1 if (A2.4.1) is executed. Under the assumption (17),

Vp_1 = f),(fll + f),(jll where

i—1
i) € Kiegticiy—1 (A= o)) "B (A= i E)7'0)  and o), € | JK; (A= o)™ E, (A= a)7'b). (19)
=1



Thus (18) can be rewritten as
Yep—1tk = (A= B) " B0+ (A— o B) " )+ Z% Kottt (20)

The vector (A— O'Z'E)_lEﬁ,(Ql lies in K _yi—1)((A— o, EY" E,(A—0;E)71b) since one is simply multiplying
some power of (A — 0;F)~1E again by (A — 0; E)~' E. Elsewhere, one must use Lemma 1 of the appendix
to show that (4 — oy B) "1 Eil) | € {K1((A — o E)"VE, (A — o: E)~" ) JiZ) K;((A— 00) "1 E, (A — o)~ 1b)}.
Lastly, Zfz_ll e k—1V € colsp(Vk—1) where colsp(Vj_1) is defined by (17). Combining these last three facts
with (20) implies that Vj satisfies (15). The portion of the proof corresponding to (16) is the dual to that
presented above. 0O

In [29], it is shown that an oblique Krylov projector leads to a Padé approximation about a single
interpolation point. Except for certain technicalities which are handled in Lemmas 2 and 3 of the appendix,
an argument in [29] can be generalized to prove that an oblique projector corresponding to a union of multiple
Krylov subspaces leads to a multi-point Padé approximation. This result is given in the following theorem.

Theorem 2 Let the ji" moments of the original and reduced order systems about the interpolation point o;
be m;(o;) = CT{(A—O' E) 1E} A—o;E)~'b and mj(o;) = CT{ A—o; E 1E}‘7 A—o; E) 1p respectively.
IfA = Ky p+o1Hy g, E= Hi i, I; = Wk (A= E)™ b and éT = cTVkAM where Hyg 11 o, Kgt1 g, Vi1 and
Wit are the results of Algorithm 2 with k = k (i.e., Algorithm 2 is run to completion), then m;(o;) = m;(0o;)
fori=1,2,...;7and j=0,1,2,...,2)—1.

Proof: Corresponding to the two-sided nature of nonsymmetric Lanczos methods, it is helpful to split up
the expression for m;(o;) as

m;(o;) = [cT {(A— (riE)_lE}jl} [{(A — B BV (A - aiE)_lb} (21)

where j; = [2] and j; = [%J If Ty = VW, is a biorthogonal projector, v € colsp(V}) and w € colsp(W),
then v = v and w' T, = w?. Thus (21) can be rewritten as

m; (o) = [chk (W (A- (fiE)_lEVk}jl} [{WkT(A — o E) T BV W (A — (fiE)_lb} (22)

by the properties of the biorthogonal projector and Theorem 1. From (22), m;(c;) is also the the j* moment
about o; of the restriction of (1) by IT;. We must now simply show that this moment of the restricted system
takes on the form specified by m;(o;). Two lemmas from the appendix will be needed to relate the matrix
WkT(A — 0;E)"'EV}, of (22) to the matrices Hy s and Kj x appearing in mj;(o;).

We proceed by concentrating on the right hand side of (22), i.e

(W (A -0 By BV Y W (A — 0 B) Y (23)
= (Wl (A- By BV} W (A -0 E) (A — 1 E)(A— oy E)~'b
= (Wl (A - By BV} W (A — 0 E)" (A — o E)Vi W (A — 01 E)~ 0.
By using (40) of Lemma 2 and recalling that (A — o1 E)~1b = 41 ov1, (23) can be rewritten as
(WA =0 B) BV Y (K — WA — 0:E) " (A — o1 E)rel (o1 — 03)] Tk ke .o
where Jy = [Ki i + Hg k(01 — 0'2')]_1. This most recent expression can be further simplified to
{(WE(A—-0:E)" BV }j2 Ky pJr k€110 (24)
due to (45) in Lemma 3. Applying (41) of Lemma 2 once to (24) yields that (23) is equivalent to
(WA -oB) ' BV}
[Kk,k']k,ka,k + WkT(A — O'Z'E)_l(A — JlE)rkez {I+ (01— O'i)kakayk}] Jk k€1Y1.0
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which can again be further simplified via (45) to

_ jo—1 .
{Wl(A-o,E) IEVk}] Ky p ik Hy p Ik pe1v1,0-

After the repeated use of (41) and (45) in a similar fashion, one finally obtains
(WA= o B) BV Y2 WA = 0:) ' = K g { Tk s Hi ik} Je s W (A — 0y )b

so that ) '
mj(o;) = T Vi AWE (A = 0, BE) VBV Y Ky g { Tk s Hy 1} T kWi (A = 01 E) ™0 (25)

