
Journal of Computational and Applied Mathematics 162 (2004) 213–229
www.elsevier.com/locate/cam

Sylvester equations and projection-based model reduction�;��

K. Gallivana, A. Vandendorpeb, P. Van Doorenb;∗

aFlorida State University, FL, USA
bUniversit�e catholique de Louvain, CESAME, Avenue G. Lemaitre 4, 1348 Louvain-la-Neuve, Belgium

Received 10 December 2001; received in revised form 15 December 2002

Abstract

In this paper, we establish a connection between Krylov subspace techniques for Multipoint Pad3e interpola-
tion, and the use of Sylvester equations for constructing reduced-order models. We also brie6y point out that
this connection partly extends to ADI-type techniques and to the Smith iteration for computing approximate
solutions of Lyapunov equations.
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1. Introduction

Every linear time-invariant continuous-time system can be represented by a generalized state-space
model of the type

Eẋ = Ax + Bu;

y = Cx + Du;
(1)
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where the input u(t)∈Rm, the state variable of the system x(t)∈RN and the output y(t)∈Rp

(where typically m;p�N ). Without loss of generality, we can assume that the system is minimal,
i.e., controllable and observable, since otherwise we can always Bnd a smaller dimensional model
that is controllable and observable, and that has exactly the same transfer function. In addition to
this, we will assume that the system is asymptotically stable, i.e., the generalized eigenvalues of the
pencil sE − A lie in the open left-half plane (this also implies that E is nonsingular).

Suppose that the system order N is too big for solving various control problems within a reasonable
amount of computing time. The goal of model reduction is to construct a reduced-order system

Ê ˙̂x = Âx̂ + B̂u;

ŷ = Ĉx̂ + D̂u;
(2)

where, u(t)∈Rm; x̂(t)∈Rn and ŷ(t)∈Rp with n�N , that satisBes the constraints on computing
time. For the same reasons as above, we will assume that the reduced-order model is minimal.
Minimality of the reduced-order system can be achieved for most problems although it may require
some postprocessing.

The basic idea of the projection-based model reduction is to project the system’s state-space of
dimension N onto a space of lower dimension, n�N , in such a way that the behavior of the
reduced-order model is suFciently close to the original model, i.e., given the input u(t) to both
systems, we want ŷ(t) to be close to y(t). This implies that the reduced-order system must be
stable, otherwise the system responses cannot be close to each other.

This approximation in the time domain is equivalent to imposing conditions on the frequency
responses of both systems [12]: we want a reduced-order model such that the transfer functions of
the models

T (s) := C(sE − A)−1B + D and T̂ (s) := Ĉ(sÊ − Â)−1B̂ + D̂

are “close” to each other, i.e., such that the error ‖T (:) − T̂ (:)‖ is small in the H∞ norm.
The reduced-order models we will consider in this paper are built using projections. In order to

construct an nth-order reduced system, we project the matrices of the original system using N × n
matrices Z and V as follows:

Â = ZTAV; Ê = ZTEV; B̂ = ZTB; Ĉ = CV; D̂ = D: (3)

Only the spaces onto which we are projecting in6uence the relationship between the transfer func-
tions, i.e., the particular projection matrices are not important in this regard (although the choices
may have computational signiBcance). This is seen in the following lemma.

Lemma 1.1. The projected transfer function T̂ (s) de6ned in (3) is unchanged if we replace V and
Z by other matrices Ṽ := VR and Z̃ := ZL which span the same respective spaces, i.e., where R
and L are invertible.

Proof. The factors L; R drop out in the transfer function T̂ (s) = Ĉ(sÊ − Â)−1B̂ + D̂.

A geometric interpretation of this lemma is that the spaces Z
:= Im(Z) and V

:= Im(V ) can be
viewed as, respectively, left and right, projection spaces. Notice also that the D matrix is maintained
in the approximation. Since it does not play a role in our analysis, we will assume D= D̂= 0 below.
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In the remainder of this paper, we explore the connections between several methods of model
reduction and unify them via a projection-based point of view. We consider ADI-type techniques,
Krylov subspace techniques for multipoint Pad3e interpolation, and projected Lyapunov techniques.
We show a connection between these methods and the general framework of rational interpolation.

