On Solving Block Toeplitz Systems Using a Block Schur Algorithm*

Srikanth Thirumalai, Kyle Gallivan and Paul Van Dooren

April 10, 1995

Abstract

This paper presents a block Schur algorithm to obtain a factorization of a symmetric block
Toeplitz matrix. It is inspired by the various block Schur algorithms that have appeared in the
literature but which have not considered the influence of performance tradeoffs on implementation
choices. We develop a version based on block hyperbolic Householder reflectors by adapting the
representation schemes for block Householder reflectors in the literature to the hyperbolic case.
The basic algorithm is applicable to symmetric positive definite Toeplitz matrices. Leading
evidence is presented that, under certain circumstances, performance gains can be obtained by
foregoing some of the Toeplitz structure by using have a block size larger than the actual block
size given by the structure of the matrix. This allows the block algorithm to also be used to factor
efficiently standard symmetric positive definite Toeplitz matrices. An extension to the algorithm
that can be used to solve symmetric Toeplitz systems that are indefinite 1s also presented. If a
singular principal submatrix is encountered during the factorization, the matrix is perturbed and
an approximate factorization is obtained. The error introduced into the solution is then reduced
to acceptable levels by applying iterative refinement. Typically two steps are sufficient.

1 Introduction

In this paper, computing a factorization of a symmetric block Toeplitz matrix is considered. A
matrix 7 € R™*™* is called a block Toeplitz matrix if all blocks 7;; € R™*™ on each diagonal
are identical, i.e.:

T1,1 T1,~2 ce Tl,k—l Tl,k
T~2,1 T1,1 T1,~2 ce Tl,k—l

T=| T3, . : (1)
Tk 1 Tk—l,l N N T171

)

The matrix 7" above is called a symmetric block Toeplitz if 7} ; = T]%FZ» fori,5 =1,...,k. Moreover,
T is symmetric.

Given a symmetric positive definite block Toeplitz matrix, an algorithm which computes a lower
triangular matrix, L € R7™F*7* such that A = LLT is derived. The algorithm is a block version of
the algorithm described in [5] and [4] and is based on ideas in [8] and [2]. In those papers, algorithms
for factoring matrices with small displacement rank using hyperbolic Householder matrices are
presented. We present an extension of the work of Cybenko and Berry [4] to symmetric positive
definite block Toeplitz matrices based on the use of block hyperbolic Householder matrices to

*Available as CSRD Report 1416 and in shortened form in the Proceedings of 1994 TCPP, pp. 274-281.

represent products of hyperbolic Householder reflectors. Block operations are desirable since they
are rich in level-3 BLAS operations [6], [7]. The algorithm can also be used to factor symmetric
positive-definite Toeplitz matrices by foregoing some of the Toeplitz structure in the matrix and
considering it to be a block Toeplitz matrix.

The factorization of symmetric indefinite Toeplitz matrices is handled by a modification to the
block algorithm. If the matrix has singular principal submatrices then the matrix is perturbed
to obtain an approximate factorization. Iterative refinement is then used to refine the estimated
solution. It has been observed that typically two steps of iterative refinement are sufficient to solve
the system.

An outline of this paper is as follows. Section 2 contains derivations of the generator matrices
for block Toeplitz matrices as defined in [8]. This section also reviews hyperbolic Householder
reflectors, introduces some storage and computation efficient ways to construct them and presents
the algorithm to factor symmetric positive definite block Toeplitz matrices. Modifications to the
algorithm for the indefinite case are also discussed. Section 3 discusses several implementation
issues on shared and distributed memory machines Section 4 presents an extension to the Schur
algorithm to solve symmetric Toeplitz systems that are indefinite with singular principal minors.
The implementation issues for this extended algorithm are identical to those for the symmetric
positive definite case that we discuss. Section 5 gives some preliminary results on the Cray-YMP
and outlines the work to be done in the future.

2 The classical Schur algorithm

Let T be an mp X mp symmetric positive definite block Toeplitz matrix with a block size of m x m.

fl 1?‘2 o Tp—l ATp
7 T T Ty
7= 77 ' (2)
Tt E
rorr, T, |
Let Z be a block right shift matrix defined as:
[0 I, 0 0
0 0 I, 0
Z = (3)
: . I,
10 0 0 |

The Schur algorithm is based on the fact that the displacement of a block Toeplitz matrix T,
defined as T — ZTTZ, has a rank of at most 2m [S§].

T, Ty T,]
7 0 0 0
T-7"T7 = 0 0 (4)
T, .0
rr 0 0 0 |

The derivation of the Schur algorithm to compute the Cholesky factorization of a symmetric positive
definite block Toeplitz matrix is outlined below.

Since Ty is a symmetric positive definite matrix, we can find its Cholesky factorization T =
L LT, where Ly is an m x m lower triangular matrix. Let T, = Ll_lfj. It is easy to see that
Ty = ILT. We now define two matrices G1(T) and Go(T) as follows [8], [2]:

T, Ty ... T, 0T T ... T,
0 T\ Ty ... Ty 0 0 T ... Ty
Gry=| i o e s (5)
0 .'. .'. .'. T2 0 .'. .'. T2
o o0 --- 0 Ty 0 0 0 0

from which it follows that

T=[ar(r) i [Fp _?mp] [g;gg] = GTW,, G 6)
where
— GI(T) _ | Imp 0
G = [Go(T)] and Wiy = [0 —I,,] (7)

If we can obtain a transformation matrix U which satisfies the property U TmeU = W,,, such
that UG = R, where R is upper triangular, then we have

T = "W, = GTUTW,,, UG

-][
- RTR, (8)

which gives us the Cholesky factorization of T. The transformation matrix U which satisfies
the property U TmeU = W,,p, is called a hyperbolic Householder transformation. The basic
properties of hyperbolic Householder reflectors are discussed in the next section. Since the matrix G
comprises of two upper triangular block Toeplitz matrix, we show in a later section that considerable
computational savings can be obtained by working with a generator matrix defined using the first

block rows of G7 and G5 as:

(9)

0 Ty - T,y T,

It can also be seen that the above generator matrix Gen is obtained by a factorization of the
displacement of the block Toeplitz matrix into:

T—-72TT7Z = Gen” [I 0] Gen (10)

0 I,

Notice that when T} is not positive definite we can consider the more general decomposition
=11 % LlT7 where 3] is some signature matrix with £1 on diagonal. This will exist provided T}

has nonsingular leading principal submatrices. The blocks 7 are obtained by T} = (LlE)_lfj by
Y and the W,,, matrix becomes

[rLexs o
W= "0 _pex (1)

We then again use hyperbolic Householder transformations (now with respect to the new signature
matrix W,,,) to reduce G to an upper triangular matrix.

3 Hyperbolic Householder transformations

In their paper [4], Cybenko and Berry use hyperbolic Householder transformations to reduce the
generator matrix (G of a scalar Toeplitz matrix to an upper triangular matrix [4]. We extend their
idea to block hyperbolic Householder transformations (required in the block Schur algorithm), using
representations very similar to those proposed in [1] and [10].

