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ABSTRACT

Linear representations and linear dimension reduction techniques
are very common in signal and image processing. Many such ap-
plications reduce to solving problems of stochastic optimizations
or statistical inferences on the set of all subspaces, i.e. a Grass-
mann manifold. Central to solving them is the computation of an
“exponential” map (for constructing geodesics) and its inverse on a
Grassmannian. Here we suggest efficient techniques for these two
steps and illustrate two applications: (i) For image-based object
recognition, we define and seek an optimal linear representation
using a Metropolis-Hastings type, stochastic search algorithm on
a Grassmann manifold. (ii) For statistical inferences, we illustrate
computation of sample statistics, such as mean and variances, on a
Grassmann manifold.

1. INTRODUCTION

Studies of linear systems is very common in all branches of sci-
ence and engineering. Linear systems are both easier to design and
analyze, and hence, linear approximations of more general sys-
tems are quite popular. High dimensional systems are commonly
studied after undergoing linear dimension reduction. Examples in-
clude image component analysis where images are projected onto
low-dimensional (linear) subspaces, such as principal subspaces
or independent component subspaces, before statistical algorithms
are applied. In signal processing, the problems of transmitter de-
tection and tracking using sensor array data are intimately related
to estimation/tracking of principal subspaces of the observed data.
Such problems, and many others, are now being viewed as those
of optimization or inferences on Grassmann manifolds, the sets of
linear subspaces of a vector space.

Consider the Grassmann manifold of allk-dimensional sub-
spaces ofRn, denoted byGn,k. Several textbooks describe the
structure ofGn,k with a focus on its geometry and calculus. Edel-
man et al. [1] use the differential geometry of Grassman and other
orthogonally constrained manifolds in order to provide gradient
solutions to optimization problems. Srivastava et al. derived the
geodesics and analyzed the associated structure via Lie group the-
ory [2, 3] for addressing the problem of subspace tracking as that
of nonlinear filtering onGn,k. Liu et al. [4] have described a
stochastic gradient technique for solving an optimization problem
onGn,k relating linear representations of images.

In this paper we focus on deriving efficient algorithms for use
in above-mentioned applications. Towards that goal, a convenient
approach is to viewGn,k as the quotient spaceSO(n)/(SO(k) ×
SO(n − k)) whereSO(n) is the Lie group ofn × n real-valued
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rotation matrices. A Lie group is a differentiable manifold with
a group structure.SO(n) forms a group with matrix multiplica-
tion as the group operation. If subspaces by represented by their
orthonormal bases inRn×k, then the equivalence with respect to
the subgroupSO(n − k) is already accounted for and only the
subgroupSO(k) needs to be removed. In other words, for an
orthonormal basisS ∈ R

n×k, all the bases contained in the set
{SU : U ∈ SO(k)}, called theorbit of S, span the same subspace
and should be treated as equivalent. Figure 1 pictorially illustrates
this idea where each subspace, corresponding to an equivalence
class of bases, is denoted by a vertical line.

An advantage of this approach is to utilize well-known results
from Lie group theory in deriving algorithms onSO(n). It is well
known that geodesic paths onSO(n) are given by one-parameter
exponential flows, i.e.t 7→ exp(tB), whereB ∈ R

n×n is a skew-
symmetric matrix. ViewingGn,k as a quotient space ofSO(n)
one can specify geodesics onGn,k as well. Geodesics inSO(n)
are also geodesics inGn,k as long as they are perpendicular to
the orbits generated by the subgroupSO(k) × SO(n − k). This
implies that geodesics inGn,k are given by one-parameter expo-
nential flowst 7→ exp(tB) where skew-symmetricB is further
restricted to be of the form

B =

(
0 AT

−A 0

)
, A ∈ R

(n−k)×k . (1)

Please refer to [3] for details. SuperscriptT denotes the matrix
transpose. The sub-matrixA specifies the direction and the speed
of geodesic flow. In Figure 1, the flows should be horizontal, or
perpendicular to the vertical orbits, to be geodesics inGn,k.

