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1 Introduction

Model reduction techniques are often required in computationally tractable algorithms for the
solution of simulation, optimization, or control problems for large scale dynamical systems. For
linear systems, essentially all reduced models can be produced using projection onto subspaces
determined by the approximation constraints of the problem. For example, rational interpolation,
e.g., Rational Krylov methods, and its generalization to tangential interpolation require projection
onto so-called generalized Krylov subspaces whose bases solve a particular family of Sylvester
equations. In this paper, we derive a numerically reliable way to compute an orthogonal basis of
these generalized Krylov subspaces. The residual error of the large linear systems of equations that
are solved in order to produce the bases are controlled so as to yield a small backward error in the
associated Sylvester equations and in the model reduction problem. The efficiency and effectiveness
of the algorithm is demonstrated for single and multipoint tangential interpolation examples.

2 Subspaces and Model Reduction

Generalized Krylov subspaces appear naturally in the framework of model reduction via tangen-
tial interpolation [4, 6], which is a natural extension of the Multipoint Padé technique [3, 5] to
MIMO systems. In the context of dynamical systems, these techniques provide a reduced order
approximation of a given p × m rational matrix

T (s) := C(sE − A)−1B

of large state dimension N by another p × m rational matrix

T̂ (s) := Ĉ(sÊ − Â)−1B̂

of smaller state dimension n ≪ N . The system quadruples {E,A,B,C} and {Ê, Â, B̂, Ĉ} are the
so-called generalized state-space system matrices of the transfer matrices T (s) and T̂ (s), respectively.
There exist several ways of constructing reduced order transfer functions, but in this paper we focus
on projection methods using interpolation techniques. The projected system matrices {Ê, Â, B̂, Ĉ}
are obtained as follows

{Ê, Â, B̂, Ĉ} = {Z∗EV,Z∗AV,Z∗B,CV },
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using N × n projection matrices V, Z chosen to be orthonormal (Z∗Z = V ∗V = In). Notice
that for simplicity, we have assumed all matrices to be complex, since interpolation conditions
will be formulated at points in the complex plane. By combining complex conjugate interpolation
conditions for real systems, one can always guarantee that the projection matrices V and Z are
also real.

In order to formalize the interpolation conditions, we first introduce some notation. Let us
expand (sE − A)−1B and the m × 1 polynomial vector x(s) around α ∈ C

x(s) :=

n−1
∑

i=0

xi(s − α)i, (sE − A)−1B =

∞
∑

i=0

Ai
αBα(s − α)i (1)

using the matrices
Aα := (A − αE)−1E, Bα := (A − αE)−1B. (2)

If we use the matrix
X :=

[

x0 x1 . . . xn−1

]

(3)

to denote the coefficients of x(s), then we have the following definition.

Definition 2.1 The generalized Krylov matrix of order k of the triple (Aα, Bα,X) is the N × k
matrix defined as :

Kn (Aα, Bα,X)

:=
[

Bα, AαBα . . . An−1
α Bα

]







x0 . . . xn−1

. . .
...

x0






. (4)

The corresponding generalized Krylov subspace of order k is the image of this matrix :

Kn (Aα, Bα,X) := Im {Kn (Aα, Bα,X)} .

With the above notation, the main result of [4] can be stated as follows:

Theorem 2.1 Let (E,A,B,C) be a generalized state space realization of T (s). Assume that the
matrix V ∈ C

N×k is such that K ⊆ Im(V ). If {Ê, Â, B̂, Ĉ} = {Z∗EV,Z∗AV,Z∗B,CV }, with
Z∗Z = V ∗V = In, then the transfer function T̂ (s) := Ĉ(sÊ − Â)−1B̂ satisfies the following tangen-
tial interpolation condition :

(T (s) − T̂ (s))x(s) = O(s − α)n,

i.e. the k first derivatives of T (s)x(s) and T̂ (s)x(s) at s = α are equal (provided α is neither a pole
of T (s) nor a pole of T̂ (s)).

