
Linear Algebra and its Applications 415 (2006) 359–372
www.elsevier.com/locate/laa

Singular Riccati equations stabilizing large-scale
systems

K. Gallivan a,∗, X. Rao a, P. Van Dooren b

aFlorida State University, 476 Direc. Science Lib., Tallahassee, FL 32306, USA
bUniversité Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

Received 27 July 2003; accepted 13 December 2004
Available online 26 February 2005

Submitted by D.C. Sorensen

Abstract

In this paper we discuss the convergence of a stabilization algorithm based on a singular
version of the discrete Riccati difference equation. This method is particularly appealing for
large scale linear time invariant dynamical systems since one can nicely exploit the sparsity of
such systems in order to reduce the complexity of the algorithm.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we focus on the stabilization of a discrete-time system

xi+1 = Axi + Bui, (1)

where A and B are n × n and n × p real matrices which are known, and xi and
ui are vectors of dimension n and p respectively. The stabilization of the system
requires the computation of a p × n feedback matrix F such that all eigenvalues of
A − BF are inside the unit circle and therefore the system defined by replacing A
with A − BF is stable. For small and moderate values of n, F can be computed via
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pole placement or the solution of a matrix equation, e.g., Riccati or Lyapunov equa-
tions. The computational requirements for standard algorithms for these approaches,
however, is prohibitive for large values of n. Fortunately, when n is large and p � n,
the system matrix A and/or input matrix B are typically very sparse. Algorithms for
such problems must therefore exploit this structure in order to efficiently compute a
stabilizing feedback.

An important contribution to solving large scale stabilization problems with a few
unstable eigenvalues is Saad’s projection method [8]. In this algorithm, stabilization
or eigenvalue assignment is only imposed on a small invariant subspace that contains
the anti-stable invariant subspace of A. Such an approach is often effective, but it can
have convergence difficulties and the need for a basis of the invariant subspace can
cause excess space requirements for very large systems.

In Saad’s projection method, a left invariant subspace V T of A (with presumably
small dimension), that contains the left anti-stable invariant subspace of A is computed.
In order to exploit the possible sparsity of the matrix A one often chooses to compute
the basis directly by a subspace iteration like method. The low-order projected system
(V TAV, V TB) is then stabilized and the reduced feedback Fv is lifted back to form a
stabilizing feedback F = FvV

T of the original system (A, B). Subspace iteration like
methods as proposed by Saad, generate a sequence of approximations to a particular
invariant subspace V starting from an initial subspace V0. The convergence of such
methods depends on the separation between eigenvalues of A “contained” in V and
the eigenvalues of A not “contained” in V. This is the so-called gap of A with respect
to V and if it is too small, one should try to compute a larger space instead (see [6]).

In this paper, we discuss an efficient alternative that addresses this convergence
difficulty. We also prove that this algorithm converges under very mild conditions
and we show that it avoids the need for an explicitly formed basis of the invariant
subspace.

2. Discrete Riccati equation stabilization

The major results of this paper are based on the discrete-time Riccati equation
(DRE) and the discrete-time Riccati difference equation (DRDE)

P = AT(P − PB(R + BTPB)−1BTP)A + Q, (2)

Pi+1 = AT(Pi − PiB(R + BTPiB)−1BTPi)A + Q, (3)

where R and Q are p × p and n × n non-negative matrices and Q is usually decom-
posed into LQ · LT

Q. The most general results about DRE and DRDE convergence
are given in [2]. It is shown there that under the condition of stabilizability of (A, B),
a stabilizer and non-negative solution Ps of DRE (2) exists and a stabilizing feedback
F can be computed by

F := R̂−1BTPsA, R̂ := (R + BTPsB).
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Whether the solution of DRDE (3) converges to the stabilizing solution of DRE
depends on properties of (AT, LQ) and the initial condition P0. We establish in this
paper that this algorithm converges to the stabilizing solution under more general
conditions than those reported in [2].

