ON THE GENERALITY OF MULTIPOINT PADE
APPROXIMATIONS

Kyle Gallivan* Antoine Vandendorpe **
Paul Van Dooren **

* Florida State University, U.S.
** Universite catholique de Louvain, Belgium

Abstract: Multipoint Padé interpolation methods were shown to be very efficient
for the construction of reduced order models of large-scale dynamical systems. The
objective of this paper is to analyse the generality of this approach. In the SISO case,
we show that the reduced order interpolating system is unique if and only if it can
be constructed via Multipoint Padé. In the MIMO case, an extension of Multipoint
Padé method to create reduced order models that tangentially interpolate the original
model is developed. The generality of this approach for MIMO model reduction will

be discussed in a later paper.
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1. INTRODUCTION

For the sake of brevity, we will not give all proofs
in this extended abstract. In the first section, we
recall some basic results about Krylov subspaces
and Multipoint Padé approximations, which will
be used in the sequel. In section 2, we show the
connection between Multipoint Padé and unique-
ness of the interpolating transfer fonction. In sec-
tion 3, we extend for MIMO systems the method
of Multipoint Padé to tangential interpolation,
and discuss the generality of this new method.

LA research fellowship from the Belgian National Fund
for Scientific Research is gratefully aknowledged by the
second author. This paper presents research supported
by the Belgian Programme on Inter-university Poles of
Attraction, initiated by the Belgian State, Prime Minister’s
Office for Science, Technology and Culture. This work was
also supported by the National Science Foundation under
Grant No. CCR-20003050.

1.1 Introduction to Model Reduction

Although most of the theory presented in this pa-
per holds for both continuous-time and discrete-
time systems, we only cover here the continuous-
time case. Extensions of the theory for discrete-
time systems are straightforward. Every linear
time-invariant continuous-time system can be rep-
resented by a generalized state-space model :

Ei = Az + Bu (1)
y = Cz + Du

with input u(t) € R™, state z(t) € RY and
output y(t) € RP. Without loss of generality, we
can assume that the system is controllable and
observable since otherwise we can always find a
smaller dimensional model that is controllable and
observable, and that has exactly the same transfer
function. In addition to this, we will assume
that the system is stable, i.e. the generalized
eigenvalues of the pencil sE — A lie in the open
left half plane (this also implies that E is non-
singular).



When the system order N is too large for solv-
ing various control problems within a reasonable
computing time, it is natural to consider approx-
imating it by a reduced order system
{ Ei = A% + Bu @)
g = Cié+ Du
driven with the same input u(t) € R™, but having
different output y(¢) € RP and state z(t) € R".
For the same reasons as above, we will assume that
the reduced order model is minimal. The degree
n of the reduced order system is also assumed to
be much smaller than the degree N of the original
system.

The objective of the reduced order model is to
project the state space (of dimension N) of the
system onto a space of lower dimension n in such a
way that the behavior of the reduced order model
is sufficiently close that of the full order system.
For a same input u(t), we thus want §(t) to be
close to y(t). This also implies that the reduced
order system will have to be stable since otherwise
both system responses can not be close to each
other.

One shows that in the frequency domain, this
is equivalent to imposing conditions on the fre-
quency responses of both systems (Zhou et al.,
1995), (Van Dooren, 2000) : we want to find a re-
duced order model such that the transfer functions
of both models, i.e.

T(s)=C(sE—A)"'B (3)
T(s)=C(sE — A)™'B, (4)

are such that the error ||T'(.) — 7'(.)|| is minimal
for the H,, norm.

The reduced order models we will consider in this
paper are built as follows. To construct a n-th
order reduced system, we project the matrices of
the original system using (N x n) matrices Z and
V' as follows :
{E,A,B,C,D}={z"EV,z" AV, Z"B,CV, D}.
(5)
The matrices Z and V' can therefore be viewed as
(respectively left and right) projectors. Below we
present a general theorem linking the image of the
projectors Z and V' with interpolation.

1.2 Multipoint Padé

We review first some results about moment
matching methods. Let us consider an expansion
of T'(s) about a point o that is not a pole of T'(s).
It then follows that o E — A is invertible and one
obtains the following formal series expansion :

T(s)=C(0cE—-A—(0c—5s)E) 'B

=C(I—(eE—A) 'E(c—5))" (cE—A)"'B
+oo . )
=> C((cE-A)'E)’ (cE—-A)'B- (0 —s)

=0

+OO . .
=3 T (o -9 6)

which defines the so-called moments
TU) = C ((0E - A)'E)’ (¢E— A)™'B  (7)

about an expansion point o. These moments exist
for every o for which (¢ E — A) is non-singular.
The same expansion can be made of a lower order
model T'(s) about the same point o provided
(0 E — A) is invertible. Define the ensemble