Geodesics are central to solving several problems onGn,k. For
instance, the solution of an optimization problem can be achieved
using a piecewise-geodesic flow driven by a gradient vector field
[1]. Gn,k becomes a metric space using the geodesic lengths as
a metric, or one can define means and covariances of probabil-
ity distributions onGn,k using geodesic paths. There are two key
computations that are needed in evaluating geodesics onGn,k. Let
S0, S1 be two k-dimensional subspaces ofR

n, represented by
the basesS0 and S1, respectively, and letA ∈ R

(n−k)×k be
any matrix. The process generated by the one-parameter flow
Ψ(t) = Q exp(tB)J , whereQ ∈ SO(n) such thatQT S0 = J

andJ =

[
Ik

0n−k,k

]
, is a geodesic flow inGn,k that starts from

S0. Here,B is the skew-symmetric, block-diagonal matrix given
in Eqn. 1.

We outline three specific tasks for which we provide efficient
algorithms. These tasks are required in any problem of optimiza-
tion or statistical inferences onGn,k.

1. Task 1: Given the skew-symmetric and block-diagonal struc-
ture ofB (Eqn. 1), we are interested in a technique for effi-
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Fig. 1. A pictorial illustration of Grassmann manifold as a quo-
tient space.S0 andS1 are bases of two differentk-dimensional
subspaces ofRn. Geodesics inGn,k flow perpendicular to the or-
bits.

cient computation ofΨ(t), for several values oft, without
resorting to the fullO(n3) exponentiation ofB. In Figure
1, this task amounts to computing the horizontal (broken)
line starting fromS0.

2. Task 2: GivenS0 andS1, one is often interested in finding
an appropriate direction matrixA such that geodesic along
that direction, and starting atS0, reachesS1 in unit time .
In Figure 1 the goal is to find the directionB (and henceA)
of geodesic flow from one orbit to another.

3. Task 3: Given S0 andS1, find the geodesic pathΨ that
starts fromS0 and passes through the orbit ofS1 in unit
time. This can be accomplished using the first two tasks but
in cases where we do not need to make explicit the direction
A of the geodesic flow, it can be done more efficiently.

The first computation is for exponentiation while the second one is
for its inverse or “logarithm” onGn,k. In this paper, we utilize the
geometry ofGn,k and some past results from linear algebra, the
CS decomposition in particular, to derive efficient algorithms for
these two computations. Then, we demonstrate these ideas in the
context of two applications, one in image component analysis and
image-based object recognition and other in computing statistics
from sample points onGn,k.

This paper is organized as follows: Section 2 analyzes geodesics
onGn,k and uses standard results from linear algebra to address the
three tasks outlined earlier. Section 4 presents two applications of
these ideas in image analysis and sample statistics.

2. ALGORITHMS FOR EFFICIENT COMPUTATIONS

Let S0 andS1 be two matrices inRn×k whose columns are or-
thogonal bases for thek-dimensional spacesS0 andS1 andQ =
(S0 C0) be ann × n orthogonal completion ofS0. The com-
putation ofQ, given S0, is discussed later in Section 2.1. Let
U1ΓV T

1 be a singular value decomposition (SVD) of thek × k
matrix ST

0 S1. This decomposition is important for several rea-
sons. First, it helps in finding the nearest elements on the orbit of
S1 given any element on the orbit ofS0. For instance, the element
nearest toS0 is S1V1U

T
1 while the element nearest toS0U1V

T
1 is

S1 itself as shown in Figure 1. Secondly, elements ofΓ relate to
the angles of rotation fromS0 to S1.

As Figure 1 suggests, the geodesic connectingS0 andS1 can
be stated in several similar ways depending upon the starting point.
A convenient way is to connect the basesS0 = S0U1 andS1 =
S1V1, the so-calledcanonical bases. The geodesicΨ(t) = Q exp(tB)J
can be re-written in terms of the canonical bases by multiplying on
right byU1:

Ψ(t) = Q exp(tB)QT S̄0

= QUR(t)UT QT S̄0 (2)

whereexp(tB) = UR(t)UT . The matrixU ∈ SO(n) is block

diagonalU =

(
U1 0
0 U2

)
, whereU1 is as defined earlier and

U2 ∈ SO(n − k). The matrixR(t) ∈ R
n×n takes the form:

R(t) =

(
R̃(t) 0

0 In−2k

)
, whereR̃(t) =

(
Γ(t) Σ(t)
−Σ(t) Γ(t)

)
.