A very interesting property of this theorem is that only the image of the generalized Krylov matrix
Kn plays a role, and not the matrix Kn itself.

One can also impose similar conditions of the transposed system, which essentially amounts to
imposing tangential conditions of the type

x(s)∗(T (s) − T̂ (s)) = O(s − α)n,
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which are obtained by choosing Z such that

Kn(A∗

α, C∗

α,X) ⊆ Im(Z), Aα := E(A − αE)−1, Cα := C(A − αE)−1.

If we choose to interpolate at infinity, rather than at a finite point α, the expansion matrices
change :

x(s) =
n−1
∑

i=0

xis
−i, (sE − A)−1B =

∞
∑

i=0

Ai
∞

B∞s−i−1

with
A∞ := E−1A, B∞ := E−1B,

and the above theorem still holds with the interpolation conditions

(T (s) − T̂ (s))x(s) = O(s−n−1).

Left and right tangential interpolation conditions, and finite and infinite ones can also be combined,
and they all amount to imposing conditions of the same type as in Theorem 2.1. We refer to [4]
for more details.

In order to develop numerically reliable model reduction algorithms, it is therefore important
to find an efficient way of computing an orthonormal basis of such generalized Krylov subspaces.

3 Relation to Sylvester equations

For ease of notation, we write in the sequel K for Kn (Aα, Bα,X) and K for Kn (Aα, Bα,X). We
first derive a simple way of constructing an orthonormal basis for the space K. Let us denote the
columns of the matrix K by kj , 1 ≤ j ≤ n. From (4), the following relations are then obtained for
j = 2, . . . , n :

kj =

j
∑

i=1

Ai−1
α Bαxj−i

= Bαxj−1 + Aα

j−1
∑

i=1

Ai−1
α Bαxj−1−i

= Bαxj−1 + Aαkj−1. (5)

The following result, implicitly shown in [6] and [4], rewrites these equations in a more compact
form using the Jordan block matrix Jα ∈ C

n×n :

Jα =



















α 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 . . . . . . 0 α



















. (6)
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Lemma 3.1 Let Aα := (A − αE)−1E, Bα := (A − αE)−1B. Then the Krylov matrix K :=
Kn(Aα, Bα,X) satisfies the following Sylvester equation :

AK − EKJα − BX = 0. (7)

Moreover, the image of any N × n matrix K̄ spanning K satisfies a transformed equation

AK̄ − EK̄J̄α − B̄X̄ = 0, (8)

where
J̄α = TJαT−1, X̄ = XT−1.

Proof. Equation (5) yields the relation K = AαKJ0 + BαX from which one obtains (7) after
multiplication by (A − αE). If Im(K̄) = Im(K), there exists a nonsingular matrix T such that
K̄T = K. By inserting this into (7), we obtain (8). �

The equivalent result for interpolation at infinity is derived in a similar fashion and is also shown
in [6] and [4].

Lemma 3.2 Let A∞ := E−1A, B∞ := E−1B. Then the Krylov matrix K := Kn(A∞, B∞,X)
satisfies the following Sylvester equation :

EK − AKJ0 − BX = 0. (9)

Moreover, the image of any N × n matrix K̄ spanning K satisfies a transformed equation

EK̄ − AK̄J̄0 − BX̄ = 0, (10)

where
J̄0 = TJ0T

−1, X̄ = XT−1, K̄ = KT−1.

If one wants to solve the multi-point tangential interpolation problem the we have the following
relation with Sylvester equations

Theorem 3.1 Let αi be set of interpolation points and let Xi be N ×ni matrices defining the right
tangential directions at these points. Then the matrix V whose block columns are the generalized
Krylov matrices Kni

(Aαi
, Bαi

,Xi) satisfies the following Sylvester equation :

EV F − AV G − BX = 0, (11)

where
sF − G = diag {sI − Jαi,ni

}

is a regular pencil with Jordan blocks Jαi,ni
of dimension ni at αi. Moreover, the image of any

N × n matrix V̄ spanning Im(V ) satisfies a transformed equation

EV̄ F̄ − AV̄ Ḡ − BX̄ = 0, (12)

where
(sF̄ − Ḡ) = T (sF − G)S, X̄ = XS, V̄ = V T−1.
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This result easily follows from the two earlier lemmas and was also proven in [6], [4]. A dual
result holds for the left tangential interpolation problem, but we omit it here. Notice also that the
interpolation points can be chosen at infinity. Notice also that we can choose S = I if we do not
insist on having F = F̄ = In.