Let W be a diagonal matrix whose entries are either +1 or —1. It is easy to verify that the
matrix W satisfies the equalities:

W2=IT and WT =W (12)

Any matrix U which satisfies the equation UTWU = W, is called a W-unitary matrix. It is easy
to see that W-unitary matrices form a multiplicative group, i.e., I is W-unitary, the product of
W-unitary matrices is W-unitary, and inverses of W-unitary matrices are W-unitary. The inverse
of a W-unitary matrix U is readily obtained as:

UWUT =W = UWUTW =T=U"'=wUTw (13)

and hence, ||U|| = ||U!].
Let 2 be a column vector such that 27Wa # 0. A hyperbolic Householder matrix is defined as

follows:
2zal (14)
2TWa®

U, =W

One easily checks [4] and [9] that U, is W-unitary, i.e., UTWU, = W. These transformations
can be used to map one vector to another as long as they have the same hyperbolic norm, i.e., if
a’Wa = b"Wh. In our algorithm, we reduce the generator matrix to an upper triangular matrix
by successively zeroing elements below the diagonal of columns of the G' matrix in (7). Given a
column vector u, we would like to find a hyperbolic Householder matrix U, such that

Uyu = —oe; (15)

where ¢; is a column vector whose 7t element is 1 and other elements are 0 and ¢ is a constant. We
assume here that efWej =1, i.e. the j-th component corresponds to a +1 in W. Also the vectors
u we consider will have positive hyperbolic norm when the matrix T we decompose, is positive
definite. Choosing
o= uTWu (16)
|ujl

then u and oe; have the same hyperbolic norm. If we take = Wu 4 oe;, we obtain

2TWa = (Wu+ 0e;)TW(Wu + oe;) = 2w Wu + ou'le;)

4

and

(Wu+ oe;)(u"Wu+ el u) B
= —oe;

2(T/Vu +oe))(Wu+oe;)Tu Wu—2

Uu=Wu—
Y Y 2TWa 2(uTWu + 6efu)

which shows that U, maps u to —oe;.

4 Block Hyperbolic Householder Representations

If we have to perform a sequence of hyperbolic Householder transformations we could block these
transformations together and then apply this block to the appropriate matrices. This allows us to
use level-3 BLLAS primitives rather than level-2 BILAS operations if we applied the transformations
sequentially. Storage efficient ways to block regular Householder transformations are derived in [1]
and [10]. We extend these methods to hyperbolic Householder transforms.

Suppose U = U, U,_q...UxUy is a product of » n X n hyperbolic Householder matrices. The
matrix U/ can be written in two forms corresponding to the VY form and the YTY T form derived
in [1] and [10]. The two forms of the VY representation differ in the types of primitives they use.

Lemma 4.0.1 Suppose U = Wk—I—VkYkT s a product of k nxn hyperbolic Householder matrices,
—‘21’£+1U(k)
I£+1W:L’k+1

21’k+11’11;+1

then
T
l’k_l_lW T4t ’

where Vi, and Yy, are n X k matrices. If Uppq = W — and zp4q1 =

U = 7, U® = W L v v
where Viyq1 = [WVy 2p11] and Yy = [V zg+1]. We call this the first VY form.

Proof. If r = 1 then, U = U; = W — 22127 /(2T Wz,) and we assign Vi = 2 and ¥} =
—2a1 /2T Wa, in order to have the desired form.

Upr UM = (W - 20ht10h1 JWE+ vy
* x£+1W$k+1 F
: T 7k
= WLy - ZCU];FkaHU(|
2y Wagg

= WML WY + 2iga2i

YT
= W LW, xk+1]l k]
Zk4+1

= W 4Vl .

By construction we obtain that V} is an n X k lower triangular matrix and Y} is an n X k£ matrix
with no sparsity. The computation intensive part in this form is the computation of z;x1q1 and this
requires two matrix vector products because xz_l_l Uk = :L‘{_HWk - (x{_HVk)YkT. The total number
of operations performed at the (k + 1) step is (5nk — 2.5k + 2n — 1.5k). This operation count

does not include the cost to compute ———2——.
:L’k+1W:L’k+1

Lemma 4.0.2 Suppose U = Wk—I—VkYkT s a product of k nxn hyperbolic Householder matrices,

here Vi and Y; b matrices. If Upgr = W — 2285580 qnd 5 = 22y
wnere Ve an L are n X mairices. f k+1 = - m ana Zp41 = m, €n

U = 17 U = W v, vk

where Viy1 = [Ups1 Vi 2py1] and Yiepq = [Vi zg+1]. We call this the second VY form.

Proof. If r = 1 then, U = U; = W — 22127 /(2T Wz,) and we assign Vi = 2 and ¥} =
—2a1 /2T Wa, in order to have the desired form.

T
204174

U UP = (W — ——Eywk L vy
2 Wagp
Qrpqol, Wk
= Wk+1 ‘I‘ Uk+1VkYkT - —;—I—l k1
T Wk
= W L U, VYT + erga 2k
h+1 e
= W' 4 [Up 1 Vi 2p41] k
Zk41
= W L vavl, o.

In this form V} and Y} are both n x k lower triangular matrices. The computation intensive part in
this form is the computation of Vi4; and this requires one matrix vector product and one rank-1

2Ik+1xg+1 _ —22p 41 T :
update because (W — m)vk =W V- (m)kaVk. The total number of operations

performed at the (k+1)% step is (5nk —4.5k? +2n — 1.5k). Notice that this form has more sparsity
and requires fewer operations than the first form but it requires a rank-1 update. On machines
where a matrix-vector product can be performed more efficiently than a rank-1 update the first
form may be better suited even though it requires more operations.

Lemma 4.0.3 Suppose U*) = Wk —|—Y/ng/zngTVV’l“_1 is a product of k n x n hyperbolic Householder

. 2z e
matrices, where Yy, is a n X k matriz and Ty is a k x k matriz. If Upsq = W — i htl
’ + T Wz ’
k41 k41
2 T 2
a = ————=—(2;,,Y:T}) and b = ———=—— then
k41 $g+1wzk+1(k+11k k) k+1 ap Wagg’

U — G UW = W Ly T VR E

where Ypiq1 = [WYr zp41 } and Ty = [T 0]
Gp41 bk-|—1
Proof.
For k = 1 it can be seen that U7 = W + YlTlYlT7 where Y7 = 21 and T} = —Q/x?le.
k1) (W — 2:L‘k+1x£_|_1)(Wk—l—YkaYTWk_l)
x%—l—lka-l-l F
2
= Wt o (-)@l W) + (WY T (VW)
2 W
2 T Tyrrk—1
+ 2 (—————2i VTV W
R 0T

= W b o b (2 WE) + (WY TRV WY 4 apagyq (Y W
T, 0 Y wk-t

apy1 bry al Wy

= W' 4 Vi Tep YL, WF 0.