The matricesΓ(t), Σ(t) ∈ R
k×k are diagonal and nonnegative

with elementsγi = cos(tθi) andσi = sin(tθi) for 0 ≤ θ1 ≤
· · · ≤ θk ≤ π/2 respectively. Theseθis from the angles of rota-
tion fromS0 toS1. A similar characterization of this geodesic flow
can also be reached using the ideas presented in [5]. Substituting
for R(t) in Eqn. 2, we obtain:

Ψ(t) = QUR(t)UT JU1 = QUR(t)J

= QU

(
Γ(t)
Σ(t)

)
= Q

(
U1Γ(t)

−Ũ2Σ(t)

)
, (3)

whereŨ2 is an(n− k)× k matrix made up of the firstk columns
of U2. In this notation, it can be shown that the sub-matrixA ∈
R

(n−k)×k inside the matrixB (Eqn. 1) has the SVDA = Ũ2ΘUT
1 ,

whereΘ is a diagonal matrix with elements given byθis.
From a practical viewpoint, computation of geodesics inGn,k

must have complexity far below theO(n3) implied by the expres-
sionexp(tB). Rotating from onek-dimensional space or basis to
another can involve at most2k directions since, in the worst case,
all k original directions must be replaced byk new ones. The form
of R̃(t) and the fact thatB can have a rank of at most2k (Eqn. 1)
also support that idea. Therefore, we seek an algorithm that uses
O(nk2) computations for computing geodesics and related terms.
Furthermore, if it is necessary to evaluate the geodesic at many
values oft, the cost per point must be kept toO(nk). Edelman et
al. [1] suggest a form of geodesic that satisfies these computational
constraints when the initial basisΨ(0) is given along with a direc-
tion Ψ̇(0) ∈ R

n×k. We seek computationally efficient algorithms
for use in related situations.

Now we return to the three tasks laid out in the introduction.
In all these cases we are givenS0 and need to determine a comple-
tion Q such thatQT S0 = J . This computation can be performed
in O(nk2) computations as described later in Section 2.1.

Task 1: Here we are given: (i) a basisS0 for the initial subspace
S0 on Gn,k and (ii) a matrixA ∈ R

(n−k) × k that determines
direction of geodesic flow. The goal is to be sample the resulting
geodesic at various values oft includingt = 1.

LetA = Ũ2ΘUT
1 be the compact SVD of the direction matrix.

From this decomposition, we can determineΓ(t) andΣ(t), and
along withŨ2, U1 substitute them back in Eqn. 3 to evaluateΨ(t).



This idea is computationally feasible for evaluating only a small
number of points on the geodesic due to theO(nk2) cost of apply-
ing Q. If the number of points to be evaluated is large, the follow-
ing approach can be utilized. SinceΨ(t) = Q exp(tB)JU1, we
have

Ψ̇(0) = Q

(
0

−A

)
U1 = −C0Ũ2Θ = −DΘ (4)

for D ≡ C0Ũ2. Therefore,

Ψ(t) = S0U1Γ(t) − (C0Ũ2)Σ(t) = S0U1Γ(t) − DΣ(t). (5)

To computeΨ(t), first computeD usingQ, A, Θ, andU1 (Eqn.
4), and then substitute them in Eqn. 5. An important advantage of
using the geodesic between the canonical bases, as opposed to any
other bases, is that the two matricesΓ(t) andΣ(t) are diagonal
only for this representation. In the interest of numerical stability
one can combine the two steps to obtain the second term in Eqn. 5

asΨ̇(0)(Θ−1Σ(t)) more reliably.
The matrixD can be computed first inO(nk2) operations and

then the cost of evaluatingΨ(t) at each value oft follows with
O(nk) operations.

Task 2: Here we are given two bases,S0 andS1, for the initial
and final subspaces on the geodesic, and the goal is to find the
direction matrixA ∈ R

(n−k)×k of the geodesic connecting the
two subspaces.