The Riccati difference equation (3) has several equivalent formulations. First,
one can rewrite it as the Schur complement (with respect to the (1, 1) block) of the
compound matrix

M =
[
R + BTPiB BTPiA

ATPiB ATPiA + Q

]
. (4)

From this one easily derives a factorized form of the algorithm [4]. One needs to
assume that the Cholesky factorizations of the positive semi-definite matrices R, Q
and Pi , are given:

R :=LR · LT
R, Q :=LQ · LT

Q, Pi :=Si · ST
i . (5)

Using these one obtains trivially the following non-square factorization of M:

M =
[
LR BTSi 0

0 ATSi LQ

]
·



LT
R 0

ST
i B ST

i A

0 LT
Q


 . (6)

The so-called square root form of the Riccati difference iteration is then obtained
from a lower triangular reduction of the left factor ([4]):[

LR BTSi 0
0 ATSi LQ

]
· Ui =

[
L̂i 0 0
K̂i Si+1 0

]
, (7)

where Ui is orthogonal. We will assume in this paper that R > 0, which implies that
R̂i :=R + BPiB

T > 0 as well. As a consequence, we obtain a decomposition of M:

M =
[
L̂i 0
K̂i Si+1

]
.

[
L̂T

i K̂T
i

0 ST
i+1

]
, (8)

from which it follows that the Schur complement with respect to the (1, 1) block
equals Pi+1 = Si+1 · ST

i+1. Notice that this holds even if Pi+1 is not of full rank.
Another formulation of (3) follows from the underlying two-point boundary value

problem [1,10]:[
A 0

−Q In

] [
Xi+1
Yi+1

]
=

[
In BR−1BT

0 AT

] [
Xi

Yi

]
,

where Pi = YiX
−1
i implies Pi = Yi+1X

−1
i+1 and vice versa (this implies of course that

both Xi and Xi+1 must be invertible). We rederive this formulation below in a more
explicit form.
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Lemma 1. If R > 0 the DRDE (3) can be rewritten as follows:[
A 0

−Q In

] [
In

Pi+1

]
=

[
In BR−1BT

0 AT

] [
In

Pi

]
AFi

, (9)

where

AFi
:=A − B · Fi, Fi := R̂−1

i BTPiA, R̂i := R̂ + BTPiB.

Proof. We need to show the following two identities:

A = (I + BR−1BTPi)AFi
, Pi+1 − Q = ATPiAFi

.

Using the definition of the matrices involved, the second equation becomes

Pi+1 = ATPiA − ATPiBFi + Q

= ATPiA − ATPiBR̂−1
i BTPiA + Q,

which is the DRDE. The first equation becomes

A = A + BR−1BTPiA − BFi − BR−1BTPiBFi,

which is equivalent to

0 = B[R−1R̂i − I − R−1BTPiB]Fi

and is clearly an identity. �

3. Convergence of the DRDE

If one wants to study the convergence of the DRDE, the above lemma plays a
crucial role. It is clear from (9) that the generalized eigenvalue problem

λM1 − M2 :=λ

[
A 0

−Q In

]
−

[
In BR−1BT

0 AT

]
(10)

will determine the convergence of the DRDE. For simplicity we assume A to be
invertible here but it can be shown that this assumption does not affect our results.
Iteration (9) is then a subspace iteration with a space of dimension n:[

Xi+1
Yi+1

]
= M−1

1 M2

[
Xi

Yi

]
.

Let {λi : 1�i�2n} be the set of eigenvalues of M−1
1 M2 and assume they are ordered

by decreasing magnitude |λi |. If |λn| is strictly larger than |λn+1| then the above
recurrence is known to converge for almost all initial conditions X0, Y0, to the so-
called dominant invariant subspace of M−1

1 M2. If, on the other hand, |λn| = |λn+1|
then the iteration never converges: there exist fixed points but they correspond to very
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special initial conditions [3]. It turns out that M−1
1 M2 is simplectic and therefore has

a special eigenvalue pattern: the eigenvalues which are not on the unit circle come in
pairs that are mirror images of each other with respect to the unit circle. Therefore the
condition |λn| > |λn+1| is satisfied iff M−1

1 M2 has no eigenvalues on the unit circle.
We make this assumption in the rest of the paper. This is a classical assumption in
the DRDE literature since it is closely linked to the existence of stabilizing solutions
of the corresponding feedback problem [2]. We recall in this context the following
results proved in [2].

Theorem 2. A stabilizing solution Ps of the DRE exists and is unique if and only if
either of the following two conditions is satisfied:

(1) (A, B) is stabilizable and (AT, Q) has no unobservable eigenvalues on the unit
circle,

(2) (A, B) is stabilizable and the pencil λM1 − M2 has no generalized eigenvalues
on the unit circle.