In Section 2, we present a general theorem linking the spaces Z and V with interpolation. In
Section 3, we analyze a particular step of an algorithm recently proposed by Antoulas and Sorensen
([1,11]) that uses Sylvester equations to construct projectors that deBne the reduced-order model.
We show a connection between this approach and the moment matching approach. In Section 4,
we generalize the results of the earlier sections and discuss some particular important cases. In
Section 5, we conclude by presenting links between several existing techniques for model reduction
of large-scale dynamical systems. Finally, we discuss how to extend these results to more general
cases.

2. Multipoint Pad�e interpolation

We Brst review some results about moment matching methods. The objective of these methods is
to construct a reduced-order model such that T̂ (s) interpolates the frequency response of T (s) and
its derivatives at multiple points �1; �2; : : : ; �K . We suppose that these points are not poles of the
original model.

Let us consider an expansion of T (s) about a point � that is not a pole of T (s). It then follows
that �E − A is invertible and one obtains the following formal series expansion:

T (s) = C(�E − A− (� − s)E)−1B (4)

= C(I − (�E − A)−1E(� − s))−1(�E − A)−1B (5)

=
+∞∑
j=0

C((�E − A)−1E) j(�E − A)−1B · (� − s) j (6)

:=
+∞∑
j=0

T ( j)
� · (� − s) j; (7)

which deBnes the so-called moments

T ( j)
�

:= C((�E − A)−1E) j(�E − A)−1B (8)

about an expansion point �. These moments exist for every � for which (�E − A) is nonsingular.
The same expansion can be made of a lower-order model T̂ (s) about the same point � provided
(�Ê− Â) is invertible. This can be expressed in an alternative and sometimes more convenient form.

De�nition 2.1. We say that the reduced-order system T̂ (s) interpolates the original system T (s) at
points �k; 16 k6K , with an order �k ∈N, when

T (s) − T̂ (s) = O(s− �k)�k ∀16 k6K; (9)

and that it interpolates T (s) at ∞ with an order �, when

T (s) − T̂ (s) = O(s−�): (10)
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From the preceding deBnition, any two strictly proper transfer function T (s) and T̂ (s) interpolate
each other at inBnity.

We will show in this section that such expansions must match for a certain number of moments
when the lower-order model is constructed via a projection on particular Krylov spaces. For matrices
G ∈CN×N , H ∈CN×m, we deBne the Krylov space of index j as follows:

Kj(G;H) = Im{H;GH;G2H; : : : ; G j−1H}: (11)

The following lemma provides a useful property of Krylov subspaces.

Lemma 2.1. Let V ∈CN×n be a full-rank matrix such that

Kj(G;H) ⊆ V
:= Im(V )

and let W be an arbitrary N × n matrix such that W TV = In. Then the projected matrices

Ĝ := W TGV; Ĥ := W TH

satisfy the equalities

GiH = VĜiĤ ; i = 0; : : : ; j − 1:

Proof. Since V is full rank, there exists a matrix W such that W TV = In. Since the image of each
GiH is spanned by the columns of V there exist for all i = 0; : : : ; j − 1 a matrix Yi such that

GiH = VYi and hence Yi = W TGiH:

The proof proceeds by induction. For i = 0 clearly Y0 =WTH = Ĥ . If Yi = ĜiĤ then it follows that
Yi+1 = W TG:GiH = W TGVĜiĤ = Ĝi+1Ĥ , which proves the result.

The following theorem is shown in [5,7] for a single-input–single-output (SISO) system, and is
extended here to the multiple-input–multiple-output (MIMO) case.

Theorem 2.1. If
K⋃
k=1

KJbk
((�kE − A)−1E; (�kE − A)−1B) ⊆ V = Im(V ) (12)

and
K⋃
k=1

KJck
((�kE − A)−TET; (�kE − A)−TCT) ⊆ Z = Im(Z); (13)

where the interpolation points �k are chosen such that the matrices �kE − A are invertible ∀k ∈
{1; : : : ; K} then the moments of systems (1) and (2) at the points �k satisfy

T ( jk)
�k = T̂ ( jk)

�k (14)

for jk =1; 2; : : : ; Jbk +Jck and k=1; 2; : : : ; K , provided these moments exist, i.e., provided the matrices
�kÊ − Â are invertible.
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Proof. We prove the result for an arbitrary expansion point �k . Since