= WL [WYL 2 | [

In this form Y} is an n X k lower triangular matrix and Ty is a k X k lower triangular matrix. The
computation intensive part of this form is the computation of az41 which requires a matrix-vector
update with an n x k£ matrix and another with a k£ X k& matrix. But in both cases the matrices
have some sparsity. The number of operations performed at the (k + 1)'h step is (3nk — 2k? + n).
Notice that this form requires less computation than the first two forms and also requires about
half the storage for n > k. The only disadvantage is that the number of operations performed
while applying the transformation in this form is more than the other two methods. In some
cases on distributed memory machines this form could be useful because the message volume to
communicate the transformation is about half the previous two forms.
In Section 5, we discuss the three forms in the context of our algorithm.

5 The Factorization Algorithm

The following algorithm is used to reduce matrix G' (7) described in Section 2 to an upper triangular
matrix. This algorithm is essentially the same as the one described in [4] except that we are dealing
with blocks instead of elements. We describe the algorithm using an example as follows. Let

T = GTW,,,G where GG and W,,, are as shown in (17).

T Ty Ts Ty - T,
0|7 T, Ts . T,
0|10 Ty Ty T,—2
0j0o 0 T
a = |1 T’p andW:(Lgk _Omk) (17)
T,
T,

The goal of this algorithm is to reduce G into an upper triangular matrix using block hyperbolic
Householder matrices. Since the first column of the generator is already in the right form we only
use the generator matrix from the second row down. The first row of the upper submatrix of the
generator is the first block row of the triangular factor of the Toeplitz matrix. The first step in this
algorithm therefore involves eliminating the first diagonal in the lower half of the generator matrix
(the boxed T, blocks). If this is done while maintaining the Toeplitz structure of the remaining
portion of the matrix (the submatrix from the third row downwards), we can repeat the process
on the smaller generator till we triangularize G.

Consider the matrix formed by stacking the second block row of the upper submatrix and the
first block row of the lower submatrix as follows

(0T Ty T e Ty
G_(o T, Ts Ty - T, (18)

Let Uy be a block hyperbolic Householder transformation that eliminates 75 using T7. Applying

this to G we get
) 0Ty Ty Ty -+ Tpy
UG = P = 19
! (00 5 Ty - T,) (19)

The matrix formed by stacking the third row of the upper submatrix and the fourth row of
the lower submatrix is just a shifted version of G'. Similarly all matrices constructed by stacking
the corresponding rows in the two halves of the generator matrix are shifted versions of the el
matrix in (18). Hence, all the work that was needed to zero out the diagonal row of T3 in the
lower submatrix was done in the first step. At this stage, the generator matrix G' has a Toeplitz
submatrix in its upper half (from the third row onwards) and another Toeplitz submatrix in its
lower half as shown below

T Ty|Ty Ty --- T,
0 Ty |T, Ty [p—1
0 0|7y Ty . T,
0 0|0 T :
=14 @ (20)
0 0 Ty
0 0|0 O Ty,
0 010 :

The second row of the upper submatrix of GG is the second block row of the triangular factor
of the Toeplitz matrix. The process is then repeated on the two lower right submatrices of the
generator in (20). After p — 2 steps the generator is completely triangularized.

Notice that in addition to being able to work with only two block rows, we can work with the
same two block rows because the reduced generator in the next step has the same lower block row
but the upper block row is shifted by one block to the right. Before this shift is made the upper
block row must be stored in the right place in the triangular factor of the original Toeplitz matrix.
At the first step of the algorithm, this reduced matrix which we refer to as the generator matrix

1S:
(ToT, T LT, _
&m_(o T, Ty ... T,)" (21)

Also, we see that in the first step T} is upper triangular because by construction 7y = LT. The
diagonal elements of T are sequentially used to zero out all the elements in the corresponding
column of the lower block (7%). This implies that at each step of the algorithm the block hyperbolic
Householder matrices are computed using vectors that have one non-zero element in their upper
half and a non-zero lower half. This means that the V. ¥ matrices in the first two forms and the
Y matrix in the third form have more sparsity than usual. This is discussed in more detail in the
next section.

6 Implementation

6.1 Overview

A simple implementation of the algorithm has three phases.

1. Generating the hyperbolic Householder transformation U given the pivot block and the block
below it to be eliminated. For example, consider the matrix

(0T T T Ty
0T, Ts Ty --- T,

T is the pivot block and T3 is the block to be eliminated. The matrix U is a block hyperbolic
Householder transformation of size 2m x 2m, where m is the dimension of each block.

2. Applying the block transformation U to the portion of the matrix to the right of the pivot
block column
0 Ty, T3 Ty --- T,

UG,:U(O T T, T - Tp_l)

(0T T Ty e T
“\o0 0 T3 Ty - T,

and copying the upper block row of the generator to the appropriate location in the triangular
factor of the Toeplitz matrix. If R, is the second block row of the upper triangular factor of
T, then

Ro=(0 Ty T, T - Tpoy) (22)

3. Shifting the first row of blocks one block to the right

o (00 T, T, --- Ty
et N0 0 T3 Ty - T,

Depending on the architecture of the machine and parameters such as the problem size and structure
of the matrix (block size m) variations of this general implementation are chosen. The next three
subsections discuss several implementation issues concerning the three phases.

6.2 Phase 1

In Phase 1, the transformation matrix U is constructed from a sequence of hyperbolic Householder
reflectors using either the VY or the YTV T representation. The sparsity pattern of the pivot block
and the block below it to be zeroed out are shown in the following figure.

The block hyperbolic Householder transformation, U needed to zero out the lower block in
Figure 1, consists of a series of hyperbolic householder transformations Uy, Us, ..., U, applied in
that order. Fach transformation Uy, uses the (k, k) diagonal element of the upper block to zero out
the elements of the k™ column below it. At the k' step, the vector uj as discussed in Section 2
has the form (0,...,0, %%, 0,...,0, U1 ks--.» Uz). All the transformations Uy,..., Uy can be
blocked using either the two VY forms, the YTV form or just combined to form U (%) where

UR = Uy ... Uy = W+ VYT = Wh 4 vy T wh! (23)

V

Figure 1: Sparsity pattern of the pivot block and the block below it.

and

W= [16” _(}m] (24)

The sparsity pattern of U*) is shown in Figure 2. If the block hperbolic Householder transformation
is stored in factored form using the first VY form (requiring 2 matrix vector products), then the
sparsity patterns of V' and Y are shown in Figure 3. If the second form (requiring 1 matrix vector
product and 1 rank-1 update), then the sparsity pattern for V' is the same as that of ¥ in Figure
3 and vice versa. If the YTYT form is chosen, then the sparsity patterns of the corresponding
matrices are shown in Figure 4.