The simplectic structure of the pencil implies that all eigenvalues are then mirror
images of each other with respect to the unit circle, and the following result then holds
([2]).

Theorem 3. Let the simplectic pencil λM1 − M2 have no generalized eigenvalues
on the unit circle. Then there exist invertible matrices S and T such that

λM1 − M2 = T

[
λAF − I 0

0 λI − AT
F

]
S,

where AF is stable and depends on the stabilizing solution Ps as follows:
AF :=A − B · F, F := R̂−1BTPsA, R̂ :=R + BTPsB.

Under these conditions, the power method converges, provided the initial matrix[
In

P0

]
has a “non-degenerate” component in the direction of the invariant subspace

[
In

Ps

]
. When expressing the initial matrix as a linear combination of both invariant

spaces (spanned by the block columns of S−1):[
In

P0

]
= S−1

[
V

W

]
,

the non-degeneracy implies that V must be invertible. Since

V = [
In 0n

]
S

[
In

P0

]
= S11 + S12P0, (11)

it is easy to see that for random initial matrices P0 the matrix V is generically
invertible (i.e. the condition does not hold on a set of matrices P0 of measure 0).
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The DRDE thus almost always converges to the stabilizing solution of the DRE since
the corresponding simplectic pencil λM1 − M2 has no unit circle eigenvalues.

Another way to rewrite the condition that V is invertible is to use the fact that one
can choose

S−1 =
[
In X

Ps Y

]
,

where

[
In

Ps

]
and

[
X

Y

]
span deflating subspaces of λM1 − M2 corresponding to the

generalized eigenvalues outside and inside the unit circle, respectively. Since S is
invertible, V is the Schur complement of

Z :=

 0 −In 0

In In X

P0 Ps Y




and hence V is invertible iff the above matrix is Z is invertible. By taking appropriate
Schur complements of Z this also implies that

V invertible ⇐⇒
[

In X

P0 Y

]
invertible ⇐⇒ Y − P0X invertible. (12)

Notice that if X is invertible, then Ps̄ :=YX−1 is the anti-stabilizing solution of the
algebraic Riccati equation, and then V is invertible iff Ps̄ − P0 is invertible.

We now return to the case where A is singular. If this is the case we consider
a perturbed matrix Aε :=A − εE which has the same Jordan decomposition as A,
except for the zero eigenvalue of A which now gets changed to ε. The assumptions of
Theorem 2 are not affected by this since (i) stabilizability of (Aε, B) and of (A, B)

are equivalent and (ii) (Aε, Q) has no unobservable modes on the unit circle provided
ε is sufficiently small. The stabilizing solution Ps,ε of the corresponding perturbed
DRE is then well-defined. Moreover,

lim
ε→0

Ps,ε = Ps

since the corresponding invariant subspaces[
In

Ps,ε

]
, and

[
In

Ps

]
are well defined and ε-close to each other [3]. By continuity, one then sees that the
invertibility of A is not needed to prove the convergence of the DRDE. In this section
we thus proved the following theorem.

Theorem 4. Let the simplectic pencil λM1 − M2 have no generalized eigenvalues on
the unit circle and let the initial matrix P0 satisfy the non-degeneracy condition rank
(S11 + S12P0) = n. Then the iterates Pi :=YiX

−1
i converge linearly to the stabilizing

solution Ps of the DRDE:
lim

i→∞ Pi = Ps, lim
i→∞ ‖Pi+1 − Ps‖/‖Pi − Ps‖ = c < 1.
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Moreover, the non-degeneracy condition is satisfied for almost all initial conditions
P0.

Remark. The result of the above Theorem 4 relates the assumptions that were needed
to prove convergence of the DRDE so far. In [2] it is shown that under the assump-
tions of Theorem 2, the DRDE converges for any initial matrix P0 which is either
positive definite (i.e. P0 > 0), or larger than the stabilizing solution (i.e. P0 > Ps).
The economical SQR algorithm described in Section 4 requires a singular matrix P0
of rank larger than or equal to Ps . Both assumption required in [2] therefore do not
hold then. This is why the above theorem is so crucial for the rest of the paper.

We already know that the invariant subspace computed at each iteration i con-
verges to the stable invariant subspace we are interested in, but one typically wants
to know this in terms of the matrix Pi as well. Although it is normal to expect linear
convergence here as well, we analyze this in more detail in this section.

The following simple lemma follows by straightforward error analysis of the
inverse of a matrix and can be found in slightly modified form in [9].

