A BLOCK TOEPLITZ LOOK-AHEAD SCHUR ALGORITHM

KYLE GALLIVAN
Coordinated Science Laboratory
University of Illinois

Urbana, 1. USA

gallivan@csrd.viuc.edu

SRIKANTH THIRUMALAI
Coordinated Science Laboratory
University of Illinois

Urbana, 1. USA

srikanth@csrd. uiuc.edu

PAUL VAN DOOREN

Cesame

Université Catholique de Louvain
Louvain-la-Neuve

Belgium
vandooren@anma.ucl.ac.be

ABSTRACT. This paper gives a look-ahead Schur algorithm for finding the symmetric
factorization of a Hermitian block Toeplitz matrix. The method is based on matrix oper-
ations and does not require any relations with orthogonal polynomials. The simplicity of
the matrix based approach ought to shed new light on other issues such as parallelism and
numerical stability.
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Introduction

The Schur algorithm yields a method to compute the symmetric decomposition

T =U"DU, U upper-triangular (1)



of an (n+ 1) x (n+ 1) Hermitian Toeplitz matrix

to 4 tn
t t by

T — 1 0 n—1 (2)
Zn Zn—l tO

in O(n?) operations [8]. This algorithm actually derives this decomposition for all leading
principal submatrices as well via a simple vector recurrence, which explains the low com-
plexity of the method. Another well known algorithm for the same problem is the Levinson
algorithm [10]. Yet, the Schur algorithm has gained a lot of popularity over the Levinson
algorithm for various reasons : (i) it is known to be better suited for fine grain parallelism
(9], (ii) it constructs the factor U in (1) directly, rather than its inverse as in the Levinson
algorithm [8], (iii) it exploits better matrix properties such as bandedness and low rank [5]
and (iv) it has been shown to have better numerical properties for positive definite 7" [1].

Both algorithms, though, are known to be potentially unstable when T is indefinite.
This is the case when the leading principal minors of T" are (nearly) singular, since both
algorithms implicitly use these submatrices in their recurrence. Remedies for this were
proposed for the Schur algorithm [11] and for the Levinson algorithm [2] and were essentially
based on a look-ahead technique, whereby one “jumps” over the singular submatrices.
Although this requires a slight increase in complexity, this is in general quite an effective
technique. These techniques are linked to the theory of orthogonal polynomials and can
become quite involved in the case of look-ahead [6], [3]. In this paper we present a matrix
based derivation of such a look-ahead method and give the algorithm directly for block
Toeplitz matrices. This extension is quite easy because of the use of matrix manipulations
rather than orthogonal polynomials.

1 Schur complements and displacement rank

Let T be a general Hermitian, block Toeplitz matrix of dimension N x N and block size
m X m, i.e.

T, T, --- T,
T = T} T T’“jl , To=T;, N=mx(r+1). (3)
T T, ... T,

The purpose here is to find a factorization as in (1) where D is diagonal or block diagonal
and U is upper triangular or upper block triangular. Schur type algorithms are based on
the concept of displacement, which is defined as follows. Choose Z to be the block right



shift matrix of the same dimension :
0,, In

Iy,
0,y

The displacement rank of the matrix T is then defined as :

a=rank (T —-2Z2"TZ )< 2m, (5)
and the displacement of the matrix T can therefore be factored as :

T—-7"TZ =GXG (6)

where the o X o matrix ¥ equals

z:lfp ] g < m. (7)
_Iq

This factorization can be automatically written for block Toeplitz matrices. For arbitrary
matrices satisfying (6) with @ < N, the factorization can be obtained from the Bunch
Kaufman decomposition or also from the eigen decomposition of T'— Z*T 7. Matrices with
such a low displacement rank are said to be quasi block Toeplitz. The complexity of this
preliminary decomposition is normally O(aN?).

It is well known that factorizations of the type (1) are working on Schur complements of
the original matrix at each stage of their recurrence. We now derive updating formulas for
the Schur complement of a matrix T" with low displacement rank, and show that it also has
low displacement rank. This part is related to the work of [7] as was pointed out to us, but
is not contained in it. Partition 7" and Z conformally as :

Tll T12 le ZlZ
T = . 7= , 8
[ T21 T22 ] [ 0 ZZZ ] ( )

where T, and 7Z;; are of dimension mk x mk (a multiple of the block size) and T, is
assumed to be invertible (this is always possible by choosing k large enough). Define

I|-X
X=T;'Ty,, X =T,T7, U= [ 7 ] \ (9)
then it follows that
T
U*TU = [ 1 7 ] v Teo=To — T3, T5'Tys (10)

where T,. is the Schur complement of 7" with respect to Ty;. Applying U*( . )U to (6)
yields :

Ut — (U720 UTU (U_lZU) = U"G*XGU . (11)
Notice that

_ Zn | 2 . -X
UlZU:[ 1 ZZ] lez[I\X}ZlT]. (12)



Using (10) and (12) we can reduce (11) to :

Ti | 71 | Ti | Zu | Zhs B
— | = =U'G"XGU . 13
[ ‘ Tsc ] [ Zrz ‘ ZZZ ] [ ‘ Tsc ] [ ‘ ZZZ ( )

Equating the (1,2) and (2, 2) positions in the above equation we have
. -X
M = ZiTuZun+| 1]0]G5G lT] =0,

Afrsc = Tsc - Z;ZTSCZZZ = Zr2T11212 —I' [ _X*

I|asa [#] . (14)

Substituting for 212 from (12) we can further simplify M and AT, to :

M = [I\O}{Z*l%]TH[I\X}Z—FG*EG}[#]:0, (15)

I}{Z* [%]TH[I\X}Z—FG*EG}l#] . (16)

Substituting for X in the matrix in the middle of the above equations we get

AT, = [—X*

*

Tl 1
*

Tl 2

T; o [ [ 7|7 |2
7= 11 X 11 11| 12 . 1
7| | s s "
This expression can now be further simplified to prove that the rank of AT, is at most a.
In order to prove this we first need the following lemma.