,
P=A{(o;,v;):i=1...r, v; € Ny, Zl/i:2n},

i=1
(8)
where all the points o; are different and are not
eigenvalues of A. We say that a reduced order
transfer function 7'(s) matches the interpolating
conditions given by the ensemble P when

T =T V1<j<v,V1<i<r, (9)

where (0;,v;) € P. The objective of a moment
matching method is to construct a reduced order
model 7'(s) such that T'(s) verifies the interpolat-
ing conditions (9). We now show that such expan-
sions must match for a certain number of moments
when the lower order model is constructed via a
projection on particular Krylov spaces. For matri-
ces G € RV*N H € RV*" we define the Krylov
space of index j as follows:

K;(G,H) =Im{H,GH,GH,...,G'""H}. (10)

The following lemma related to such subspaces
will prove to be useful.

Lemma 1.1. Let V € RN*™ be a full rank matrix
such that

K;i(G,H) CV =ImV
and let W be an arbitrary n x N matrix such that
WTV = I,,. Then the projected matrices
G=wraqv, H=wT"H,
satisfy the equalities

G'H=VG@H, i=0,...,j—1.

Proof :

Since V is full rank, there exists a matrix W7 such
that WTV = I,,. Since the image of each G'H is
spanned by the columns of V' there exists for all
1=0,...,7 —1 a matrix Y; such that

G'H =VY;, andhence Y;=WTGH.

The proof now goes by induction. For i = 0
clearly Yo = WTH = H. If Y; = G'H then



also iy, = WIG.GIH = WIGVGH = G H,
which proves the result. O

The following theorem is shown in (Grimme,
1992) and (Gallivan et al., 1999) for a SISO sys-
tem, and is rewritten here for the MIMO case.

Theorem 1.1. If the spaces V = Im(V) and Z =
Im(Z) satisfy

K
U ki, (0xE = A)7'E, (0, E— A)7'B) CV
k=1

and

K
U Ko, (exE=A)TET, (0x E— A)~TCT) C 2
k=1

where the interpolation points points o are cho-
sen such that the matrices op E — A are invertible
Vk € {1,..., K}, then the moments of the systems
(1) and (2) around the points o}, satisfy

T =T (11)

for jp = 1,2,...,Jp, + J, and k = 1,2,... K,
provided these moments exist, i.e. provided the
matrices A — o, E are invertible.

Proof : This is based on Lemma 1.1 and is
omitted here for the sake of brevity. O

If we want to find an order n reduced order trans-
fer function 7'(s) that verifies the interpolating
conditions (9), we proceed as follows. Choose an
ensemble P as defined in (8). Partition P into
2 ensembles P; and P» of cardinality n in the
following way :

Pii{al,ol,...,or}, (12)

where o; appears v;; times and vy ; + v ; =
v;. The elements of P; are ordered and denoted
by pij, 7 = 1,...,n. Then, we construct the
projector V such that

O Ko, ,((0;E—A)™'E,(0;E—A)"'B)CV

=1

and Z such that

U Kun; (0, E— A)TET (0, E— 4)~"CT) C 2.
j=1

By Theorem 1.1, if all the moments are well
defined, such a transfer function verifies (9).

Remark 1.1. Suppose that we choose a particular
ensemble P. In the proof of Theorem 1.1, all the
matrices oy — A of the original model have to
be invertible. If this is not the case, the Krylov
subspaces defined in the Thm 1.1 do not make
sense anymore.

All the matrices okE — A of the reduced order
model have to be invertible as well. The singular-
ity of cE — A = ZT(¢E — A)V may be due to
different reasons.

(a) Either Z (or V) is not full rank. In such a case,
E and A are singular, and the reduced system
is not controllable or observable anymore. In the
next section, we show that, in the SISO case,
this may only appear when the original transfer
function was not minimal.

(b) It is possible that Z, V and oFE — A are full
rank matrices but that their product is singular.
We show in the next section, again in the SISO
case, that it occurs iff the minimal reduced order
transfer function that matches (9) is not of order
n for this particular choice of P.

1.3 Some facts about Krylov subspaces

In this section, we give some preleminary results
about Krylov subspaces that will be used in the
sequel of this paper. Most of the results of this
section are very close to those developed in (Li,
2000). We focus our attention on Krylov subspaces
Kn(A, B) of the same order as the dimension of
A. The following Lemma is obvious.