We first computeQT S1 and then compute its thin CS decom-
position, i.e.,

QT S1 =

(
X
Y

)
=

(
U1 0
0 U2

) 
 Γ(1)

−Σ(1)
0


 V T

1

=

(
U1 0

0 Ũ2

) (
Γ(1)
−Σ(1)

)
V T

1

This decomposition costsO(nk2) and may also be viewed (and
computed) as a generalized SVD [6]. NowA is easily recovered
by determiningΘ via thearcsin or arccos that is numerically re-
liable given the size of the angle, and evaluatingA = Ũ2ΘUT

1 .
A can be also computed via a numerically more sensitive form
A = −Y V1Σ

−1ΘUT
1 . Note that if we haveθi = 0 (or close to

it) then thei-th diagonal element ofΣ−1Θ is set to1 in order to
compute the correct values inA.

Task 3: Here we are given bases,S0 andS1, for the initial and
final spaces on the geodesic, and the goal is to be sampleΨ(t)
for several values oft without explicitly computing the direction
matrixA.

From the SVD ofST
0 S1 = U1ΓV T

1 and Eqn. 2,Ψ(t) =
S0Γ(t)−DΣ(t) whereD is as defined earlier. Clearly, we cannot
afford to compute all of the large matrixD but as before we need
the directionD in order to have a cost pert value ofO(nk). We
do not haveA so may not use the technique of Task 1. We do,
however, haveS1 = S1V1. Evaluating the flow at timet = 1, we
haveS1 = S0Γ(1) − DΣ(1), and

D ≡ −DΣ(1) = S1 − S0Γ(1) .

Now the geodesic flow can be written as:Ψ(t) = S0Γ(t) +
DΩ(t), whereΩ(t) ≡ Σ(1)−1Σ(t). If θi is small we setωi(t) =
sin(tθi)/ sin(θi) ≈ t in order to improve numerical reliability.
The computation ofD requiresO(nk) and the recurring cost is
alsoO(nk).

2.1. Key Computational Steps

The algorithms discussed above achieve the required complexity
of O(nk2) preprocessing withO(nk) cost per time point when
sampling the geodesic curve. Algorithms for the SVD can be im-
plemented reliably [6] and the computation of principal angles and
vectors is addressed by Björck and Golub [7]. Stewart discusses a
reliable algorithm to determine the CS decomposition in [8], and
the work of Paige and Wei [9] provides useful generalizations.

The transformationQ can be computed via Householder re-
flectors with a complexity ofO(nk2) [6]. Its form can be chosen
so that its application to ann × k matrix also requiresO(nk2).
However, we can reduce the complexity of producingQ to O(k3)
while insuring stability if we rotate the basis forS0, i.e.,GT ST

0 =(
LT GT ST

02

)
, whereG ∈ SO(k) and chosen so thatL ∈

R
k×k is triangular with negative diagonal elements. This requires

O(k3) computations and we have

QT = In −
(

L − Ik

S02G

)
(I − L)−1 (

LT − Ik GT ST
02

)
,

ST
1 Q0 =

(
ST

11 ST
12

)
Q0 =

(
ST

1 S0G
T ST

12 + ZT GT ST
02

)

where(L − Ik)Z =
(

GT ST
0 S1 − S11

)
.

3. APPLICATIONS

We present two applications of the efficient algorithms described
earlier. One relates to finding the best linear representation of im-
ages for application in image-based object recognition, while the
second deals with computing means and covariances on Grass-
mann manifolds.
1. Optimal Component Analysis: High dimensionality of ob-
served images implies that the task of recognizing objects (from
images) will generally involve excessive memory storage and com-
putation. It also prohibits effective use of statistical techniques in
image analysis since statistical models on high-dimensional spaces
are both difficult to derive and to analyze. This motivates a search
for representations that can reduce image dimensions or induce
representations that are relatively invariant to the unwanted pertur-
bations. One idea is to project images linearly to some pre-defined
low-dimensional subspace, and use the projected values for ana-
lyzing images. For instance, letS be ann × k orthogonal matrix
denoting a basis of ak-dimensional subspace ofR

n (n >> k), and
let I be an image reshaped into ann × 1 vector. Then, the vector
a(I) = UT I ∈ R

k becomes ak-dimensional representation ofI.
In this setup, several bases including principal component analysis
(PCA) and Fisher discriminant analysis (FDA) have widely been
used. Although they satisfy some optimality criteria, they may not
necessarily be optimal for a specific application at hand.