We now concentrate on the left side of (22). Applying (41) of Lemma 2 to (25) yields
_ j1—1 .
mj(o;) = " Vi {WE(A - 0: E)" BV, }] Ky g Je k Hi o+
WkT(A — O'Z'E)_l(A — UlE)rkeg {I + (0’1 — O'i)']k,ka,k} {kakavk}jz ]kkakT(A — 0'1E)_1b.

which becomes
ji—1 . o _
AV AW (A= 0 B) VBV Ky { Tk s He > T W (A= 01 E) ™10

since the residual vector, rg, drops out due to (46). The repeated application of (41) and (46) in an analogous
manner yields

m]'(O'Z') = CTVkI(kvk {kakavk}j ]kkakT(A — 0'1E)_1b. (26)
The right side of (26) is in fact (o) given the definitions of A, E, b, ¢ and Je k= (121 — O'Z'E)_l. a

5 Model reduction with the rational Lanczos algorithm

Using the rational Lanczos method of §4, one can model the 227¢ order problem of §3 with much smaller

values of k& than required by the single-point interpolation about 0. For instance, consider interpolating this
system about the points {.1,1,10,100,1000}. Matching four moments about ¢4 = 100 and two moments
about each of the other four points generates a 6'* order rational interpolant. Figure 3 demonstrates that the
frequency response of the 6% order model is nearly identical to the frequency response of the original, 227¢
order system. Recall that the single point interpolation of §3 did not yield a response with such accuracy
until k grew to be 18. By utilizing multiple interpolation points, the size of k was reduced from approximately
n to a value consistent with the amount of important dynamics in the original system. Of course, selecting
a proper combination of interpolation frequencies, o;, and the number of moments, 27, to be matched about
each o; i1s by no means a trivial matter. In this section, a technique is developed for implementing the
rational Lanczos as a model reduction tool.

For ease of computation and for lack of better application specific information, the 7 interpolation points
are fixed in this paper with a log-linear spacings over a frequency range, wpmin t0 Wpaz, specified by the
user. We refer the reader to [18] for a discussion of point selection in the context of rational interpolation
of the frequency response. The interpolation points are spread over the positive real axis with o1 = wpin
and 07 = Wyqr- The moments generated about each o; tend to yield information pertaining to the original
system’s response in the neighborhood of the frequency o;. One way of justifying this last statement is
to examine the eigenvalues of the reduced-order model in an approach analogous to §3. For a o; between
Wmin and wpmae, those eigenvalues of (1) with imaginary components >> ¢; appear in the spectrum of
(A — 0;E)"'E as a cluster at 0. Those eigenvalues with an imaginary component < o; appear in the
spectrum of (A — 0; E)~'E as a cluster at 1/0;. The remaining eigenvalues of the original system tend to
be well spread in the spectrum of (A — ¢; F) =1 E with those eigenvalues near the imaginary axis on the edge
of the spectrum. By generalizing the Lanczos properties discussed in §3, one can expect that the inclusion
of moments about ¢; leads to a reduced-order model that has some eigenvalues which approximate those of
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Figure 3: Frequency response for Example 1.

(A — AE) in the neighborhood of +ig;. Modeling the eigenvalues in the proximity of +io; tends to in turn
lead to a reduced-order model whose transfer function approximates g(s) for frequencies near o;.

Choosing real interpolation points leads to a rational Lanczos algorithm which avoids complex compu-
tations (assuming the original system (1) is real). However, complex (imaginary) points may be preferred
since one is in fact interested in interpolating g(s) along the imaginary axis. The rational Lanczos algorithm
is not restricted to real ¢;. For example, one might combine Algorithm 2 and the methods of [25] to arrive
at a complex interpolation point, rational Lanczos method. The selection and implementation of complex
interpolation points will be discussed in a forthcoming paper.

Besides placing the interpolation points, one must also be concerned with how many moments are to
be matched about each of these points. In §4, the number of moments about each interpolation point was
fixed a priori at (27). The first j rational Lanczos iterations corresponded to the interpolation point oy, the
next j iterations were associated with o2, etc. Although this approach allowed for a simpler development of
Theorems 1 and 2, it is not preferred for acquiring an acceptable reduced-order model. Rather, we would
hope to choose an interpolation point in the (k + 1)** rational Lanczos iteration which yields in some sense
the greatest improvement between the k" and (k+1)*¢ order models *. One should no longer simply perform
all of the rational Lanczos iterations corresponding a given interpolation point consecutively. To begin to
formalize these statements, consider a somewhat more generalized pair of residuals

r = (A— BT BV — VoW (A= o B) T B o) € colsp(Va), (27)