Lemma 1.2. Let A € R™™ and B € R,
Consider n polynomials of degree at most n — 1,

n—1
oi(z) = Z iz, 1<i<n. (13)
=0

Define the matrix M € R**™ such that
M(i,j) = @i j-1, V1 <i,j<n. (14)

If M is invertible (i.e. if the polynomials are
independent), then

Proof :
This follows from
(¢1(A)B ... po(A)B) = (B ... A" 'B) M,
(16)

and the fact that M is invertible. O

Lemma 1.8. Let A € R™*™ and B € R**!. Let
¢ be any invertible polynomial function of A of
degree at most n — 1. Then

¢(A)’Cn(AaB) = ’Cn(AaB) (17)

Proof :
By Caley-Hamilton,

P(A)Kn (A, B) = r(A)Kn (A, B) C Kn(A, B),

(18)
where r(A) is the interpolating polyno-
mial of ¢(A). Since ¢(A) is invertible,



dim(¢p(A)K,n(A,B)) = dim(K,(A,B)) and
equality of the 2 subspaces follows. O

Now, we focus our attention on particular
cases. Consider the set of pairs of points and
corresponding orders

R={(sivy):i=1...r, v; € Ny, Zl/i:n},
i=1

(19)
where all the points s; are different and are not
eigenvalues of A. Here, we rewrite a result already
found in (Li, 2000).

Lemma 1.4. Let A € R™", B € R*! and
(si,vi) € R, then

Im{(s;I —A)"'B,...,(s1] — A)"™B,
cois(8p, T = A)'B, ..., (s, ] — A" B}
=Im{(s;:] — A)'B,...,(si] — A" B,

r

(s1] — A)7" (8] — A)_IB, ey H(Szl — A" B}

i=1

=Im{B,AB,...,A" 'B} (20)

The proof is rather technical and is omitted here.

2. UNIQUENESS OF SOLUTIONS

In this section, we give necessary and sufficient
conditions to construct a minimal order n trans-
fer function that matches the 2n interpolating
conditions (9). Several results shown here are
taken from (Antoulas and Anderson, 1986) and
(Anderson and Antoulas, 1990). In this paper, we
apply these results to Multipoint Padé techniques.
Choose an ensemble P and construct P; and P
as explained in (8) and (12). In order to de-
fine the generalized Loewner matrix, L € R"*"
we need to define m;; as the number of times
that p; ; occurs in the subset {p;1,...,pi;}. We
then define the Loewner matrix via its elements
(k,),1<Ek,l<n:

Lr(k,l) = C(p1pl — A7k (po I — A)~"™21 B,

(21)
where the subscript T refers to the transfer func-
tion T'(s) = C(sI — A)"'B. A first property of
this matrix is the following

Lemma 2.1.

Ly(k,0) = La(k,0), V1<kil<n.  (22)

Equation (22) is a straightforward consequence of
the interpolating conditions (9). We can suppose
without loss of generality that the ensembles P;
are ordered in such a way that we can write

0(0'1] — A)_l

CloyI — A) "2

Lr=1"Co,1 - 2)

Clo, 1 _ A) v
((onT—A)"'B ... (0,1 — A)™>"B)
= O7Cr, (24)

where we delete the row associated with vy ; if
v1,; = 0, and the column associated with v ; =0
if v5 ; = 0. It follows from Lemma 2.1 that

OrCr = 0:C;. (25)

Finally, we define the following matrix that will
be used in the next subsection.

Dr = [B|Cr). (26)

2.1 The regular case

This is the case when it is possible to construct
an order n reduced-order transfer function 7'(s)
via Multipoint Padé that verifies the interpolating
conditions (9). The main result of this sub-section
is the following Proposition

Proposition 1. Suppose that there exists an order
n transfer function 7'(s) that verifies the interpo-
lating conditions (9). If T'(s) is minimal, then

(1) T'(s) is the unique transfer function of order n
that verifies the interpolating conditions (9)

(2) T(s) can be constructed via Multipoint Padé.

The proof of this new result is rather technical
and is omitted here. A complementary result is
the following Corollary.

Corollary 2.1. There exists a unique transfer
function 7'(s) of order n that matches the interpo-
lating conditions (9) iff the transfer function T'(s)
obtained via Multipoint Padé verifies (9), i.e. the
interpolation points are not poles of T'(s).

The “only if” part of Corollary 2.1 is a straightfor-
ward consequence of Proposition 1. The “if” part
is not treated here.

2.2 The singular case

We know that the reduced order transfer function
constructed via Multipoint Padé verifies the in-
terpolating conditions (9) iff there exists a unique
interpolating transfer function of order n that
matches (9). Moreover, we know that in this case
the reduced order transfer function is minimal.



Now, we analyse the case where at least one ma-
trix Z7 (0;Ixy — A)V is singular, i.e. one moment
of the reduced order transfer function constructed
via Multipoint Padé does not exist. We will show
that there are two cases to consider : either there is
a unique transfer function of order less than n that
verifies (9), or there exists a class of interpolating
transfer functions of minimal order greater than
n that verifies (9). We refer to (Antoulas and
Anderson, 1986) for the following Theorem :

Theorem 2.1. Suppose that the generalized
Loewner matrix OpDr is of rank q. Then

(1) If every ¢ x q¢ Loewner submatrix of OrDy
is invertible, then there exists an unique minimal
transfer function of order ¢ that verifies (9).
Moreover, there is no transfer function of degree
less than ¢ that verifies 9.