The projection matrices V and Z are typically chosen to be orthonormal, even though the
interpolation conditions are satisfied for any basis of Im(V ) and Im(Z). It can be shown that the
choice of orthonormal bases yields less sensitivity to errors when defining the reduced order model
in terms of backward errors on the original model. This analysis will be included in the full paper.

4 Perturbed Sylvester Equations

We would like to assess how accurately the Sylvester equations are being solved and how well the
computed solution represents the space in which we are interested. For this, we first focus on the
interpolation at a single finite point α since the general problem is very similar in nature. In order
to simplify the notation, we also drop the index α in the matrix Jα. It follows directly from the
Sylvester equation (7) that an orthonormal basis for K can be obtained by essentially computing
the columns of K and then orthonormalizing them, which is done by the following algorithm.

Algorithm 4.1 1. Compute the first vector k1 by solving

(A − αE)k1 = Bx0 (13)

2. For i = 2 to n, compute recursively the vectors ki by solving

(A − αE)ki = Bxi−1 + Eki−1 (14)

3. Orthonormalize the columns of K by a QR factorization

The most important part of the computational complexity resides in solving the n linear systems
(13,14). For large scale systems, this can be done using iterative techniques, for instance by using a
Krylov method. The problem with this algorithm is that residual numerical errors in each solution
of a linear equation will lead to numerical errors that propagate to the next solutions of linear
equations. This may lead to a poor approximation of the exact subspace as we now point out.

Let us assume that the residual errors in the above linear systems are given by fi, i.e.

(A − αE)k1 − Bx0 = f1, (15)

(A − αE)ki − Bxi−1 − Eki−1 = fi, (16)

and that we impose the norm of these residuals to be bounded by δ.
We need to orthonormalize the computed matrix K, which is equivalent to computing a QR

factorization of K. This is known to be delicate from a numerical point of view if the original matrix
K is poorly conditioned [1]. This is typically the case for Krylov matrices since their subsequent
columns tend to converge to the dominant eigenvector of Aα and hence get closer to each other.
The above construction yields a Sylvester equation with a small matrix residual :

AK − EKJ − BX = F, ‖F‖ ≈ δ. (17)
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The subsequent QR factorization yields

K = QR, K̄ := Q = KR−1, T := R (18)

and in the coordinate system of the orthonormalized matrix K̄ we therefore obtain a Sylvester
equation with a considerably larger residual F̄ := FR−1 :

AK̄ − EK̄J̄ − BX̄ = F̄ , ‖F̄‖2 ≈ δ‖R−1‖2, (19)

since the transformation matrix R is often badly conditioned.
We can interpret the error F̄ as a backward error on the model. The easiest way to do this is

to construct a backward error ∆A := F̄Q∗ which yields

(A − ∆A)K̄ − EK̄J̄ − BX̄ = 0, ‖∆A‖2 = ‖F̄‖2, (20)

since Q∗K̄ = In. This says that we performed an exact interpolation of a perturbed model, in
which the perturbation ∆A is of the norm of the residual error F̄ . In the next section, we show how
to compute the successive columns of the orthonormalized matrix K̄ directly, while yet ensuring a
small residual F̄ .