q,(j) = ET(A — O'iE)_Tw(i) — WkaTET(A — O'Z'E)_Tw(i)7 wl) e colsp(Wy), (28)
where the superscripts (i) are added to explicitly denote the dependence of r,(j) and q,(j) on the choice of
o;. The (k + 1)*" iteration (and also the vectors vg41 and wy41) will be said to correspond to the specific
interpolation point oir,, € {o1,...,00} if vpp1 and wi4q lie parallel to rl(;k+1) and qlilk+1) respectively. Tn
performing the (k + 1)*' iterations (computing vg4; and wg41), one can thus choose from among 7 residual
pairs. This ability to select from among 7 residual pairs per iteration reflects the freedom provided by multiple
interpolation points. The goal is to choose the residual pair in the (k + 1)** iteration so that the (k + 1)
order model is in some sense the best possible improvement over the k*” order model.

+The k'" order reduced-order model is defined in this paper to be the restriction of (1) by the projector VkWE. For the
special case where k = k, (13) holds and thus the reduced-order model can equivalently be defined via (14). It is stressed that
one cannot in general define the reduced-order model in the form of (14) for k < k.
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Motivated by the discussion of the previous paragraph, Algorithm 3 is proposed as a version of the
rational Lanczos algorithm suited for the model reduction problem. Algorithm 3 is a twist on Algorithm 2
which does not require that all of the moments corresponding to a given interpolation point be computed
consecutively. Nor does Algorithm 3 demand that the same number of moments be computed about each
interpolation point. Rather, Algorithm 3 attempts to select from among the 7 interpolation points to acquire
an acceptable reduced-order model. Tts ability to do so 1s demonstrated with an example at the end of this
section. However, we first consider several features of Algorithm 3. The values of v(¥) and w() in (27) and
(28) must be specified. The criterion used to select from among the 7 interpolation points in each iteration
(A3.1) must be developed. And the structure of the k** order model generated by Algorithm 3 must be
presented.

Algorithm 3 Rational Lanczos for model reduction

For i =1 to 7,

Input: r(()i) = f’(()i) =(A-o0;E)"' and q(()i) = zj(()i) =cand 7, = 1;

end
For k =1 to k,
T
(A3.1) set i} to be the value of i = 1,2,...,7 which maximizes cr?|r1(;ll ql(;ll H

(A3.2) %(;2)_1 =1/ TL’E)quSE)l ;

(A3.3) v = (Tiii)l/w,if‘:i)_l) and wy, = sign(f’,(E)IT q,(:a) : (q,(:a %(;2)_1 ;
(A3.4) 7Y = (A — 042 B)~ Fuy and 4% = BT(A — 030 B) =T
(A3.5) for t = 1 to k,

if t > it
e
else
t(,lll}) = 0 and ﬁt(j;}) =0
end
end

(a3.6) /¥ =A% 50wl F and P =g - s
(A3.7) 74+ = k; ' '

it k=1, ¢\ =4\ = ET(A = 0;FE)~Twy; end

9 29— i, o) = 2, T
9 = 0 and )=
{WYL Wl(el)k = {Will—l ',yl(elll E—1 wlzfl(elll}’
end
end
i i i T (*
v = OV d] ) where () =\l g,

Algorithm 3 specifies that the vectors v() and w() in (27) and (28) be the rightmost columns of Vj, and
W} respectively which also correspond to the interpolation point ;. This choice insures that the order-k
model generated by Algorithm 3 1is still a multi-point Padé approximation of the original system. Specifically,
23; moments are matched about o; where j; is the total number of times ¢}, = ¢ in step 1 of Algorithm 3 for
k=1,... k. A proof of this statement will not be provided as it is simply a more tedious version of that
which is already in §4. All of the results developed in §4 can be adapted for Algorithm 3; only the quantity

and ordering of the moments computed about each o; vary from before.
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The prescribed choice of v() and w() also leads to one other interesting point. Note that 7 pairs of
residuals, r,(j) and q,(;), are carried from one iteration to the next. But only one pair of residuals is actually
incorporated into the projector in each iteration (the pair which hopefully leads to the greatest improvement
between the k" and (k + 1)** order models). Only two new residuals are computed in steps (A3.4) through
(A3.6) to replace the pair selected in (A3.1). The other residual pairs can be carried over into subsequent
iterations after cheap updates in step (A3.8). Hence only one pair of residuals (only the solutions to two
linear equations) need be computed per iteration. The other residuals pairs can be carried over from one
iteration to the next because the values of v() and w(") used in computing the i*? residual pair depend on o;
but not k. The vector v} used in r,(f) 1s chosen to be the most recent column of V}, which was also formed
via multiplication by (A — o;E)~1E.