KJbk
((�kE − A)−1E; (�kE − A)−1B) ⊆ Im(V ); (15)

it follows from Lemma 2.1 that for 06 j6 Jbk − 1,

V ((�kÊ − Â)−1Ê) j(�kÊ − Â)−1B̂ = ((�kE − A)−1E) j(�kE − A)−1B: (16)

In order to apply this lemma, it suFces to choose

W T = (�kÊ − Â)−1ZT(�kE − A); G = (�kE − A)−1E; H = (�kE − A)−1B; (17)

from which it follows that

Ĝ = (�kÊ − Â)−1Ê; Ĥ = (�kÊ − Â)−1B̂:

Similarly, since

KJck
((�kE − A)−TET; (�kE − A)−TCT) ⊆ Im(Z); (18)

it follows from Lemma 2.1 that for 06 j6 Jck − 1,

Ĉ(�kÊ − Â)−1(Ê(�kÊ − Â)−1) jZT = C(�kE − A)−1(E(�kE − A)−1) j: (19)

Multiplying E from the left with (19) and from the right with (16), it then follows that the Brst
Jbk + Jck moments of T (s) and T̂ (s) at �k are equal.

Remark 2.1. In the proof of Theorem 2.1, the conditions requiring the nonsingularity of the matrices
�kE − A and �kÊ − Â at all interpolation points are crucial to the theory but not always guaranteed.
The following observations govern the possible scenarios:

(1) All the matrices �kE − A of the original model must be invertible. If this is not the case, the
Krylov subspaces deBned in Theorem 2.1 are no longer well deBned. Fortunately, if the original
system is stable and the interpolation points are restricted to the imaginary axis and the right-half
of the complex plane this is easily guaranteed.

(2) All the matrices �kÊ − Â of the reduced-order model must be invertible, otherwise W deBned
in (17) would not exist and Theorem 2.1 cannot be used to guarantee moment matching. This,
of course, does not mean that moment matching may not occur.

(3) If all the matrices �kE − A are invertible, the Krylov subspaces that must be contained in the
images of the projectors V and Z are then well deBned and the singularity of some or all
�kÊ − Â = ZT(�kE − A)V may have diRerent causes:

(a) Either Z or V is not full rank. In such a situation, Ê and Â are singular, and the pencil
(Ê; Â) is singular. To avoid these diFculties, we construct bases Znew for Z and Vnew

for V ; at least one of which must have a rank lower than, respectively, Z or V . If the
dimension of Im(Znew) is equal to the dimension of Im(Vnew) and if the reduced-order
system constructed via these new projectors is nonsingular at the interpolation points, it
satisBes the moments matching properties of Theorem 2.1. If the dimension of Im(Znew) is
not equal to the dimension of Im(Vnew), we can augment the projector of smaller dimension
by simply choosing random vectors until the two subspaces spanned by Z and V are of
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equal dimension. In either case, minimality of the reduced-order system is guaranteed by
postprocessing. In the SISO case, the fact that Z or V is not full rank can only occur when
T (s) is nonminimal.

(b) It is possible that Z , V and the �kE − A are all full-rank matrices and that their product is
singular. This case requires more investigation and is not discussed in this paper.

3. Sylvester equations and moment matching

The system’s observability gramian P and controllability gramian Q satisfy the equations

APET + EPAT + BBT = 0; (20)

ATQE + ETQA + CTC = 0: (21)

These gramians are very important since they describe how the energy of the system is “distributed”
over the coordinates of the state-space. There exist, e.g., coordinate transformations X and Y such
that

sIN − Ã := Y T(sE − A)X; B̃ := Y TB; C̃ := CX;

where the transformed state-space system {Ã; B̃; C̃} is “balanced”. This means that the transformed
Lyapunov equations

ÃP̃ + P̃ÃT + B̃B̃T = 0; (22)

ÃTQ̃ + Q̃Ã + C̃TC̃ = 0; (23)

yield transformed gramians that are equal and diagonal

P̃ = Q̃ = ':

When the diagonal matrix

' :=

[
'1 0

0 '2

]

has n “large” elements in '1 and N − n “small” elements in '2, one can dismiss the small ones
and keep only the n dominant ones. It is shown in [11] that this amounts to choosing the projection
spaces V= Im(X1) and Z= Im(Y1), where X1 and Y1 are the Brst n columns of the transformation
matrices X and Y , respectively. Multiplying (20) with Y T from the left and with Y from the right
and multiplying (21) with X T from the left and X from the right yields