5 Merging into Gram-Schmidt

The idea of the new algorithm we propose in this section is to merge the Gram-Schmidt orthogonal-
ization of K with the recursive calculation of the columns of K. At each step of the algorithm, say
for instance step i, the i-th column of Q (denoted by qi) is computed. To this end, we (implicitly)
construct matrices K(i), X(i) and J (i) such that

AK(i) − K(i)J (i) + BX(i) = 0,

and an upper triangular matrix R(i) such that

K(i)R(i) = K, J (i) = R(i)JR(i)−1
, X(i) = XR(i)−1

and

K(i) =
[

q1 . . . qi ki+1 . . . kn

]

,

i.e., at each step of the algorithm, the i first columns of K(i) are equal to the i first columns of the
unitary matrix Q and the k − i last columns of K(i) are equal to the corresponding columns of K.

Denote the j-th column of K(i) by k
(i)
j and the j-th column of X(i) by x

(i)
j . Let j

(i)
s,t := J (i)(s, t).

Our objective to derive an algorithm that constructs an orthonormal basis Q of the generalized
Krylov matrix K such that the residual error of the corresponding Sylvester equation is bounded
by a prescribed tolerance δ:

‖AQ − Q(RJR−1) + B(XR−1)‖ < δ. (21)

We next present the algorithm in detail.
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Initialization

Define J (0) := J , X(0) := X and K(0) := K. Now, compute the first column k
(0)
1 of K(0) that

satisfies
AK(0) − K(0)J (0) + BX(0) = 0.

From the preceding definitions, the first column of K(0) satisfies the equation

(αI − A)k
(0)
1 = Bx0. (22)

First step

Define

R(1) :=

[

‖v‖
In−1

]

, J (1) := R(1)J (0)R(1)−1
, X(1) := X(0)R(1)−1

. (23)

Because J (0) and R(1) are upper triangular, so is J (1). Moreover, the diagonal elements of J (0)

remain unchanged into J (1). Note that J (1) is equal to J except for element (1, 2): J (1)(1, 2) = −‖k‖
instead of −1. The matrix K(1) is defined to be the solution of

AK(1) − K(1)J (1) + BX(1) = 0.

From Lemma 3.1, this implies that K(1)R(1) = K(0). Denote the first column of K(1) by k
(1)
1 . From

the preceding definitions,

k
(1)
1 =

v
(0)
1

‖v
(0)
1 ‖

= q1. (24)

So far, we have only computed the linear system (22), the modified matrices J (1) and X1 that

satisfy (23) and the new vector k
(1)
1 from (24). Moreover, note that the k − 1 columns of K(1) and

K are equal, i.e., for 2 ≤ i ≤ k, k
(1)
i = ki.

Step i+1

Assume that the i first columns of K(i) are equal to the i first columns of Q, that the k − i last
columns of K(i) are equal to the corresponding columns of K and that

AK(i) − K(i)J (i) + BX(i) = 0,

where J (i) is upper triangular. At this step, the i first columns of K(i) (and only these i first
columns) have already been computed. These are the i first columns of Q (denoted by q1, . . . , qi).
From the preceding equations,

(A − αI)ki+1 +

i
∑

s=1

q(i)
s j

(i)
s,i+1 + Bx

(i)
i+1 = 0. (25)

For two vectors x, y ∈ C
N , the usual scalar product is denoted by

< x, y >:= x∗y.
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The next orthogonal vector qi+1 is equal to

qi+1 =
ki+1 −

∑i
j=1 < qj, ki+1 > qj

‖ki+1 −
∑i

j=1 < qj, ki+1 > qj‖
. (26)

In order to find qi+1, we thus need to compute ki+1 by solving the linear system (25) and the i
scalar products < qj, ki+1 >, with j = 1 to i.

Define the matrix R(i+1) as follows:

r(i+1)(s, t) := δs,t if t 6= i + 1, (27)

r(i+1)(i + 1, i + 1) := ‖ki+1 −

i
∑

j=1

< qj, ki+1 > qj‖, (28)

r(i+1)(j, i + 1) := < qj , ki+1 > for 1 ≤ j ≤ i, (29)

r(i+1)(j, i + 1) := 0 for i + 2 ≤ j ≤ r. (30)

At each step of the algorithm, the structure of R(i) is the following:

R(i) :=















1 < q1, ki >
. . .