One of the most important components of Algorithm 3 is (A3.1). Based on the 7 values of 0'2»2|r,(QT1q,(Ql ,
an interpolation point is selected for use in the k*” iteration. A justification for this selection criterion arises

out of the following result.

Theorem 3 Let Vka_T be the projector formed via the first k < k iterations of Algorithm 3 and assume o;

was chosen to be the desired interpolation point of (A3.1) in j; of these previous k iterations. If i # 15, then
AR .

q,(j) r,(;) is proportional to the difference between msj,41(0;) = (A - o E) L EYYit YA — 0, F)~ b and

(7T (1)

ko Tk

Maj,41(0i). Otherwise, ¢ 15 proportional to moj., (0'2';) — Mo, (0'2';).
1 1

Proof: The distinction between i = 47 and ¢ # 4] is a minor technicality arising out of the fact that the first

vector in Wy needs to be ¢ rather than E7 (A — O'f{)_TC. A proof is only provided for 7 # 7.
Given the definitions of r,(j) and q,(j) in (27) and (28),

¢ — O (A = 0 B) T YD — w®T (A — 0 B) T EVWT (A — 03 E) " B, (29)

From Theorem 1, it is known that v(") is a linear combination of vectors which serve as a basis for the union
of 7 Krylov subspaces. In particular, because ¢; was chosen to be the interpolation point in j; of the previous
k iterations, v(Y) can be written as 7(") + () where

7@ = O (A — o))" BV (A — 0, B) b € colsp (Vi)
and
i € Kjo1 (A= i BE) ' E (A= o E)"'0) | K, (A— o1 E) " E,(A— 01 E)~"'b) C colsp(Vi).
12
Combining the expression for #(1) with Lemma 1 yields (A — o; E)~'E#() € colsp(Vi) so that VW (A -
JiE)_lEv(i) = VkaT’yI(f)_I(A - Ui)_lEﬁ(i) + (A - JiE)_lEﬁ(i). Although not essential to the proof, an
inspection of Algorithm 3 shows that ’yl(f) = Hle FYtt—1 where 41 = v if ¢f = ¢ and 44,1 = 0

otherwise. Similarly, one can write w() as w(") 4+ ) where w() = ,Bl(f)_l {ET(A — o; E)~T}iie, oM (A -
Ui)_lEVkaT = d}(i)T(A —0;)71E, and ,81(12) = :I:’yl(f). Using all of these facts in (29) yields

¢ = 504 - BT B — 6D (A — 0, By EVWT (A — 03 B) " B
= 4407 (T{(A = o E) T EY AT = VWD (A — 0 E) Y EY (A — 0; E)~1) . (30)

As maji11(0i) = T{(A — o; E) L E}2 (A — 0; E)~1b, the proof is complete if the term 7 {(A —
o B) LEYH VWA — 0y BE) L EYi(A— 0y E)"thin (30) is Mmaj,41(0i). To quickly demonstrate this last
fact, we employ a small trick from [7]. Note that the original system (1) can be rewritten as

(A-— O'Z'E)_lEi‘(t) =(A- O'Z'E)_lAl‘(t) + (A - O'Z'E)_lbu(t) and y(t) = cT:v(t)
so that the restriction of (1) by Vx W/ becomes

WA =0 B) ' EVia(t) = WE(A — i B) YAV (t) + W (A — o E) Ybu(t); (1) = T Viz(t).  (31)

14



Taking the Laplace transform of (31) yields that the transfer function of the order-k model is

is) = TV[W(A= 0By AV — sW(A— o ) EV] T Wik(A— 0 )b
= TV [T+ (05— s)WT (A= 0;B) " EVi] ™ W (A — i)', (32)
The (2j; + 2)™? coefficient of the power series expansion of (32) in terms of (s — a;) is ¢? Vi {W (A —

o B) LBV YW (A — 0; E)~'b which is equal to ¢T{(A — O'Z'E)_lE}j’-I_leWkT{(A — o E) T EYi(A —
o; E) —1p. O
The quantity r,(j)T q,(f) is proportional to the absolute error between the first unmatched moment about

o T
o; of the original system and the reduced-order model of dimension k. In fact, ’yn(z)zq,(;) r,(j)
expression for the absolute error. The use of the absolute moment error appears to be best suited for

1s an exact

imaginary interpolation points and will be reported on elsewhere in the future. In this paper, real shifts are
employed (recall the discussion at the beginning of this section), and an approximation of the relative error
in the moments, O'Z»Zq,(;)Tr,(j), seems to be most useful. The scalar ¢ normalizes the residuals against the
distance from the interpolation point to the iw axis.