P = X'X T ≈ X1'1X T
1 ; Q = Y'Y T ≈ Y1'1Y T

1 ;

which indicates that X1 and Y1 contain the dominant parts of P and Q.
In the well-known balanced truncation model reduction technique [9], such dominant spaces Im(X1)

and Im(Y1) play an important role. Unfortunately, for large-scale models (when N is very large),
solving (20) and (21) and Bnding their dominant eigenspaces requires too many computations. Hence,
we must approximate the dominant subspaces via another scheme. In [11], this idea is used to justify
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the following projected Lyapunov approach related to subspace iteration, which is used as part of
the algorithm’s basic step.

Suppose one has orthonormal bases Vin ∈CN×k and Zin ∈CN×k of initial estimates of V and Z.
In subspace iteration one updates these bases via Vup =PVin and Zup =QZin. Consider the projectors
VinV T

in and Ṽ inṼ T
in = IN − VinV T

in, and multiply (20) with a matrix R∈CN×n on the right. This yields
the following equation:

AVupFT
r + EVupGT

r + BHT
r = −APṼ inṼ T

inE
TR− EPṼ inṼ T

inA
TR (24)

where Fr = RTEVin, Gr = RTAVin and Hr = RTB. If Vin is a good approximation of the dominant
n-dimensional space X1 of P, then PṼ in is small and the right-hand side will be small compared to
the terms of the left-hand side.

The basic idea of the algorithm is to construct a basis for V by solving the Sylvester equation
that results from setting the right-hand side of the projected Lyapunov to 0

AVupFT
r + EVupGT

r + BHT
r = 0 (25)

rather than (24). A similar argument can be used for Q by considering the projector ZinZT
in and by

multiplying (21) with a matrix L to construct a basis for Z. The corresponding projected equation
is then

ATZupFl + ETZupGl + CTHl = 0; (26)

where Fl = ZT
inEL; Gl = ZT

inAL and Hl = CL.
These two equations are the basis of the iterative updating procedure for V and Z , described in

[11]. We show below that this is, in fact, equivalent to multipoint interpolation according to our
earlier deBnitions.

The N th-order transfer function from which we start is T (s), and we want to approximate it with
T̂ (s) based on projection spaces V and Z as deBned in the introduction. We choose the matrix V
by solving the following Sylvester equation—dropping the indices to simplify the notation

AVFT + EVGT + BHT = 0; (27)

where A; E ∈CN×N ; B∈CN×m; F; G ∈Cn×n and H ∈Cn×m. We call (27) a Projected Lyapunov
equation because the matrices F;G and H may be seen as projections of E; A and B. Indeed, if we
replace F , G and H by E, A and B, we recover (20). All the results obtained for the equation in V
can be transposed to the corresponding equation for Z , so we focus on only one of the equations.

In this paper, we suppose that n is an integer multiple of m, i.e., n= rm. We further assume that
the spectra of the generalized eigenvalue problems sE − A and sF − G are well deBned and such
that

*i(E; A) + *j(F;G) 
= 0;

in order to ensure the existence and uniqueness of V . We then show that under certain conditions,
any reduced-order model T̂ (s) built with V ⊇ Im(V ) interpolates the transfer function T (s) at the
eigenvalues of sF − G up to a particular order.

We Brst suppose for simplicity that F is invertible and that sF − G has only one eigenvalue �
with m Jordan blocks of length r (the general case will be developed in later sections). Under these
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conditions, there exist invertible matrices S and T such that

S(G − sF)T = sI − GJ; (28)

where GJ has the particular form

GJ =




�Im −Im
. . . . . .

. . . −Im
�Im



; (29)

which is a “modiBed” Jordan canonical form that will simplify further calculations. Accordingly, we
deBne HJ

:= SH where HJ is partitioned in r square blocks Hi ∈Cm×m

HJ =



H1

...

Hr


 : (30)

Multiplying (27) by ST on the right and deBning VV = VT−T, we obtain

A VV + E VVGT
J − BHT

J = 0: (31)

Notice that Im( VV ) = Im(V ) since T is invertible. This equation yields

A[ VV 1; : : : ; VV r] + E[ VV 1; : : : ; VV r]




�I

−I . . .