Figure 2: Sparsity pattern of U,

For each representation of the block hyperbolic Householder transformation we have different
computational costs associated with producing the representation scheme and applying the trans-
formation to the remainder of the generator. We refer to the cost associated with the production

10

4 A A
ik K
] ;
P 2m
0 0
= A = A
Vi Y
0 m | 0 m
............... v V USSR B |
< reneenene- > < reneenene- >
k k

Figure 3: Sparsity pattern of Vi and Y} where Uk = wk 4+ VkYkT.

of the block hyperbolic Householder reflector as the “blocking flops” and the cost associated with
the application of the reflector to the remainder of the generator as the “application flops”.

Fach step in the generation of the V, Y or the Y, T matrices requires some BLLAS1 routines such
as dotproducts and triads and some BLAS2 routines such as matrix-vector products and rank-1
updates. If the block size m is very large, then on machines with hierarchical memory like the
Alliant FX/8 or the Cedar multiprocessor a two level blocking scheme [7] can be used where the
hyperbolic Householders are blocked every & steps and the block transformations are applied to the
remaining portion of the pivot block or the entire generator matrix. If the block size is small then
the generation of V, Y or Y, T can be carried through till the m!* step before applying it to the
generator matrix.

Let us consider the case where the individual hyperbolic Householder transformations till the
k' step are combined to produce U®*). Computing z; and —2/(1‘;‘FW1‘]‘) requires (3m + 8) flops.
Forming U requires (m? 4+ 7m + 11) flops. At the j* step (j = 2,...,m), the flops needed to
compute U from U; and UG- are (4m?+4mj+2m+ 5+ 10). Hence, the total flops to compute
Uk =U,...U; are

k
m? 4+ Tm+ 114+ (4m? + 4mj + 2m + j + 10)

Total flops =
71=2
= 4m?*k + 2mk? — 3m? + 4mk + 0.5k% + m + 10.5k
= 6m® + 1.5m* + 11.5m For k = m. (25)

If the VY representation of the block hyperbolic Householder reflector is chosen, then for the
first form, the cost of computing V; and Y; from U; and (I/Vj_1 + Vj_ler{l) is (4my +724+m+9-
J+17/2] = 1) flops. For j = 1, the cost of computing V7 and V; is (4m 4 9) flops. The total cost
of computing Vi and Y}, using the first form is

k
Total flops =~ 4m + 9+ 0.5mk + 2(47”] L2 mA9-j/2)

i=2

11

Lk

! !
0 K

Y, = y j2m = v
: 0
0 m P
k
............... v v

k

Figure 4: Sparsity pattern of Y3, and T} where Uk = wk 4 YkaYkTWk_l.

~ 2mk? +0.333k% 4+ 3.5mk + 0.25k% — m + 9k
~ 2.333m° 4+ 3.75m? + 8m For k = m. (26)

If the VY form computed using 1 matrix vector product and 1 Rank-1 update is chosen, then
the cost to compute V4 and Y; would be (4m +9) and the cost to compute V; and Y; from U; and
(I/V]_1 + Vj_ler{l) is (4mj + 7 4+ m + 8) flops. The total cost of computing Vi, and Y}, using the
first form is

k
Total flops = 4m+9+ Z(4m] +7+0.5m+8)

71=2
= 2mk?® +2.5mk + 0.5k — 0.5m + 8.5k
= 2m>+3m? +8m For k = m. (27)

If the YTYT representation is chosen, the cost to compute Y, and T} from Y;_y and T;_; and
zjis (2mj +2m + 9+ 52— j + [§/2] — 1) flops. The total cost of computing Y} and Ty from
Tq]y ey TE 18

k
Totalflops = 3m+ 8+ Z(Qm] +2m+9 +j2 -7+ 1[7/2] = 1)+ 0.5mk

7=2
~ mk?+0.333k% + 3.5mk + 0.25k2 + 9k —m — 1
~ 1.333m> 4+ 3.75m* + 8m — 1 (28)

From the above calculations of total flops to compute a blocking representation, it can be seen
that the YTYT form is the least expensive. This advantage over the other representations may be
offset by the total flops required to apply the block hyperbolic Householder reflector in this form to
the rest of the generator. Also, it can be seen that the naive blocking scheme of combining all the
reflectors Uy, ..., U is far more expensive than any of the other block representations. The two
VY forms, albeit more expensive, may be used because the cost of applying the transformation to
the rest of the generator in this form is slightly less expensive.

12

It is also possible to apply the hyperbolic Householder transformations sequentially to the
generator matrix (without blocking them into U, V, Y or Y, T'). This avoids the extra computation
involved in blocking the transformations. Application of these transformations to the generator
matrix involves BLLAS2 operations such as matrix-vector products. On machines that have a
memory hierarchy such as the Alliant FX/8 and the Cedar multiprocessor, in some cases, it is
usually beneficial to block the transformations so that application of these block transformations
involves BLLAS3 operations.

6.3 Phase 2

Having outlined the various schemes to block hyperbolic Householder reflectors, we discuss the cost
of applying these block reflectors to the rest of the generator. Consider the generator matrix at the
jt step of the algorithm. If the block Toeplitz matrix has 7 blocks to begin with, then at the j"
step, the remainder of the generator has a size of 2m X (r —j — 1)m. Let p = (r —j — 1). If we
choose a two level blocking strategy till £ where 1 < k < m, then applying a transformation of the
type shown in Figure 2, to the generator requires

Total flops = 2m°p+ 4m*pk + mpk? + mpk
- 7m3p + mzp (29)

If the first VY form is chosen, then the cost of applying the block reflector to a 2m x mp generator
would be

Total flops = 4m>*pk + mpk?® + m?p + 3mpk If k is odd.
4m2pk + mpk?® + 3mpk If k is even.
5m°p 4+ 4m?p If £ =m and m is odd.
= 5m’p+ 3mp If £ = m and m is even. (30)

In the second VY form, the Y matrix has the same sparsity pattern as the V matrix of the first
form and vice versa. The cost of applying the block reflector in this form to the generator requires

Total flops = 4m*pk + mpk?® + m?p + 2mpk If k is odd.
4m2pk + mpk?* + 2mpk If k is even.
5m°p + 3m?p If £ =m and m is odd.
= 5m’p +2m?p If £k = m and m is even. (31)

The cost of applying the block reflector in the YTY T form to the rest of the generator is

Total flops = 4m?pk + mpk? + m?p + 4mpk
= 5mp+ 5m?p (32)

From the above calculations it can be seen that the second VY representation is the best for
most values of k. In terms of operation counts the U matrix is almost always costlier than the VY
representation. For some values of m using U,, instead of V,,,, Y,, might be preferred since the U
matrix is bigger than either V,, or Y, and the operations might be performed at a higher rate. On
some distributed memory machines, if the cost of communicating the block reflector to the other
processors is so high that it offsets the cost of applying the transformation to the generator, we
may choose the YTYT representation.