Given no other information, it makes little sense to match a moment in the (k + 1)*" iteration if the
error between that moment and the corresponding moment of the order-k model is already small. Rather,
one should logically direct their effort towards a value of o; where the error in the first unmatched moment
(e.g., maj,41(0;) versus maj,41(0;)) is large. After choosing o; as the interpolation point for the (k + 1)
iteration, and performing this iteration, Theorem 2 tells us that this error, maj, 41(03) — 1o, 41(0;), becomes
0. This concludes our justification of step 1 of Algorithm 3. By choosing a ¢; among the 7 possibilities which
maximizes U?réz)qugz)’ one hopes to add as much beneficial information as possible to the reduced-order
model in the (k + 1)*" iteration. The selection at (A3.1) is in some sense locally optimal and is perhaps the
best one can hope for given the limited quantity of information available at the (k + 1)* iteration.

Finally, one should note that the dot-product of the residuals 1s an infamous quantity in the standard
(single interpolation point) non-symmetric Lanczos algorithm. The occurrence of a zero or near zero dot-
product with 7, # 0, g5 # 0 is termed a serious breakdown [22] as it leads to division by zero in the
algorithm. A large amount of effort has been placed towards working around this breakdown in the standard
non-symmetric Lanczos algorithm, e.g., the look-ahead Lanczos method [9, 21]. The serious breakdown itself
is known to be connected with system theory [22]. For example, if rg 4+19%k+1 = 0, the order-k and order-k +1
models of the single-point Lanczos method would share the same minimal realization. This fact is entirely
consistent with Theoremn 3. Rational Lanczos tends to avoid such breakdowns since one works to maximize
a scaled version of r,(j) q,(;). Selecting an interpolation point with the goal of maximizing the amount of
new information included in the order-(k + 1) over the order-k model leads to a fortuitous by-product: a
tendency to naturally avoid breakdowns. Of course given that one can only reasonably access a finite number
of interpolation points < n, pathological cases exist where none of the 7 points yield new information at
the k'" iteration. Look-ahead or additional, new interpolation points would be required in this case. Such a
situation has not yet been encountered in practice and is seemingly unlikely unless the reduced-order model
has actually converged over the specified frequency range.

The last topic to be covered with respect to Algorithm 3 is the structure of the matrices making up the
reduced-order model of dimension k. This reduced-order model again takes the form of (14). Related to (9)
and (11), the k' columns of Hj +1% and Kg ., i are defined for Algorithm 3 through the expression

(ik41) (ik41)

1,k 1,k
(A= 0is E)Vigq . - ’Yyé)@l = EVi . (i, — o)
(2k+1) (2k+1)
V41,5 V41,5
0 0
hk kk
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if i € {77,...,i}. Otherwise,

(ik41) (ik41)

1,k 1,k
(A - Uz’;E)Vk-H (141) = EVk+1 (1) (Uz;+1 - Uz’;) + 67lz
V41,5 V41,5
0 0
N ——
hy, kp

As in §4, a number of the 5 elements making up Hyz and Kjj are zero due to step (A3.5). Figure 4
provides as an example the structure of a simple Hi5 11 matrix constructed by switching back and forth
between interpolation points o1 and o3. Hp j is primarily tridiagonal with nonzero elements only appearing
above the tridiagonal when a change in the interpolation point occurs. These changes in the interpolating
point are indicated by the dashed partitioning of Hys 11 in Figure 4. Using arguments similar to those
provided in §4, one can show that the first nonzero element in the k* column of H 5k is in the k™ row.

The value of k is the index of the next to last column vector of Vj which was constructed using the same
interpolation point as vg41. This next to last behavior is a generalization of the three-term recurrences of
single-point, nonsymmetric Lanczos. In single-point Lanczos, the next to last column vector of Vj is always
Ve—1-

4 1 e oo o .
« o o o o
6 « o o o o

row

10t o o o

o« o

12r 1 .
0 2 4 6 8 10 12

column

Figure 4: Structure of a sample matrix Hq5 1. The first four columns of Hjs 11 correspond to the vectors
vy through vs with interpolation point ¢y. The last three columns of Hq4 11 also correspond to ¢y while the
middle four columns correspond to os.

From the definition of &, the upper bandwidth of Hy, ; can be restricted to 7 if the interpolation points are
perfectly interspersed, i.e., if the interpolation points are chosen so that the difference k& — k is always equal
to 7. Algorithm 2, on the other hand, computes all of its iterations corresponding to a given interpolation
point in order. Hence the strategy of Algorithm 2 leads to off-tridiagonal spikes which always rise to the
first row. In between these two extremes, the interpolation points are chosen with respect to improving the
reduced-order model and structures similar to Figure 4 typically result. It may be advantageous in future
work to achieve shorter recurrsions by compromising between the proposed interpolation selection strategy
(based on Theorem 3) and perfectly interspersed interpolation points.