Lemma 5. Let A be a square invertible matrix with smallest singular value σmin and
let E be a perturbation of norm δ :=‖E‖2 < σmin. Then

(A + E)−1 = A−1 − A−1EA−1 + �,

� = (A + E)−1EA−1EA−1 = A−1EA−1E(A + E)−1,

‖�‖2 ≈ ‖A−1EA−1EA−1‖2 < δ2/σ 3
min.

Defining the convergence error Ei :=Pi − Ps and applying the above lemma to
the expressions

R̂−1
i = (R + BTPiB)−1,

Pi+1 = AT[Pi − PiBR̂−1
i BTPi]A + Q,

we obtain

R̂−1
i = R−1

i − R−1
i BTEiBR−1

i + O(‖Ei‖2
2)

and

Ei+1 = AT[Ei − EiBR̂−1
i BTPi − PiBR̂−1

i BTEi

+ PiBR̂−1
i BTEiBR̂−1

i BTPi]A + O(‖Ei‖2
2),

= (A − BFi)
TEi(A − BFi) + O(‖Ei‖2

2),

where Fi := R̂−1
i BTPiA.
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Corollary 6. Let AFi
be the closed loop matrix A + BFi and let the error Ei :=

Pi − Ps between the ith iterate of the DRDE and its steady state value Ps be small,
then this error converges linearly and is in first order equal to

Ei+1 = AT
Fi

EiAFi
+ O(‖Ei‖2

2).

Remark. The convergence ratio of Theorem 4 is therefore approximately equal to
ρ(AF )2(the square of the spectral radius of AF ), since AFi

tends to AF . Notice that
this is smaller than 1 since AF is the stabilized closed loop matrix.

4. The singular SQR algorithm

The square root algorithm (SQR) of this paper is based on the DRDE with Q = 0.
In the previous section we showed that the DRDE equation converges under very mild
conditions to the stabilizing solution provided the corresponding pencil λM1 − M2
has no unit circle eigenvalues. For Q = 0 this pencil has a spectrum that is the union
of the spectrum of A and that of A−1 since

λM1 − M2 = λ

[
A 0
0 In

]
−

[
In BR−1BT

0 AT

]
. (13)

Therefore the feedback F generated in the limit moves the unstable eigenvalues of A,
λ to their unit circle mirror images, 1/λ̄ and leaves the stable eigenvalues unchanged.
As a special case of the square root form of DRDE, the SQR stabilization algorithm
(developed in [6]) has the form[

LR BTSi

0 ATSi

]
Ui =

[
L̂i 0
K̂i Si+1

]
, (14)

where Ui is orthogonal and the dimension of Si is n × l, the same as So. Note that
the QR decomposition is computed for a small matrix with size (p + l) × p (the first

row of (7)) and the feedback Fi can be computed from L̂i and K̂i as follows:

Fi = L̂−T
i K̂T

i .

Moreover, if A and B are sparse, the construction of the left factor in the left-hand
side of (14) is cheap as well (see [6]).

The SQR iteration can produce the same sequence of subspaces as Saad’s subspace
iteration method with only an additional economical QR decomposition of Si since
the updating of Si has the form Si+1 = ATSiU

22
i . If S0 is taken to be the same initial

subspace basis as used for Saad’s method, SQR will converge. Moreover convergence
is easier to check as was pointed out in [6].

It is also useful to point out that for Q = 0 the DRDE can be rewritten in a very
compact manner:

Pi+1 = ATPiAFi
, (15)
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or equivalently

Si+1S
T
i+1 = ATSiS

T
i AFi

. (16)

In the limit we also have that Ps satisfies the discrete-time Sylvester equation

Ps = ATPsAF .

Saad’s subspace iteration method essentially performs the QR factorization of
ATVi where Vi is the previously computed orthogonal base:

ATVi = Vi+1Ri+1. (17)

Comparing this with

ATSiU
22
i = Si+1, (18)

it is obvious that both methods compute the same spaces. Because of (17) and (18),

ImV0 = ImS0 ⇒ ImVi = ImSi ∀i,

as long as U22
i and Ri+1 are invertible. Multiplying (16) by the right inverse of ST

i+1
we obtain:

U22
i = ST

i AFi
S+

i+1.