13

6.4 Phase 3

Phase 3 of each step just involves shifting the upper row of blocks in the generator matrix one
block to the right. On shared memory machines, this phase could be avoided if we apply the
transformation matrices to the right portions of the matrix. This in-place implementation also
requires the U matrix to be split up into 4 quadrants and the V, Y matrices to be split into two
m X m matrices. This not only avoids the shift of the upper block row of the generator matrix but
also allows the sparsity of the transformation matrices to the exploited. In our experiments on the
Cray Y-MP we use this in-place implementation of the algorithm.

On distributed memory machines where portions of the generator are assigned to processors, the
shift operation might include passing the local portions of the generator to a neighboring processor.
In the next subsection we suggest three different data distribution schemes for such machines. These
three schemes have different amounts of data movement during the shift operation. The cost of
communicating with a neighboring processor is an important parameter in deciding how to map
the Schur algorithm to a linear array of processors.

6.5 Performance Tradeoffs

Of course, the choices described above can change as the architectural parameters, cost functions,
and the efficiency of the set of computational primitives available vary. For example, the YTY7T
representation of U requires half the storage of the other methods, so on distributed memory
machines with the columns of the generator matrix distributed in a block-cyclic manner or on any
machine with a significant hierarchy of memory access costs, it would probably be preferred due to
the reduced communication costs and decreased number of operations performed in a less parallel
portion of the algorithm.

The most important tradeoff consideration is the choice of the block size. Fortunately, we have
found that this issue lends itself to a relatively straightforward analysis similar to that described
in [7] when details of the architectures influence on the design details of the BLAS primitives are
available. If this is not the case the analysis can be modified to use an empirical characterization
of the primitives performance. (This approach was taken when we analyzed the effect of block size
choice on our Cray Y-MP implementations.) The key issue that must be decided is whether or not
the block size used by the block Schur algorithm, mg, should be the same as the block size that
defines the block Toeplitz structure of the matrix, m. In the description of the algorithm above no
distinction was made without loss of information. However, if the architecture heavily favors BLAS3
primitives compared to BLAS1 and BLAS2 primitives or if BLAS3 primitives applied to matrices
with larger dimensions have sufficient performance advantage over those applied to matrices with
smaller dimensions!, it may be advantageous to treat a block Toeplitz matrix with block size m
as if it had a block size m; where m < mg. This effectively ignores some of the Toeplitz structure
of the original matrix in an attempt to improve performance. The cost is an approximately linear
increase in the number of operations, i.e., &~ 4mn? vs. ~ 4mn?, where n is the size of the block
Toeplitz matrix. Of course, if m is large enough then the performance of the primitives is sufficient
so that m = mg can be used. In fact, in such a case where n is not overwhelmingly larger than
m it may be necessary to take m; < m in order to allow overlap of the production of U with the
update of the remainder of the generator matrix.

!Such a situation may not only occur due to architectural considerations. Arguments with extreme shapes can
often cause unanticipated performance trends due to a lack of optimization in a particular implementation of a
computational primitive library. This was encountered on the Cray Y-MP with the BLAS3 primitives.

14

The block Schur algorithm has also been implemented on the Cray T3D which is a distributed
memory machine. We consider the machine to be a linear array of processors and distribute the
generator over the processors in a cyclic fashion. We have studied three different data distribution
schemes on the T3D. In the first scheme each processor is assigned one block of the matrix in a
cyclic fashion. If the number of blocks in the block Toeplitz matrix is much larger than the number
of processors, it may be better to assign a few contiguous blocks to one processor and proceed in
a cyclic fashion. This is the second data distribution scheme. If the number of blocks is small and
if the block size m is large another data distribution scheme may be chosen where each block is
split up among a few contiguous processors to increase parallelism. A performance analysis of the
various data distribution schemes is underway to decide the optimal scheme given the problem and
machine parameters such as the block size, the number of blocks, the number of processors and the
rates of computation and communication.

7 Performance analsis on high performance architectures

In the previous section, various schemes to block the hyperbolic Householder transformations were
suggested. The choice of a particular blocking scheme would depend on the architecture of the ma-
chine on which the algorithm is implemented. A detailed performance analysis of this algorithm on
various high performance architectures is required to make optimal implementation choices. Future
work in this area includes performance analysis of the block Schur algorithm on scalar machines,
shared memory multiprocessors such as the Cedar and the Cray C90 and distributed memory mul-
tiprocessors such as the Cray T3D. In this section we present preliminary implementations results
of the block Schur algorithm for symmetric positive definite block Toeplitz matrices on the Cray

T3D.

7.1 Implementation on distributed memory multiprocessors

On parallel machines where the memory is physically distributed across all the processors, distribut-
ing the data across the processors such that there is minimal data movement across processors is
crucial. This is referred to as the data distribution problem. While trying to reduce data move-
ment, care should be taken not to severely reduce the parallelism in the implementation. On most
machines this results in a tradeoff between data communication and parallelism.

For the Schur algorithm, in addition to choosing the right blocking scheme to block the hyper-
bolic Householder transforms, it is important to lay out the generator across the processors in such
a way that data movement during the algorithm is reduced without severely affecting the paral-
lelism. In this subsection we discuss three data distribution schemes and discuss their usefulness
given various problem and block sizes.

Consider a block Toeplitz matrix T of size mp X mp with a block size of m x m. The generator
for this matrix is of size 2m x mp and can be considered to have p block columns that corresponds to
the block structure of the Toeplitz matrix. We refer to size of the block Toeplitz matrix, N = mp,
as the problem size. The data distrubution problem in the implementation of the Schur algorithm
deals with the way in which the generator is distributed across the processors. Let us consider a
distributed memory multiprocessor with N P processors to be a linear array of processors. The
three ways of distributing this generator are

Version 1: Fach block is assigned to a processor in a cyclic manner.

15

Version 2: A group of b adjacent blocks is assigned to a processor.
version 3: FEach block is divided among spread = 1/b adjacent processors.

Figure 5 shows the three data distribution schemes on a 4 processor machine with processing
elements (PEs) Py, P1, P, and Ps. In versions 1 and 2 at any step of the Schur algorithm the
pivot block column of the generator wholly resides in one processor. The pivot block column of the
generator is used to compute a block hyperbolic Householder transform which is then communicated
to the other processors through a broadcast operation. Depending on the cost of a broadcast
operation and the preferred primitives on one processor of the machine an optimal blocking scheme
is chosen. In the following subsections we examine the three data distribution schemes more closely
wth respect to the communication and computation tradeoffs. In all the three versions we assume
a compute/communicate paradigm with explicit barrier synchronization between each phase of the
Schur algorithm.

7.1.1 Version 1

In this version each block column of the generator resides completely within a processor. The block
hyperbolic Householder transformation is computed by the processor that has the pivot block. This
transformation is then broadcast to all processors that have the rest of the generator. If p,csipe 18
the number of block of the rest of the generator (at the i*" step of the Schur algorithm the rest
of the generator has p — i blocks), then k,ctive = [pycive/N P]| is the number of blocks on each
processor. At each step of the Schur algorithm, O(m?) data is broadcast, O(kgetiem®) computation
is done and O(k,etinem?) data is shifted to the right neighbor.