It must be stressed that the structure of the Hy ; and Kj, ; matrices holds in theory. In practice, the use of
short recurrences in any Lanczos type algorithm will lead to a gradual loss of biorthogonality between Vj, and
Wy, as k increases. Super-tridiagonal elements of Hj g will in turn be non-zero. The loss of biorthogonality
between ¥}, and Wy, is well-known [13] and complete fixes (e.g., complete reorthogonalization) are expensive.
In the following example, ignoring the loss of biorthogonality versus complete reorthogonalization had a
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negligible impact on the results. A more detailed study of the effects of loss of orthogonalization in the
context of model reduction remains an area of current and future work.

As a second example, we consider a 120'” order SISO system which describes the dynamics between
the lens actuator and radial arm position of a portable compact disc player discussed in [31]. The transfer
function of this system is shown as a solid line in Figure 5. Due to physical constraints on the size of
the system’s controller, a model with & < 15 is desired. Rational Lanczos (Algorithm 3), using in order the
15 interpolation points {10°, 103,100, 10%, 10, 10, 10, 10°, 100, 100, 100, 100, 100, 100, 100} yields a frequency
response which is nearly identical to that of the actual system. On the other hand, the difference between
the frequency responses of an order-15 single-point Lanczos model about ¢ = 0 and the original system is
significant for w > 100. The transfer function for a single point model about w,,,, = 10° is also displayed
in Figure 5. The error for this single-point model is large for w < 1000. The convergence of the single-point
models is delayed by the difficulties discussed in §3.

100 U U U T T

50

-50 B
5
=
-100 b
-150 actual system
— — — ~ rational Lanczos, k=15
-200 1-pt Lanczos at w=0, k=15
— — = 1-ptLanczos at w=1e5, k=15
-250 i i i P P PN S
10" 10° 10 10° 10° 10 10°

frequency (w)

Figure 5: Frequency response for Example 2.

6 Modeling error

A knowledge of the error between the original system and reduced-order model is important for several
reasons. In simulation, one needs to know that the response of the reduced-order model is sufficiently close
to that of the original system. In control, one hopes to construct a controller from the reduced-order model
which is robust enough to yield acceptable performance with the actual system. Even in performing model
reduction with rational Lanczos, we would like to make improved choices for future interpolation points
based on the error up to the k*” iteration. In all of these cases, it is desirable to quantify the error in terms
of the differences between the frequency responses of the original system, g(s), and of the reduced-order
model, §(s).

Theorem 4 If §(s) is the transfer function of the reduced-order model defined via (14), then

6 =al) =gt = {72 - )5} s () (33)

s—p
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where b = (A—puE)rg, f(s) = e%(H,;J; — 5[(,;7,;)_1617170 and p is the first interpolation frequency, e.g., ;s
in Algorithm 3.

Proof: From (14) and the definition of the transfer function,

N _ - - -1
9(s5)—g(s) = "(SE— A" — eViKyp (Hep(s —p) — Kig)~ Wi (A—pE)b

T(sE—A)"H A~ uE){(A —nE) 0+ (A= pBE) "' E(s — p) = 1) ViKg j -
.oy -1
(Hy (s —p) — Kii) 61’71,0} (34)
Adapting an argument from [17, Theorem 3.4], recall (12) and rewrite (34) as

e(s)

T(sE—A)" (A - puE) {VIS ~ (Ve Higr f(s — 1) = Vi Kg ) (Hp p(s — p) — K;;,;;)_l} 11,0

= "(sE—A)""(A—uE) {(S — pyrgel (Hpp(s —p) — Kpz) ' 61’71,0}

_ _ . 1
= " (sE— A (A—pE)rgey (Hpp— (s—p) ' Kiz)  e1yio. O

The error expression (33) is in fact identical in form to the rational interpolation error already derived in
[18, Section 3]. However, the rational interpolation algorithm of [18] assumes no more than one moment is
matched about each interpolation frequency o; and does not make use of the Lanczos algorithm. Analogous
to the comments of [18, Section 3], several points should be made concerning the modeling error, £(s). First,
f(s) corresponds to a k-dimensional system which can be evaluated cheaply. Thus the modeling error can
be expressed as a scalar function times the frequency response of the original system except that the input
vector b is replaced by b. As a rough estimate of the error is typically sufficient, one can approximate (33)
as f(1/(s — p)) times some low-order approximation for ¢’ (sE — A)_IE. The restriction of {A, E, b, ¢} by
I, is not a good candidate for this approximation though because the error is orthogonal to the projection,
e.g., WIA—pE)~th=0.