. . . �I

−I �I




= B[HT
1 ; : : : ; H

T
r ]; (32)

where we partitioned VV in r blocks VV i ∈CN×m. This last equation allows us to write

[ VV 1; : : : ; VV r] = [(A + �E)−1B; : : : ; ((A + �E)−1E)r−1(A + �E)−1B]

HT

1 : : : HT
r

...

HT
r . . .


 : (33)

Hr is invertible if and only if (GJ; HJ) is controllable and it follows that

Im(V ) = Kr((A + �E)−1E; (A + �E)−1B): (34)

We therefore can show the following.
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Theorem 3.1. The reduced-order system T̂ (s) = Ĉ(sÊ − Â)−1B̂ obtained using a matrix Z ∈CN×n

on the left and on the right the matrix V that contains the image of the solution of the Sylvester
equation (27) is such that

T (s) − T̂ (s) = O(s + �)r ; (35)

where the pencil sF–G has m Jordan blocks of length r at its single eigenvalue �, provided �E−A
and �Ê− Â are invertible and provided [sF−G|H ] has full rank for all s, i.e., the pair (sF−G;H)
is controllable.

Proof. Note the only condition on Z is that the reduced system satisfy the invertibility and controlla-
bility constraints. In particular, the invertibility constraints imply that Z must be full rank (cf. Remark
2.1). Since the controllability of (sF − G;H) is equivalent to the controllability of the transformed
pair (GJ; HJ), this result follows directly from the discussion above and Theorem 2.1.

We recall that the interpolation point is the opposite of the eigenvalue of (F;G), i.e.,

� = −*(F;G): (36)

Remark 3.1. Notice that controllability of the pair (sF − G;H) implies that the pencil (sF − G)
can have at most m Jordan blocks (of any length) at a given eigenvalue �. The assumption to have
exactly m Jordan blocks at � is in a sense the extremal case. But the fact that these blocks have all
equal length is clearly a severe constraint.

4. Extensions and particular cases

In this section, we Brst derive two generalizations of Theorem 3.1 which extend its applicability.
We then consider some particular cases that admit stronger results.

4.1. The case of in6nite eigenvalues

We consider here the case where sF − G has a single inBnite eigenvalue rather than a Bnite
one. If we assume the pencil (sF − G) is regular, i.e., that det(sF − G) is not identically 0 in the
complex plane, the Jordan canonical form is then replaced by the Weierstrass canonical form. This
form expresses that any regular pencil can be transformed by invertible matrices S and T to the
block diagonal pencil

S(G − sF)T =

[
sNJ − I

sI − GJ

]
; (37)

where NJ is a nilpotent matrix and where both NJ and GJ are in Jordan canonical form. The Bnite
eigenvalues of the pencil are then the eigenvalues of GJ and the inBnite eigenvalue are re6ected by
the nilpotency of NJ [6]. We assume again that there is only one eigenvalue, namely ∞, and that it
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has exactly m Jordan blocks of length r. The matrix block sI − GJ then does not exist and NJ can
then be assumed in the Jordan-like form

NJ =




0m

−Im . . .

. . . . . .

−Im 0m



: (38)

We again transform (27) with the transformations S and T to the particular form

A VVNT
J + E VV = BHT

J ; (39)

where Im( VV ) = Im(V ), NJ has form (37) and HJ
:= SH .

Again, we partition VV in k blocks VV i ∈CN×m and HJ in k blocks Hi ∈Cm×m. We then Bnd
recursively

VV 1 = E−1BHT
1 (40)

VV i = E−1(BHT
i + A VV i−1) ∀26 i6 k: (41)

For (NJ; HJ) controllable—or equivalently for (sF − G;H) controllable at inBnity—it then follows
that

Kk(E−1A; E−1B) = Im(V ): (42)

A similar theorem to Theorem 3.1 is then easily obtained, which can be interpreted as moment
matching at inBnity.

Theorem 4.1. The reduced-order system T̂ (s) = Ĉ(sÊ − Â)−1B̂ obtained using a matrix Z ∈CN×n

on the left and on the right a matrix V that contains the image of the solution of the Sylvester
equation (27) is such that

T (s) − T̂ (s) = O(s−r−1); (43)

where the pencil sF–G has m Jordan blocks of length r at ∞, provided E and Ê are invertible
and provided [sF − G|H ] has full rank for all s, i.e., the pair (sF − G;H) is controllable.