For moderate block sizes this is the preferred data distribution scheme. If m is very small, then
distributing the generator this way would result in a poor compuatation to communication ratio.
This can be bettered by using the second data distribution scheme.

7.1.2 Version 2

In this version b adjacent blocks reside within a processor. The parallelism in the algorithm drops
by a factor of b and the processors run out of work faster than in version 1. It can also be seen that
in this version the amount of data sent to the rigth neighbor during the shift operation also reduces
by a factor of b. resulting in an improved computation to communication ratio. This indicates that
there is a tradeoff between parallelism and communication. This implies that for a combination of
block size m, problem size N and machine size N P, there exists an optimal number of adjacent
blocks b that should be assigned to each processor. A detailed performance analysis of this data
distribution scheme is necesary to obtain this optimal number. For small block sizes, typically
m < 4, this version provides best results.

7.1.3 Version 3

In this version a block is sperad out among 1/b processors. This implies that at each step of the
Schur algorithm a set 1/b processors have a fraction of the pivot block equal to bm columns. If the
block size is large compared to the number of of blocks in the Toeplitz matrix, then each block may
be distributed among 1/b processors to increase the parallelism in the problem. The communication
time in this version is more than version 1 because the number of broadcasts increases by a factor of
1/b. For some block sizes, the increased parallelism resulting from splitting the blocks could offset

16

Version1l: Eachblock isassigned to aprocessor. (cyclicaly)

T1 Tz T3 T4 T5 T6 é T

0 Tp T3 TaTsTo T

Verson2: "p=2" adjacent blocks are assigned to a processor.

Po ; P ; P,

T, T, Ty T4 Ts T6 E T

0 T2§T3 T4§T5 T6§ | T

Version 3: Each block is divided among "spread = 1/b = 2" processors.

PP By Ps By Pp PP

Figure 5: Data distribution schemes for distributed memory machines

17

the increase in communication time. This results again in a tradeoff between commnunication and
parallelism. For a combination of block size m, problem size N and machine size N P, there exists
an optimal number of processors over which each block of the generator should be spread. This
can be obtained by a detailed performance analysis.

7.1.4 Overview of the Cray T3D architecture

The Cray T3D is a massively parallel processor in which the processors are connected in the form
of a 3D Torus. FEach processor is therefore connected to 6 neighbors and has a 300 MB/s data
transfer rate to each neighbor. The processing element in the T3D is the DEC chip 21064 (Alpha)
with the following features - 150 Mflops peak, 150 MHz clock, dual issue superscalar, 64 bit integer
and floating point and 8 KBytes of direct mapped, write through data cache with a cache line of 4
words (1 word = 8 bytes).

The communication library used in the experiments was the Shmem library which is based on
low latency (1us) puts and gets from remote memory. The shmem_put routine uses no buffers. It
writes directly to/from one processors memory to the others without any interference by the other
processor. The broadcast was done using the shmem_broadcast routine.

7.1.5 Experiment 1

Consider a 4096 x 4096 point Toeplitz matrix (m = 1). Let N P = 16, the time to factor the matrix
in seconds using version 1 and 2 are showm in Figure 6

In this example N > N P. Therefore, increasing b initially does not affect the parallelism.
But the communication cost gets significantly reduced.This causes a sharp initial fall in the time
to factor. The best time is obtained at b = 16. When b increases to 32 and 64, the reduction
in parallelism outweighs the reduced communication and execution times start increasing. If the
shift operation on the T3D were slower, then the optimal b would be greater than 16 whereas if
the shift operation were quicker, we would not have seen a significant reduction in execution times
with increasing b.

7.1.6 Experiment 2

Consider a 4096 x 4096 block Toeplitz matrix with m = 8. Let NP = 64.The time to factor the
matrix using all three versions of the data distribution schemes are shown in Figure 7. For b > 1,
version 2 is used . For b < 1, we use version 3 and for b = 1 version 1 is used. It can be seen that
for moderate block sizes if the parallelism is adequate (i.e. N > N P), then version 1 provides the
fastest factorization scheme. On the T3D experiments show that for block sizes around 8 version
1 is the fastest implementation. If the communication time in broadcasts and shifts increases then
the range of block sizes for which version 1 provides the best factorization times increases.

7.1.7 Experiment 3

Consider a 4096 x 4096 block Toeplitz matrix with m = 32. Let NP = 64. The time to factor
the matrix using versions 1 and 3 of the data distribution schemes are shown in Figure 8. For
b < 1, we use version 3 and for b = 1 version 1 is used. The parallelism in the problem is not
very high if we use version 1. It can be seen that increasing the parallelism by increasing the
number of processors over which to distribute each block results in improved performance. The
optimal number of processors over which to distribute each block in this example is 8. Further

18

Time to factor a 4096 X 4096 point Toeplitz matrix
06 T T T T

o
a1
T
I

Time in seconds

| |
0 10 20 30 40 50 60 70
Number of adjacent blocks assigned to each processor

Figure 6: Time to factor a 4096 x 4096 point Toeplitz matrix on a 16 processor T3D with varying
b (number of adjacent blocks assigned to each processor)

19

Time to factor a 4096 x 4096 Toeplitz matrix with block size = 8
085 T T T T T T T T

0.75 i

0.7r NPROC =16 T

Time in seconds

0.65F

0.6

1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Number of adjacent blocks assigned to each processor

0.55 ‘

Figure 7: Time to factor a 4096 x 4096 block Toeplitz matrix with block size m = 8 on a 16
processor T3D with varying b (number of adjacent blocks assigned to each processor)

increase in the number of processors over which to spread each block results in higher broadcast
costs and offsets the increased parallelism. If the cost of broadcast on the T3D were to reduce then
the optimal number of processors over which to distribute a block to increase parallelism would
increase.

The above experiments serve to demonstrate the ranges of block sizes over which the three data
distribution schemes are useful. Based on the problem size, block size and number of processors one
can empirically determine the optimal data distribution scheme. Another interesting observation
on the T3D was that for a fixed problem size and fixed number of processors, the time to factor
the block Toeplitz matrix having a larger block size was lesser than that of a smaller block size.
This was seen for block sizes of 2 and 4 (Figure 9). Since the complexity of the Schur algorithm
increases linearly with increasing block size, the performance of the algorithm would have to be
improved by more than a factor of 2 for the effect to be observed. A likely explanation for this
behavior on the T3D is the following. The amount of data broadcast at each step (the V and Y')
matrices are very small for both block sizes 2 and 4. So the time spent in broadcasts is almost
identical. The cache line of the T3D is 4 words long. Hence the application of the hyperbolic

20

Time to factor a 4096 x 4096 Toeplitz matrix with block size = 32
28 T T T T T T T T T

2.4r

2.2 NPROC = 64

Time in seconds
=
] N
T T

=
[<2]
T

=
~
T

1.2

1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Number of adjacent blocks assigned to each processor