As suggested by the proof of Theorem 4, the modeling error (33) is also related to the residual errors
derived in [17]. Tt is proposed in [17] that the norm of the residual error, b— (sI — A)Vj (s — Hy ;)" Wb,
should be made small when performing model reduction via the nonsymmetric Lanczos method (note that
[17] assumed F = I and an expansion point at infinity so that Hp, ; is a tridiagonal, low-order approximation
for A in that paper). For rational Lanczos and thus rational interpolation, the methods of [17] can easily be
adapted to express the appropriate residual error as

er(s)

(A=pE)"'b = (A= pB) "' B(s — p) = I) Vi K g (Hr (s — 1) — K ) Wi (A—pE)~'b

_ - -1
= rgep (Hpp—(s—p) 'Kggp) eivio

Striving for a small residual error as suggested in [17] can therefore be thought of as approximating £(s)
with &, (s) where ||7g|| is used as an estimate for ¢7(sE — A)~'b.

With error expressions, one should be able to actively adapt the set of interpolation points as k increases
to rapidly address those frequencies where large error still exists. With the standard Lanczos algorithm on
other hand, one can do nothing to promote convergence away from the interpolation point except increase
the value of k. The use of error expressions in conjunction with rational Lanczos is currently being explored.

7 Conclusion

This paper showed that the rational Lanczos method (Algorithm 2) leads to Padé approximants about
multiple interpolation frequencies. The approach of [7] is a special case of the rational Lanczos method where
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only one interpolation point is allowed. The earlier methods of [4, 20, 27] are an even more specialized case
of the rational Lanczos approach where only an interpolation point at zero is permitted. Given multiple
interpolation points, this paper presented an easily computable criterion based on the inner-product 1 g for
choosing among the possibilities. Two examples were provided to indicate why model reduction via a rational
Lanczos method has the potential for significant improvement over existing single-point Lanczos approaches.
Utilizing multiple interpolation points provides the freedom to search out the dominant dynamics of the
system. The convergence of a single-point interpolant, on the other hand, can be slowed by the presence of
non-dominating dynamics.

Linear time-invariant, SISO systems were considered for model reduction. A block rational Lanczos
algorithm has been developed and will be available in a forthcoming paper. However, other issues still
require additional work. Complex interpolation points, the moment error expressions of §5 and the transfer
function error expressions of §6 should be better utilized to increase the effectiveness of the rational Lanczos
method. Approaches for inverting (A — o0;F) are also needed. Sparse matrix factorizations or iterative
techniques must be utilized to avoid large computational costs.

Appendix

Lemma 1 If o and < are two nonidentical interpolation points, then
(A—eBE)'B{(A—<E)'E}V YA -cE) b (35)
{spanf(4— oB) B} JK; (A= <B) B, (A= cE)~'0) } (36)
and
BT (A= oR) T{E" (A~ sB)" "}~ e € {span{ BT (A~ o) T} JK; (T (A= <B) T, )} (37)
for any value of j > 1.
Proof: We prove (36). The key is to note that (A — ¢ E)~! can be rewritten as

(A— O'E)_1 = (A- O'E)_l(A —<E)(A - CE)_1
(A— O'E)_l(A —oE+ (0 —<)E)(A—- CE)_1

which yields
(6 =) A—eEY 'E(A—cE)y ' =(A-cE)' —(A—cE)"L. (38)

Using (38), (36) follows via induction. Tf j = 1, multiplying (38) on the right by b gives
(A—eoE) 'E(A=cE) b= (0 —¢) " H{(A—cE) ' —(A—cE)"'}b

and (36) is satisfied. Next assume that (36) holds for j = 1,...,(7 — 1). Multiplying (38) on the right by
E{(A=<E)"'E} " (A —cE)~1b yields

(c—)(A—oBE) 'E{(A=<E) "BV (A—¢E)" b =
(A—oE) " 'E{A—cE) ' EY 2 (A—¢E) b — {(A—cE)"'EY " (A= cE)""b. (39)

Thus under the assumption that (36) holds for j = j— 1, (39) shows that (36) also holds for j = j. The
induction step and thus (36) hold in general. The proof of (37) is the dual to that provided for (36). O

Lemma 2 Let Wiy1, Vg1, Kpy1x and Hyqq i be the results of Algorithms 2 or 3 with k = k (i.e., the
algorithm is run to completion), then

WA -0 E)" A -1 B)Wi = [Kpp — Wi (A= 0i B) YA — o1 B)rgei (o1 — 0i)] e s (40)
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and
W (A= i B) " EVi Ky g = Ki s Ji o He i + Wi (A= 0:B) " (A — o1 E)reef {1+ Jy xHy g(01 — )} (41)
where Jy g = [Kix + Hy x(01 — i)