Proof. Note the only condition on Z is that the reduced system satisfy the invertibility and con-
trollability constraints. Since the controllability of (sF − G;H) is equivalent to the controllability
of the transformed pair (GJ; HJ), this result follows directly from the above discussion and
Theorem 2.1.

4.2. The multiple eigenvalue case

The case where the pencil sF − G has several eigenvalues can also be analyzed. For simplicity
of notation we will assume they are all Bnite. Suppose that (sI − GJ)

:= S(G − sF)T is in Jordan
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form, with

GJ =



GJ1

. . .

GJK


 ; (44)

in which each diagonal block GJk ∈Cnk×nk has exactly m Jordan blocks of length bk (i.e., nk = bkm)
at eigenvalue �k (each block GJk is then of type (29) but for a diRerent eigenvalue �k). We then
partition HJ

:= SH conformably with blocks Hk ∈Cnk×m:

HJ =



H1

...

HK


 : (45)

Eq. (31) is then equivalent to the K equations

AVk + EVkGT
Jk − BHT

k = 0; 16 k6K; (46)

where each Vk and Hk can be partitioned into subblocks with, respectively, m columns and m rows

Vk = [Vk;1 : : : Vk;bk ]; (47)

Hk =



Hk;1

...

Hk;bk


 ; (48)

i.e., Hk;l ∈Cm×m and Vk;l ∈CN×m. We, therefore, have the following.

Theorem 4.2. The reduced-order system T̂ (s)=Ĉ(sÊ−Â)−1B̂ obtained by using a matrix Z ∈CN×n

on the left and on the right the matrix V that contains the image of the solution of Eq. (31) where
GJ is de6ned in (44) is such that

T (s) − T̂ (s) = O(s + �k)bk ∀16 k6K; (49)

where the pencil sF − G has m Jordan blocks of length bk at the eigenvalues �k , provided all
matrices �kE − A and �kÊ − Â are invertible and provided [sF −G|H ] has full rank for all s, i.e.,
the pair (sF − G;H) is controllable.

Proof. Note the only condition on Z is that the reduced system satisfy the invertibility and control-
lability constraints. Applying Theorem 2.1 to each Vk deBned in (47) proves the result.

Notice also that the case of inBnite eigenvalues could have been included here without diFculty.

4.3. The two-sided case

Until now, we have only considered the image of the right projection matrix V that satisBes

AVFT
r + EVGT

r + BHT
r = 0: (50)
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By duality, we can Bnd a similar result for the left projection matrix Z . For this we need to construct
Z such that

ATZFl + ETZGl + CTHl = 0; (51)

where l is added to F;G and H to recall that the new matrices Fl; Gl and Hl can be chosen
independently from Fr ; Gr and Hr that deBne V , and use the same notation as before.

By transposing all the results of Section 3 and the preceding subsection, we can state the following
general theorem.

Theorem 4.3. The reduced-order system T̂ (s) = Ĉ(sÊ − Â)−1B̂, obtained by using the projectors Z
and V such that Z has the same image as the solution of (51) and V has the same image as the
solution of (50), is such that

T (s) − T̂ (s) = O(s + �k)bk+ck ∀16 k6K; (52)

where �k is a generalized eigenvalue of (Fr ; Gr) and (Fl; Gl), associated with the diagonal block
GrJk

that has exactly m Jordan blocks of length bk at eigenvalue �k and the diagonal bloc GlJk

that has p Jordan blocks of length ck at �k , provided sE − A and sÊ − Â are invertible in �k , the
pair (sFr − Gr ; Hr) is controllable, and the pair (sFl − Gl; Hl) is observable.

Proof. This is again a direct consequence of Theorem 2.1.

Remark 4.1.

(1) The spectra of (Fl; Gl) and (Fr ; Gr) are in general diRerent. Suppose for instance that �k is a
generalized eigenvalue of (Fl; Gl) that is not a generalized eigenvalue of (Fr ; Gr), then we deBne
the corresponding matrices Hrk ; GrJk

to be of dimension zero. Hence, ck = 0.
(2) One can easily also include inBnite eigenvalues as in Theorem 4.1.