We are interested in using linear representations of images in
recognition of objects from their images, and defineF (S) to the
recognition performance on a data set resulting from choosingS
for projecting images intoRk (see [4] for details). We seek optimal
subspace:Ŝ = argmaxS∈Gn,k

F (S), and utilize the following
algorithm to solve for it.

Algorithm 1 Stochastic Gradient Search: Let X(0) ∈ Gn,k be
any initial condition. Sett = 0.

1. Calculate the gradient direction matrixA(Xt) of F using
numerical approximations as described in [4].



2. Generatek(n − k) independent realizations,wijs, from
standard normal density. Calculate a candidate valueY
according toΨ(1) starting fromXt in the direction of(A+√

DtW ) (Task 1).

3. ComputeF (Y ), F (Xt), and setdF = F (Y ) − F (Xt).

4. SetXt+1 = Y with probabilitymin{exp(dF/Dt), 1}, else
setXt+1 = Xt.

5. Decrease the temperatureDt to Dt+1, sett = t + 1, and
go to Step 1.

Shown in Figure 2 are four examples ofF (Xt) plotted versus the
time t, each starting from a different initial condition.
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Fig. 2. Plots ofF (Xt) (top) and geodesic distance ofXt from X0

(bottom) versust for different initial conditions. (a)X0 =PCA,
(b)X0 = ICA. For these curves,n = 154 andk = 5.

2. Sample Statistics of Subspaces: Any problem of statistical
inference onGn,k requires computation of sample statistics. In
view of the nonlinearity ofGn,k, it is not straightforward to de-
fine and compute even basic statistics such as means and covari-
ances. There are two types of definitions popularly used : (i) Ex-
trinsic statistics, whereGn,k is embedded in a larger Euclidean
space, statistics are computed in this larger space and then pro-
jected back toGn,k [10]. Non-uniqueness of embedding leads to
non-uniqueness of statistics although the computations are rela-
tively simple here. (ii) Intrinsic statistics, where the Riemannian
structure ofGn,k is used to define uniquely statistics of interest
[11]. The computation of intrinsic mean requires an iterative pro-
cedure with a need for both exponentiation and logarithm in each
step. An algorithm for computing intrinsic mean and covariance
of subspaces with orthonormal basesSi ∈ R

n×k, i = 1, . . . , m
onGn,k is stated next.

Algorithm 2 Setj = 0. Choose some time incrementε ≤ 1
n

.
Choose a pointµ0 ∈ Gn,k as an initial guess of the mean. (For
example, one could just takeµ0 = S1.)

1. For eachi = 1, . . . , m choose the tangent vectorBi ∈
Tµj (Gn,k) which is tangent to the shortest geodesic from
µj to Si, and whose norm is equal to the length of this
shortest geodesic (Task 2). The vectorB̄ =

∑n
i=1 Bi form

the direction matrix for updatingµj .

2. Flow for timeε along the geodesic which starts atµj and
has velocity vector̄B (Task 1). Call the point where you end
up µj+1, i.e. µj+1 = Ψ(ε) starting atµj in the direction
given byB̄.

3. If converged, setµ = µj . Else setj = j +1, and go to Step
1.

4. Similar to Step 1, compute the directionsBis for geodesics
from µ to Sis. Extract the sub-matricesAis fromBis, and
compute their sample covariance matrix after converting
Ais into column vectors.

4. CONCLUSION

We have presented efficient algorithms for two key tasks in solving
problems on Grassmann manifolds: computation of exponential
map for evaluating geodesics, and computation of its inverse for
direction finding. Our current work focuses on numerical stability
of these algorithms in the context of applications in image analysis.
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