Proof: Recalling (12) gives (A — 01 E) ' EVi 41 K416 = Vip1 He41 5. Multiplying both sides of this expres-
sion by (o1 — o) and adding V41 K41 % to both sides yields

[I + (A= E)y ' E(oy — 0’@)] Vi1 Kit1.k = Vier1 [Ki+1.k + Hegr k(o1 — 04)],
which can be rearranged as
- _ -1 -
Vit1 K16 = [I+ (A= E) ' E(oy — 0’@)] Vit1 [Kkg16 + Hegr,x(01 — 03)] - (42)

Multiplying both sides of (42) on the left by WkT, recalling that Vi41Kp41 5 = Vi Kg g, and noting that
VierHey1 0= Ve Hp 1 + rkeg since Hy41  1s upper-Hessenberg yields

Kpp =W [T+ (A= E)" E(or — o))~ {Vi [Ki s + Hip(o1 — 03)] + (01 — o3)rgel }
so that

W [T+ (A= B) "By —03)]” Vi =

Kixdiog + W [T+ (A= 01 E) " E(oy — 05)] " rrel Jui(on — 1), (43)
. _ -1

KipJip +WT [(A—= a1 BV {(A =01 E)+ E(o1 — 0:0)}]” rref Jex(or — i)

Ky pJy g+ WkT(A — o B)TH (A - JlE)rkeg(al — ). (44)

To acquire (41), note that multiplying (12) on the left by W (A — o, E)~! yields

WI(A—=0;E) ' EVi Ky WA =0 E)" Y (A =01 E)Vig1 Hry1k

= WkT(A — O'Z'E)_I(A — o EYWiHy o + WkT(A - O'Z'E)_l(A — UlE)rkeg.

Rewriting WkT(A —0;E) Y (A — 01 E)Vi Hy i as in (43) yields (41). O

Lemma 3 Let Wyy1, Vg1, Kpy1p and Hyy1 i be the results of Algorithm 2 with k = k (i.e., the algorithm
is run to completion), then

WkT(A — O'Z'E)_l(A — 0'1E)7°k {eg(kakavk)j_l.]k’kel} =0 (45)
and -
AV AW (A -0 B) EV,Y T WE(A = 0 E)" YA = 01 E)r = 0 (46)
fori=1,2,...,7, j=1,2,...,7 and where Jy = [Ki x + Hi 1 (01 — O'Z')]_l.
Proof: For the case i = 1, both (45) and (46) are trivial since WkT(A — 0By A— o1 E)ry = WkTrk =0 by
the imposed biorthogonality condition.
For i > 1, (45) can be demonstrated by first noting that the leading (i — 1)7 x (i — 1)7 submatrix

of [Kx x4+ Hi k(o1 — ;)] is upper-Hessenberg while from (11), columns [ = (1 — 1)+ 1,...,ij— 1 of
[I{k‘,k‘ + Hk,k(o'l — O'Z')] are

Y11 Y1,

o, —o1)+e | — o —0;) = €.
Vi1l ( ' 1) ! Yi+1,1 ( ! Z) !
0 0
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Thus [Ki ; + Hy x(c1 — 0;)] takes the form

Xo (47)

S

where X € IR(i_l)jX(i_l)j, X5 € IRkX(T_i)j‘I'l, and I € IRV=D*0=1) ig an identity matrix.
By simple inspection, Ji ; must also take on the general form of (47). Thus for i > 1,

k T . _ .,

_,aze; for (i—1)7<l< i

o Jhs = %’tﬂ oi T (1 > Y : (48)
t=iy Yt€y lor &L~ 1)

because columns (i — 1)7+ 1 through 7 — 1 of Jy x = [Kpx + Hg x(o1 — O'Z')]_l are standard unit vectors.
Since Hy j is upper-Hessenberg,

k
el Hyp = Z ael (49)

t=l—1

for any value of [. Through repeated use of (48) and (49), one obtains
e (JexHy g)? =V rer = Z aref | er=0

for i > 1 and j < 7 so that (45) is shown.
To show (46) for i > 1, we begin by rewriting the left side of (46) as (similar to (44))

TVAWT (A - By BV Y T W {T + (A — i B) " B0 — 01)} i =
(05— o) Vi {Wi(A — s E) ' EVi Y T W (A = i)' B (50)

Now since Vi WkT is a biorthogonal projector with the column spaces of Vi, and W}, defined in Theorem 1,
T {(A — O'Z'E)_IE}]_I VWl =¢7 {(A — O'iE)_lE}]_l for j = 1,2,...,7. Repeated use of this last fact on
(50) yields that the left side of (46) is equivalent to

(i — )" {(A— i E) " EY 1. (51)

But (51) is zero for 1 < j < jsince ¢’ {(A — O'iE)_lE}j € rowsp(W!') and W', =0. O
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