4.4. The SISO case

Until now, we needed to suppose the pencils (Fl; Gl) and (Fr ; Gr) to have exactly, respectively,
m and p Jordan blocks for every interpolation point, as it has already been pointed out in Remark
3.1. In a SISO system, m = p = 1. In such a case, the above condition is not extremal anymore.
In a practical point of view, it means that, when a SISO reduced-order system of McMillan degree
n is built with the projected Lyapunov technique explained in this paper, it generically interpolates
the original system at 2n diRerent points. In general, this is not true for MIMO systems.

4.5. Convergence in one step

In this section, we indicate another explanation as to why this scheme can be viewed as subspace
iteration. Let us suppose that the gramian P has rank n, then for almost all initial matrices Vin an
exact subspace iteration step Vup

:= PVin should yield Im(Vup) = Im(P). We verify that the Sylvester
equation indeed yields such a matrix V in the SISO case with E and F invertible. Without loss of
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generality we can then suppose E = IN and F = In. Recall that the controllability matrix C and the
observability matrix O are deBned by

C(A; B) = [B AB : : : AN−1B]; (53)

OT(A; C) =




C

CA

...

CAN−1


 : (54)

Lemma 4.1. Suppose the matrices A∈CN×N ; B∈CN×m; G ∈Cn×n, and H ∈Cn×m satisfy

AV + VGT + BHT = 0 (55)

and we have that rank(C(A; B)) = n; (G;H) is controllable, and -(−G) ∩ -(A) = ∅, then

Im(V ) = Im(C(A; B)): (56)

Proof. Since Im(P), deBned in (20), equals Im(C(A; B)), one can always choose a coordinate system
in which the standard Lyapunov equation has the form[

A11 A12

0 A22

][
P11 0

0 0

]
+

[
P11 0

0 0

][
AT

11 0

AT
12 AT

22

]
+

[
B1

0

]
[BT

1 0] = 0; (57)

where P11 ∈Cn×n is invertible, and (A11; B1) is controllable. In this coordinate system B2 = A21 = 0
and

Im(P) = Im

([
In

0

])
: (58)

Rewriting (55) in the same coordinate system yields[
A11 A12

0 A22

][
V1

V2

]
+

[
V1

V2

]
GT +

[
B1

0

]
HT = 0: (59)

Therefore, V2 must satisfy

A22V2 + V2GT = 0 (60)

and since the spectra of A22 and −G are disjoint, V2 = 0. Moreover, V1 satisBes

A11V1 + V1GT + B1HT = 0: (61)

If V1 ∈Cn×n is nonsingular, then the matrices V and
[
In
0

]
have the same image and the proof

would be complete. Suppose—by contradiction—that the kernel of V1 has dimension k ¿ 0. Then,
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there exist matrices X ∈Cn×k and Y ∈Ck×n of rank k such that YV1 = 0 and V1X = 0. Multiply (61)
by Y on the left and X on the right to obtain

YB1HTX = 0: (62)

Since YB1 and HTX are two vectors, there are now two possibilities
(1)

YB1 = 0: (63)

Then YA11V1 = 0 and

YA11 = TY; (64)

because Im(Y T) = ker(V T
1 ). It follows that

Y [B1 A11B1 : : : An−1
11 B1] = 0 (65)

and the system (A11; B1) is not controllable. This fact contradicts our hypotheses.
(2)

HTX = 0: (66)

Then V1GTX = 0 and

X TG = SX T;

because Im(X ) = ker(V1). It follows that

X T[H GH : : : Gn−1H ] = 0 (67)

and the system (G;H) is not controllable. This contradicts our hypotheses as well.

By duality, a similar result also holds for Z . It is possible to show that such a result also holds
when E and F are not the identity or even when F is singular.

In practical circumstances, one often observes a fast decay of the singular values of P and Q.
Recent theoretical results tend to justify these observations [3]. This means that observability and
controllability gramians are often close to low-rank matrices. Lemma 4.1 shows that if the original
model is not controllable and we construct a projector with dimension equal to the dimension of
the controllability space, then the reduced-order model built with such a right projector is exact. By
continuity, one may hope that it is not too far from the solution when gramians are close to low
rank.