Upon convergence, Si+1 and Si are close to each other, and one shows that ST
i AFi

S+
i+1

is then a matrix whose spectrum is a subset of that of AFi
and hence is stable. The

effect of such a multiplication is to dampen out the components along the smallest
eigenvalues of ST

i AFi
S+

i+1, and the iterates Si may converge to a smaller rank matrix.
This is actually what happens in practice if S0 has dimension larger than the number
of unstable eigenvalues of A.

In order to analyze this we put ourselves in a special coordinate system, where

A =
[
A11 0

0 A22

]
, B =

[
B1
B2

]
,

where A11 is anti-stable and A22 is stable. Such a coordinate system exists since the
condition that the pencil (13) has no eigenvalues on the unit circle also implies that
A has no eigenvalues on the unit circle. Also, the stabilizability of (A, B) implies
then that (A11, B1) is controllable, whereas the controllability of (A22, B2) is not
guaranteed. This representation can be obtained under a state-space transformation
of the system {T −1AT, T −1B} which also transforms all matrices Pi to T TPiT . In
this coordinate system the pencil (13) becomes:

λM1 − M2 = λ




A11 0 0 0
0 A22 0 0
0 0 I 0
0 0 0 I


 −




I 0 W11 W12
0 I W21 W22

0 0 AT
11 0

0 0 0 AT
22


 , (19)

where[
W11 W12
W21 W22

]
:=

[
B1
B2

]
R−1 [

BT
1 BT

2

]
.
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Theorem 7. Let (A, B) be in the coordinate system (19). Then the solution to the
DRE has rank k equal to the dimension of the anti-stable subspace of A. The invariant
subspaces corresponding to the anti-stable and stable generalized eigenvalues are
then respectively spanned by


Ik 0
0 In−k

P11 0
0 0


 ,




Ik 0
0 X22
0 0
0 In−k


 .

The matrices Ps and AF in this coordinate system are given by

Ps :=
[
P11 0
0 0

]
, AF :=

[
A11 − B1R̂

−1BT
1 P11A11 0

−B2R̂
−1BT

1 P11A11 A22

]
,

where R̂ :=R + BT
1 P11B1. Moreover, P11 has rank equal to the number k of unstable

eigenvalues of A.

Proof. Let P11 solve the following DRE of smaller dimension:

P11 = AT
11

(
P11 − P11B1(R + BT

1 P11B1)
−1BT

1 P11

)
A11,

then it is easy to see that Ps given above solves the DRE by verifying that Ps =
ATPsAF . Moreover AF given above is stable since A22 is already stable. Since there
is a unique stabilizing solution to the DRE, Ps must be that solution. One then also
obtains the equality


A11 0 0 0

0 A22 0 0
0 0 I 0
0 0 0 I







I 0
0 I

P11 0
0 0


 =




I 0 W11 W12
0 I W21 W22

0 0 AT
11 0

0 0 0 AT
22







I 0
0 I

P11 0
0 0


AF ,

which proves the result of the anti-stable invariant subspace.
The negative semi-definite matrix X22 := − ∑∞

i=0 Ak
22W22A

Tk

22 obviously solves
the reduced order Sylvester equation:

X22 = A22X22A
T
22 − W22.

Using this it follows that


A11 0 0 0
0 A22 0 0
0 0 I 0
0 0 0 I







I 0
0 X22
0 0
0 I


 ÂT

F =




I 0 W11 W22
0 I W21 W22

0 0 AT
11 0

0 0 0 AT
22







I 0
0 X22
0 0
0 I




for

ÂF =
[
P11 0
0 I

]
AF

[
P −1

11 0
0 I

]
and this proves the result for the stable invariant subspace. �



K. Gallivan et al. / Linear Algebra and its Applications 415 (2006) 359–372 369

This theorem implies that the image ofPs is also the desired anti-stable left invariant
subspace of A, which explains that when S0 has rank larger than the number of
unstable eigenvalues of A, some components of Si have to be damped out in the
iteration. When we overestimate the dimension of the anti-stable invariant subspace,
we therefore nevertheless converge to a subspace of correct dimension. Moreover,
Corollary 6 implies that the spectrum of AF determines the convergence ratio of
Pi towards the stabilizing solution Ps . Convergence will occur provided the initial
matrix P0 satisfies the non-degeneracy condition (11) or (12). A test for checking
whether convergence has occurred was presented in [6], where several numerical
experiments are also reported. But the following lemma says this condition is almost
always satisfied provided the initial condition P0 is of sufficiently high rank.