Figure 8: Time to factor a 4096 x 4096 block Toeplitz matrix with block size m = 32 on a 64
processor T3D with varying b (number of adjacent blocks assigned to each processor)

21

Time to factor a a 1024 x 1024 Toeplitz matrix with block sizes 2 and 4
022 T T T T T T

0.2

0.18

Dotted line - block size 4 R
Solid line - block size 2

o
[N
N

Time in seconds
o
[EEY
N

o©
-

0.08

0.06

0.04 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Number of processors

Figure 9: Time to factor a 1024 x 1024 block Toeplitz matrix with block sizes 2 and 4

transformation to the generator is more efficient for a block size of 4 than 2. The increase in the
time spent in the application of V and Y in the case where m = 4 is,therefore, not twice that in
the case where m = 2. Since the number of steps in the Schur algorithm reduce by a factor of
two for a block size of 4 over a block size of 2, the number of times a synchronization primitive
is invoked in the algorithm during the shift operation reduces by a factor of 2. Since the time
spent in synchronizing a small number of processors is insignificant, we see that for small number
of processors m = 4 takes longer than m = 2. But when the number of processors increases, the
time spent in synchronization becomes significant and we see that m = 4 is faster than m = 2.

8 TIterative refinement

The previous sections presented an algorithm to find the factorization of symmetric positive definite
Toeplitz matrices. When the matrix is symmetric but indefinite (without any singular principal
minors) then a similar blocked version of the algorithm of Cybenko and Berry can be implemented.
In the indefinite case, the algorithm involves interchanging rows such that the pivot element always
lies along the diagonal row of the pivot block. This is the extra work that needs to be done in the
indefinite case. If the number of times the interchanging is done is small, then the performance of

22

the algorithm will be similar to the positive definite case.

If the Toeplitz matrix has singular principal minors then the factorization process cannot be
continued. To solve such systems we propose an extension to the algorithm. We introduce a
perturbation in the pivot element (the element that is used to zero out all the other elements)
of the column of generator matrix whose hyperbolic norm is zero. This perturbation allows us to
continue the factorization process but introduces numerical instability in the algorithm. One way to
circumvent the possible numerical instability of the Schur algorithm is to use iterative refinement
on the system of equations. The perturbation technique has been used in [3] for the Levinson
algorithm. They use the approximate factorization as a preconditioner in the conjugate-gradient
algorithm. The iterative refinement technique we propose requires significantly lesser work than
the preconditioned conjugate-gradient algorithm per iteration.

8.1 Extension to the Schur algorithm

Let us consider the system of equations Tz = b, where T is an indefinite symmetric Toeplitz or
Toeplitz matrix with singular principal submatrices. Using the perturbation technique we obtain
an approximate factorization

T+6T=1LDILT (33)
We solve the system of equations to get x4
LDL Tz, =b (34)
and then compute the residual r¢
rn=-Tzy1+b (35)
Using the correction term Axq obtained from
LDLTAzy =1 (36)
we improve the estimated solution by
T =21+ Azq (37)

The algorithm then becomes,

Construct LDLT =T + 6T using the extended Schur algorithm.
Solve LDL 2y = b, and set ry = —Txq + b.
fori=1,...
~ Solve LDILTAz; = r;
if [|Ax;|| < tol ||x;|| then stop

else
T = 2 + Ay
rig1 = —T2 41 +0b
endif

endfor

From the error analysis of [11] we know that the computed quantities T;, AZ; and 7;, satisfy
the following identities

7, =TT, +b+ 67, = r;,+ 6T; with H(STZH < EZHT” ”fl” (38)

23

(LDLT +0T)AZ; =T; with 16T:\ < mllZ))* |1 D (39)

where €;, 7; are of the order of the machine precision of the computer. From these equations we
obtain

(TH 6T+ 86T)AT; =b—Tz; + 67, (40)
and after some rewriting
rig1 = b— T(fi + Afz) = (5T + 5T2')Afi — 0T
oralso 7y = (6T + §T)(T + 8T 4 6T;) " (r; + 67;) — 67
= AT(T + AT;) 'r; = T(T + AT;) 167,

where the terms 67T and 6T; which are typically of the same order have been grouped together in
AT;. Defining M; = AT; T~ we have

Tiy1 = Mi(I—I— Mi)_lm — (I—I— Mi)_lﬁﬂ' (41)
If we can now obtain that max; [|[AT; T7!|| = v < 1 then the above equation is a difference equation
that will converge linearly, with a factor 5 = v(1 —), to a steady state value of

1 1 1 €max
7ol & =2 == [107maxl| = =516 maxll < Tl (42)
1—-p1—7 1—2 1—2y

Since our assumption is that + is small, this final residual is about what one can expect from a
stable algorithm. If we obtain that ¥ = ¥/ then the number of iteration steps to get “convergence”
to this result would be k.

8.2 Approximate decomposition

As shown above it is important to bound ||§7 T7!|| in the construction of the factorization. Since
LDL" is only an approximate decomposition of T (but an exact decomposition of T+ ¢T), we have
the freedom to perturb T so as to obtain a better bound for 7 T~'. In this subsection we show
how to obtain this by selective perturbations introduced in the Schur algorithm. Similar ideas have
independently been developed for the Levinson algorithm by Concus and Saylor [3].

At the i step of the Schur algorithm we apply a block hyperbolic Householder transformation
U; to the generator G'(i) to get G'(¢+ 1) i.e., U;G'(i) = G'(i+ 1) The corresponding decomposition
for the Toeplitz matrix is

G1(7)
G(7)

T=[6T06) G;f(i)}f]iwﬁi[Gz(i-l-l)]’ (43)

] = [G?<i+1>G§<i+1>}W[

where U; is essentially a block arrangement of identity matrices and U; blocks. Hence,
[1Tilla = |Uill2 - and ([T 12 = 172 (44)

If we now perturb the generator matrix G’(¢) by a perturbation of norm 6[|G/(1)||2 then the equiv-

alent perturbation [|AG(1)|| of G/(1) is bounded by

[AG) < 81T]2 (T L IGA)

24

and that of T'is proportional to &[|U; ||z -« - ||UZY [|2[|T|]- In other words, the norms of the inverses
of the block transformations performed thus far, act as a growth factor in the back-transformations
of the perturbation to the original matrix. Another factor that we have to be concerned about is
that the transformation U; for which the é perturbation was done will have a norm of approximately
1/é and the norm of the next generator G/(¢4 1) will be increased by that amount. Numerical errors
in subsequent steps will thus be proportional to this value and when transforming these back to
the original matrix T we find again that we have to keep

el - - Vs

bounded. Experience has shown that for each perturbation ¢ performed at a certain step 7, there will
be two block transformations of norm approximately 1/6. The total error due to one perturbation
is:

AT e
=5+ = 4
R (45)

We choose 6 so as to minimize the above expression. The value of § that minimizes the above
expression is v/2¢ or § ~ /e. This gives us:

v = ATTT|
< (AT
< ”AT”cond(T)
17l

Q

&+ 6% (If T is well conditioned)
Ve (If we set § = /e) (46)

The subsequent number of steps of iterative refinement would be 3. The above analysis holds true
if we perturb the generator matrix just once.