5. Concluding remarks

5.1. The discrete-time case

All the ideas developed for continuous-time systems can be extended to discrete-time systems.
In the discrete-time case, the observability gramian deBned in (20) and the controllability gramian
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deBned in (21) satisfy the equations

APAT − EPET + BBT = 0; (68)

ATQA− ETQE + CTC = 0: (69)

By analogy with the continuous-time case, we construct matrices V and Z from the following
Sylvester equations:

AVGT
r − EVFT

r + BHT
r = 0; (70)

ATZGl − ETZFl + CTHl = 0: (71)

For simplicity, we suppose that E is invertible. The result equivalent to (34) states that V constructed
from (70) satisBes

Kn

((
1
�
E − A

)−1

E;
(

1
�
E − A

)−1

B

)
= Im(V ): (72)

From this a result similar to Theorem 3.1 easily follows. We see that we interpolate the Brst n
moments of T (s) at the point 1=� which is the inverse of the generalized eigenvalue of (Ê; Â). The
other continuous-time theorems of this paper are easily extended in a similar manner.

5.2. Link to other methods

Many model reduction techniques make use of Krylov spaces and are in fact particular versions
of Multipoint Pad3e Interpolation. Arnoldi/Lanczos processes build reduced-order models that match
moments at inBnity

CAjB = ĈÂ jB̂

and Pad3e approximation corresponds to moment matching at zero. More generally, interpolation
methods often construct reduced-order models that match the original model at several points up to
certain orders. These methods can be seen as particular cases of the general method explained in
Section 2. Interpolation methods appear to work quite well in practice and are easy to construct. Their
two main drawbacks are that, so far, there is no global bound of the error between the two models
and stability may be lost in the reduced-order model. The latter can be Bxed via post-processing
thereby incurring extra computations and losing strict moment matching. The lack of a global error
bound is seen in practice by the many heuristics that are possible for placing interpolation points and
selecting at which point the next matched moment should be added. Having to select interpolation
points is therefore at the same time a practical advantage—it allows to monitor the error locally—and
a limiting disadvantage—a heuristic for choosing the interpolation points is needed.

The balanced truncation and optimal Hankel norm approximations are based on the characteristics
of the controllability and observability gramians. They have the important advantages to provide a
global error bound between the reduced-order model and the original model and to guarantee stability
of the reduced-order model. Their drawback is their cubic complexity, which is too high for very
large-scale dynamical systems (say, with an order N ¿ 1000).
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Recently, techniques that attempt to construct a reduced model with a global error bound for
large-scale dynamical systems have appeared. In this third class are the ADI-technique of [8] and
the low-rank Smith methods of [10,2]. These construct low-rank square root approximations of the
controllability and observability gramians. As shown in [8], the image of these square root approxi-
mations of P and Q can be expressed as a union of Krylov subspaces. This establishes a connection
between approximate balanced truncation via ADI and moment matching in the symmetric case.
Another method in this class is proposed in [11] and constructs projectors Z and V by recursively
adding images of solutions of Sylvester equations and then extracting from them some dominant
subset. In Section 3, we have shown that the image of solutions of Sylvester equations can also be
expressed as a union of Krylov subspaces. Even though these methods cannot directly be interpreted
as interpolation techniques, they are linked to Krylov based interpolation by Theorem 2.1.

5.3. Future work

Any strictly proper scalar rational function of degree n is determined by 2n parameters and
can, therefore, be uniquely deBned by 2n scalar interpolating conditions with respect to an original
higher degree transfer function. It can be shown that such a reduced-order transfer function is the
unique minimal transfer function of order n that satisBes the 2n interpolating conditions if and only
if this reduced-order transfer function can be built via multipoint Pad3e. It follows from this that,
generically, imposing 2n interpolating conditions determines a unique minimal reduced-order transfer
function, and it can be constructed via multipoint Pad3e. We may wonder if the following stronger
statement is true: “Every transfer function of strict degree n can be constructed via multipoint Pad3e
approximation of a higher degree transfer function”. If this is true, then every reduced-order model
can be constructed via interpolation. Of course, Bnding the good interpolating conditions is not an
easy task and might be more diFcult than using other model reduction techniques.

In the MIMO case, it is possible to extend Multipoint Pad3e Interpolation to two-sided tangential
interpolation in multiple points (see [4] for a deBnition) and the same question about generality of
the approach can be asked here. These issues will be addressed in a subsequent paper.
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