(2) If some g x ¢ Loewner submatrices of OrDyp
are singular, all the transfer functions that verify
(9) are of degree greater than or equal to 2n — gq.
The family of all interpolating transfer function
of degree 2n — ¢ is parametrized in terms of one
parameter.

3. THE MIMO SYLVESTER EQUATION

Suppose we want to solve
AV, + V. AT + BBT =0 (27)

where A € RV*N B ¢ RNXp,fl € R™*". For
simplicity we assume A(A) N A(—A) = @, which
makes the solution unique and well-defined. By
linearity, we can write

p
ve=Svi (29
=1
AV; + VAT 4+ b56:" =0, (29)

where z§ is the i'" column of a matrix X. More-
over, it is easy to check that the image of Vi
does not change when we are solving (27) with
the Jordan canonical form A; of A instead of A.
Hence, we can write

A=TA;T™! (30)
T 'B=B (31)
Vi=Vir™" (32)

Because of the bloc diagonal structure of the
Jordan canonical form, we can decompose the
system (27) into smaller systems with only one
Jordan bloc of A. So, we restrict our analysis in
the case

Ay = A . (33)
-
A

By solving (29) with A = Ay, it is possible to
show that

Vi= ((A+AD7U0E, .., (A4 A7)

b (1) ... b (n)
: ' (34)
bi' (n)
This last equation allows us to write
Vi=((A+A)™'B, ..., (-1)""(A+\I)""B)
T
: ' ; (35)
b

where we write 7 for the it" row of a matrix X.
This last result allows us to show the following.

Proposition 2. With the notations and conven-
tions stated above, the reduced-order system con-
structed with V. as right-projector, V1 < p < n,

p

ST N

=1
- Fi—1 - T

= ZT (_)‘)b n—p+1 (36)
=1

Sketch of the proof :
By induction,
- Forp=1,

(A+A)'Bbr, € Im(V,) (37)

Hence,

(A+A)"'Bb
=Vi(AT +AD)1BE (38)

- For p = 2,

(A+A\D)7'Bb. | — (A+\)"2Bbrs, € Im(Vy)
=V, ((fﬁ FAD LB — (AT + M)”B%Nrf)

-Forp>2...

The result follows from similar arguments as the
ones used to prove Theorem 1.1 and will not be
developped here.

General results about tangential interpolation
may be found in (Antoulas et al., 1990) and (Ball



et al., 1990). Interpolation of MIMO systems via
a block Multipoint Pade technique is already dis-
cussed in (Gallivan et al., 2001).

4. CONCLUSIONS AND FUTURE WORK
4.1 Conclusions

In this paper, we have shown the generality of
Multipoint Padé technique to construct interpo-
lating reduced-order transfer functions. When the
reduced-order transfer function constructed via
Multipoint Padé does not check the interpolating
conditions (9), we have shown that this is not
due to the fact that we are using Multipoint Padé
to construct our reduced-order model but this is
due to the fact that the minimal reduced-order
transfer function that verify the interpolating con-
ditions (9) is not of rank n. In such a case, either
we have to add a new interpolating condition until
the reduced-order transfer function constructed
via Multipoint Padé verifies all the interpolating
conditions; or it is possible to construct a transfer
function of order less than n that matches the
interpolating conditions (9). Another possibility is
to perturb the interpolating data (i.e. the points
€ P) in such a way that the new ensemble P deter-
mines one unique interpolating transfer function.
We should point out here that, from a practical
point of vue, almost all interpolating conditions
(i.e. almost every ensemble P) determine one
unique interpolating transfer function that can be
constructed via Multipoint Padé.

In the MIMO case, we have shown here a gen-
eralization of Multipoint Padé that allows us to
construct a reduced-order transfer function that
tangentially interpolate the original transfer func-
tion.

A big advantage of Multipoint Padé compared to
others model reduction technique is its low com-
putational cost. Hence, it can be applied to large-
scale linear systems. A weakness of Multipoint
Padé is that there exists no global error bound
between the original and the reduced-order model.

4.2 Future work

The generality of Multipoint Padé in the MIMO
case is still under investigation and will appear in
a later paper.

Finding interpolating conditions such that there
exists a global bound between the original and the
reduced-order transfer function is an open ques-
tion. For instance, we could look at well-known
model reduction techniques such as balanced trun-
cation or optimal Hankel norm approximation

and try to characterize the interpolation points
of reduced-order transfer function constructed via
these techniques.
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