Let us consider the case when we need to perturb twice. Let §; and 65 be the two perturbations
at steps 7 and j respectively. The total perturbation to the original Toeplitz matrix can be expected
to be of the following order

Q

1671l Co OO+ S 10T 1T

Q

<m+%mm (47)

The numerical error due to the block transformations of norms approximately equal to 1/67 and
1/63 is

Numericalerrors = ¢€||Uq||...||Un=1||[|T]|
€
6%6%
The total error due to the two factors is
IATY & e
— =9 . - 49
TR 1)

25

The above expression is minimized by choosing é; = /€ and §; = /e. This means that we
would require 9 iterations to get to machine precision. It is impossible to know ahead of time how
many perturbations one requires to carry on with the Schur algorithm. If, upon performing one
perturbation of /e we see during the Schur algorithm that another perturbation is needed, we
would have to backtrack to the first perturbation and change the value of §; from /e to /e. This
is usually very wasteful of computation. Also, if the number of times the generator needs to be
perturbed increases, the accuracy is lost very quickly and we might have to look for other ways
to handle such cases. From our experiments with Toeplitz matrices, we have observed that even
for Toeplitz matrices with several singular minors one perturbation is sufficient. We haven’t been
able to construct cases requiring more than one perturbation. So, in practice, it might be safe to
assume that we need to perturb the generator only once and the above analysis holds good.

We now present an example of a symmetric Toeplitz matrix with a singular principal minor to
substantiate our analysis. Consider a symmetric Toeplitz matrix with the first row defined as

T(1,1:6) = (1.0000 1.0000 0.5297 0.6711 0.0077 0.3834) (50)

1 .
) . The generator at the second step is

This matrix has the singular principal minor (11

G = 0.0000 1.0000 1.0000 0.5297 0.6711 0.0077
(2) =\ 0.0000 1.0000 0.5297 0.6711 0.0077 0.3834

It can be seen that the hyperbolic norm of the pivot column (1.0000 1.0000)7 is zero and hence
we introduce a perturbation of v/10=16 ~ 107> so that the perturbed generator becomes

qperturbed _ 0.0000 —1.0000049999875 —1.0000 —-0.5297 —-0.6711 —-0.0077
@) ~\ 0.0000 —1.0000000000000 —0.5297 —0.6711 —0.0077 —0.3834

We then continue the algorithm with this modified generator. The hyperbolic Householder trans-
formation computed using the column (—1.0000049999875 — 1) is

o — —100633.458695874 100316.727766335
) = 100316.727766335 —100001.000001565

which has a norm of 1/é. The transformation U4y also has a norm of 1/é. The norm of §T. T for
this example is 2.8753¢ — 05. If we consider 2 = (1 1 11 1 1)7 then

T
b:(3.5919 4.2085 4.7305 4.7305 4.2085 3.5919) .

We solve for z; from LDLT2y = b and we find [|(z — 21)|| = 3.6375¢ — 05. Using our iteration
scheme, we find that after one step of iterative refinement, ||(z — 23)|| is 6.9982¢ — 10 and after the
second step of iterative refinement we have ||(z — 23)|| = 1.5877e — 14 which is approximately equal
to the machine precision.

9 Experimental results and future work

Preliminary versions of the algorithm have been implemented on the Cray Y-MP using four pro-
cessors. Fig. 10 shows a plot of the performance of the algorithm for different block sizes with

26

increasing problem sizes. It can be seen that for large problem sizes the performance improvement
as my increases is superlinear implying that using a block size different from the structural block size
m may be warranted. As was noted earlier, this is largely due to the less than optimal performance
observed for the BLAS3 primitives on the Cray Y-MP when applied to a matrix product involving
a relatively small square matrix and a short and wide matrix. The performance trends observed
were predictable by a block size analysis based on an empirical characterization of the performance
of the BLAS3 primitives on products with the shapes of interest. The performance trends for the
algorithm with the modification for indefinite systems are similar when there an excessive number
of perturbations are not required.

Performance studies and block size analyses of this algorithm on the Cray T3D are in progress.
Three different data distribution schemes varying in the distribution of the generator over the
processors are being studied. An analysis of the computation and communication tradeoffs for a
given problem size (defined by block size and size of the Toeplitz matrix) and machine size (defined
by the number of processors) decides which of the three schemes is best suited.

References

[1] C. Bischof and C. Van Loan. The wy representation for products of householder matrices.
STAM J. Sci. Stat. Comput., 8:32-s13, 1987.

[2] J. Chun and Thomas Kailath. Generalized displacement structure for block toeplitz, toeplitz
block and toeplitz derived matrices. Informations Systems Lab., Stanford University, CA,
1988.

[3] Paul Concus and Paul Saylor. A modified direct preconditioner for indefinite symmetric toeplitz
systems. Department of Computer Science, University of Illinois at Urbana Champaign.

[4] G. Cybenko and M. Berry. Hyperbolic householder algorithms for factoring structured matri-
ces. STAM J. Matriz Anal. Appl, 11:499-520, October 1990.

[5] J.-M. Delosme and I. Ipsen. Parallel solution of symmetric positive definite systems with
hyperbolic rotations. Linear Algebra Appl., 77:75-111, 1986.

[6] J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A proposal for a set of level 3 basic linear
algebra subprograms. ACM SIGNUM Newsletter, 22(3):2-14, 1987.

[7] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh. Parallel algorithms for dense linear algebra
computations. STAM Review, 32:54-135, 1990.

[8] Thomas Kailath, Sun-Yuan Kung, and Martin Morf. Displacement ranks of matrices and linear
equations. Journal of Mathematical Analysis and Applications, 68:395-407, 1979.

[9] Charles M. Rader and Allan O. Steinhardt. Hyperbolic householder transforms. STAM .J.
Matriz Anal. Appl., 9:269-290, April 1988.

[10] Robert Schreiber and Charles Van Loan. A storage-efficient wy representation for products of
householder transformations. SIAM J. Sci. Stat. Comput., 10(1):53-57, January 1989.

[11] J. H. Wilkinson. The Algebraic Figenvalue Problem. Oxford University Press, Oxford, England,
1965.

27

600

500

block size = 32

400 N
(2]
Q.
5300 |
=
2001 o block size = 16 |
1001 N
4 it
S block size = 8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Size of the Toeplitz matrix

Figure 10: Performance of the block Schur algorithm for factoring symmetric positive definite block
Toeplitz matrices with different block sizes on the Cray-YMP.

10 Acknowledgements

We would like to thank Michael Stewart for some useful suggestions on section 4 of this paper.
Srikanth Thirumalai and Paul Van Dooren were partially supported by DARPA (Grant COM-
NIST-UNIVMINN). Kyle Gallivan was supported by the National Science Foundation under grant
number CCR-9120105.

28