Theorem 8. Let P0 and Ps be of respective ranks r0 and k. Then

(1) the DRDE converges to Ps only if r0 � k,

(2) the DRDE converges to Ps for almost all P0 with r0 � k.

Proof. The first point trivially follows from the recurrence relation (15). For the
second point we consider the coordinate system (19) since the condition of the lemma
does not depend on it. Write P0 = ŜŜT with ŜT = [ŜT

1 ŜT
2 ] in this coordinate sys-

tem, then the non-degeneracy condition (12) implies that the following matrix must
have full rank:


Ik 0 Ik 0

0 In−k 0 X11

Ŝ1Ŝ
T
1 Ŝ1Ŝ

T
2 0 0

Ŝ2Ŝ
T
1 Ŝ2Ŝ

T
2 0 In−k


 .

One easily checks that this is the case iff the k × k matrix Ŝ1Ŝ
T
1 is invertible, which

holds for almost all matrices P0 of rank r0 > k. �

This result is very reassuring since it says that random initial conditions of suffi-
ciently high rank will yield a convergent sequence!

5. Numerical experiments

The results of this paper give a theoretical explanation of the convergence behav-
ior observed in [6]. The analysis also give a proof that the DRDE converges to a
stabilizing solution of the DRE under milder conditions than those of [2], provided
an asymptotically stabilizing solution exists. The number of iteration steps needed
to obtain a stabilized system will depend on several factors and it does not seem
possible to give upper bounds on this. Results are nevertheless encouraging, in the
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sense that one can expect stabilization in very few steps. We quote an example from
[6] to exemplify this.

The system matrix A is constructed by randomly generating a 100 × 100 matrix
with the MATLAB RANDN function and scaling it to Ã so that the spectral radius of
Ã is 0.9. The 100 × 1 matrix B is generated randomly with RANDN as is a 1 × 100
matrix F̃ . Construct A = Ã + BF̃ . All eigenvalues of A (dots in Fig. 1) are well-
separated from the unit circle and only two are unstable. The norm ‖F̃‖2 = 9.9734
and eigen-condition number of Ã is k2(X, Ã) = 110.8009. So the system (A, B)

should be well-conditioned and easy to stabilize. Fig. 2 show the results of rank 2
SQR. Fig. 3 show the result of rank 3 SQR. P 1/2

0 is randomly generated with RAND.
The spectral radius A − BFi from both rank 2 and rank 3 SQR converges within 7
iterations, which is shown in Figs. 2 and 3. Furthermore, Fig. 1 shows the spectrum
of A − BF5 (the + symbols) converges to a stable configuration in five iterations. We
also see that the only eigenvalues moved are the two unstable ones of A.

This example illustrates that for a well-conditioned stabilization problem where
A has only few unstable eigenvalues and all eigenvalues of A are well-separated
from the unit circle, SQR is very efficient and stabilization is reached within only
a few steps. We can relax the condition that all eigenvalues of A are well-separated
from the unit circle to that all unstable eigenvalues of A are well-separated from all
stable eigenvalues of A. If the unstable eigenvalues of A are well-separated from the
unit circle, fast stabilization with SQR is expected and feedback convergence with
SQR depends on the choice of the rank of P

1/2
0 , with the worst case when some

stable eigenvalues of A are very close to the unit circle and we choose an incorrect
rank of P

1/2
0 (larger than the number of unstable eigenvalues of A). In this case, we

can monitor the eigenvalue convergence of V T
i (A − BFi)Vi to catch the stability of

A − BFi or modify the rank of P
1/2
i during the iteration. If some unstable eigenvalues

Fig. 1. SQR: Spectrum.
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Fig. 2. SQR: A − BFi (◦) and V ′
i
(A − BFi)Vi (+).

Fig. 3. SQR: A − BFi (◦) and V ′
i
(A − BFi)Vi (+).

of A are very close to the unit circle and stable eigenvalues of A are well-separated
from the unit circle, some scaling on A can help to accelerate both stabilization and
feedback convergence (see [5,6] for more details).

6. Conclusion

The results of this paper give a theoretical explanation of the convergence behavior
observed in [6]. The analysis also give a proof that the DRDE converges to a stabilizing
solution of the DRE under milder conditions than those of [2], provided an asymptot-
ically stabilizing solution exists. This paper is an extension of the conference paper
[7] treating the same problem.
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