W= Z*l ]Tﬁl[Tn\le}JrG*zG

Lemma 1 Let
F*  FZ ¥ 0 F, F
W — 11 21 1 11 12 18
[F{a F;2H0 22HF21 Py, (18)
where ¥y and Wy, = F\ 31 Fyy + F5, X5 F5y are invertible. Then there always exists a trans-
formation H such that

AE [ e

F11 F12 Fll FIZ
H = - 20
[ Fyy  Fy ] [ 0 I ] ( )



Proof. Let H = R(Q, where R is block upper triangular and @ is unitary. We choose @
such that

o[ ]-[7] 2

where B is upper triangular. Moreover, since Wy, is assumed invertible, ]1::11 is full rank
21
and hence B is invertible as well. Let R be partitioned conformally with W as
_ | B Ris o
R= [ 0 R | (22)

then H automatically satisfies (20) and Ry, B = Fyy. Also, H will satisfy (19) if and only if
Ry, 0 S0 Ry Ris 00 | A

- = 23

[R’;z Rzzuo EZHO Rzz] Q[o EZ]Q’ (23)

where the right hand side is now known. A decomposition of the type R*SR is known

to exist iff the (1,1) block of the right hand side is invertible. Because of (21) this equals
B~ (F S Fiy + Fy 3o Fy ) B~ which is invertible. O

In order to simplify (17) we now want to apply this lemma to construct a transformation
H such that

i [—’—Tﬁl E]H = [—’—Tﬁl 2]’ (24)

Tll T12 Z Tll TIZ <
MACHSLA g ENE ) -

where TH and TH are matrices of size mk x mk, G has dimensions o X N and Gz has
dimensions o x (N — mk). In order to apply the above lemma we only need to show that
Wi, is invertible since T}, is invertible by assumption. From (13) it follows that

I

T11 = ZrlTHZH + GTEGl 5 where G1 = G [T] . (26)
From (17), Wi, equals

Wa=[1]0]c7 Ih g [ 70 [T | +G75G = (27)

) G
and since
| 2 Do B .

Z_[O Zm], G=[G G, (28)
we have

Wi = Z;TnTﬁlTnZu + GG, =Ty, (29)

which thus shows that Wi, is invertible as well.



Applying (24) and (25) to (17) we obtain
1; T T, |T
W = 11 11 12 . 30
it e [ "

Inserting this in (15) and (16) yields
-X T .
M = [I‘O }W[—] :T11T111[T11

[N E I

12

AT, = GA;EGAz—I- [ -

Since M = 0 and TH and TH are invertible, we have [ T,
yields,

AT,, = G33G5. (32)
This establishes a new displacement identity where & and G are obtained from (24-25).

2 Block look-ahead algorithm
The above construction thus suggests the following algorithm for block Toeplitz matrices.

Algorithm 1 Block-Toeplitz
Construct generator Yoy, G o)
Use Bunch Kaufman on Ty to obtain Ty = U;X U, and define

w | %0 0 o= | U SUTT L SUGT,
O~ 10 =3 |7 "OT | 0 U ... SUTT,

Apply block Schur algorithm

while G;_, # void
Construct leading rows [T11|T;5] from X;_qy, G_qy until Ty is well conditioned
Compute U; =TT [Th1|Tio] = [I']| X]
Append Ty, to D and U; to U
Apply a transformation H satisfying

H* [ Tl_ll 0 ] H = [ CZ—71_11 0 ]

0 X 0 Yu-1
such that
H[ {Tn T12WZ]:lT11 Trs ]
Gy 0 |G
Increment 1
end while

This algorithm is of course only conceptual. It does not describe how to construct



the transformation H nor how to track the condition number of T;;. For the latter we
refer to techniques as those described in [2, 6, 3]. For the construction of the Y-unitary
transformations H we can use skew Householder transformations of block versions of them
(see [4]). In [4] issues of efficient parallel implementation of such transformations are also
adressed. We point out that when T, is well conditioned then the transformation H and
its construction should give no numerical problems. It should be pointed out that the first

m columns of [ T, Tis } 7 are zero which can be exploited in the factorization

H[[Tll TIZ}Z‘|:[T11 TIZ]
G- 0 |Ga

This is especially the case when there is no look-ahead needed (i.e. when k& = 1). The above
matrix has then 3m rows of which only 2m have to be processed. One checks that this
economical version is precisely the usual block Toeplitz algorithm without look-ahead. The
complexity of this method is O(m?N?) in the best case (i.e. without need for look-ahead).
With look-ahead of moderate size this will increase slightly as a function of k.

Finally, notice also that the results presented in this paper can be extended to the non
Hermitian case, provided two generator are kept and updated instead of one. For simplicity,
we did not develop this here.
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