...
1 < qi−1, ki >

r(i)(i, i)
In−j















. (31)

Note that the inverse of this matrix is easy to compute exactly:

R(i)−1
:=



















1 −<q1,ki>

r(i)(i,i)

. . .
...

1 −
<qi−1,ki>

r(i)(i,i)
1

r(i)(i,i)

In−j



















. (32)

As usual, the updated matrices are

J (i+1) := R(i+1)J (i)R(i+1)−1
, X(i+1) := X(i)R(i+1)−1

. (33)

Moreover, the matrix K(i+1) that satisfies

AK(i+1) − K(i+1)J (i+1) + BX(i+1) = 0,

(where J (i+1) is upper triangular) is such that its first i + 1 columns are equal to the first i + 1
columns of Q and its k − i − 1 last columns are equal to the corresponding columns of K.

Consider the equations when we do not perform exact solves at each step but where we allow
for a residual error term ei+1 in the equation

(A − αI)ki+1 +

i
∑

s=1

q(i)
s j

(i)
s,i+1 + Bx

(i)
i+1 = ei+1, ‖ei+1‖2 < δ. (34)
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In practice, (25) is computed using iterative solvers such as GMRES until the desired tolerance is
reached. As the vectors ki+1 are iteratively computed within a given tolerance, the residual error
of the (7) is small as well:

AK − KJ + BX = E, ‖E‖ < δ.

The problem is that the orthogonalization step (26) can lead to a large residual error for q, especially
when the vectors ki become parallel. This can be overcome by iteratively solving the linear system
(25) for the orthogonalized vector qi until the tolerance is reached.

6 Proposed Algorithm

The following algorithm, written in pseudo-code Matlab, implements the proposed strategy for
controlling the influence of approximate solutions to the linear systems.

Algorithm 6.1 In order to compute the orthonormal basis Q of K within a given residual error
δ, proceed as follows :

1. Initialization: Construct the matrices X and J as defined in (6).

2. For i=1:k,

(a) error = ∞; R = eye(n); Rinverse = eye(n); δ = 10−6; V = zeros(n, k);

(b) vecright = −BX(:, i) +
∑i−1

j=1 V (:, j)J(j, i);

(c) While error > δ,

i. V (:, i) = V (:, i) + gmres((A − λIn), vecright, [], δ);

ii. Updating of the matrices J and X:

A. vproj = zeros(n, 1);

B. For j = 1 : (i − 1), R(j, i) = (V (:, j)′)V (:, i); vproj = vproj + R(j, i)V (:, j);
R(i, i) = norm(V (:, i) − vproj);

C. For j = 1 : (i − 1), Rinv(j, i) = −R(j, i)/R(i, i); Rinv(i, i) = 1/R(i, i);

D. J = R.J.Rinv; X = XRinv;

iii. Orthogonalization:

A. V (:, i) = V (:, i)/norm(V (:, i));

B. for j = 1 : i− 1, sp = (V (:, j)′)V (:, i); V (:, i) = V (:, i)− sp.V (:, j); V (:, i) = V (:
, i)/norm(V (:, i));

iv. residual error verification:
res = AV (:, i) − V J(:, i) + BX(:, i); error = norm(res);

v. if error > δ,
vecright = −gmres((A − λIn), res, [], δ);

Remark 6.1 In order to compute qi+1, it is numerically preferable to perform an orthogonalization
at each step:

1. q̄(0)(i + 1) := ki+1
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2. For s = 1 to i, compute

q̄(s)(i + 1) :=
q̄(s)(i + 1)− < qs, ki+1 > qi

‖q̄(s)(i + 1)− < qs, ki+1 > qi‖
.

3. After the last step i, we obtain qi+1 = q̄(i)(i+1). This corresponds to step 2(c)iii of Algorithm
6.1.

7 Numerical examples

In this section we show numerical experiments to illustrate the accuracy we can obtain with the
proposed new algorithm (Alg2) and compare its results with the so-called naive algorithm (Alg1).
In both algorithms the solves were performed with the GMRES code of Matlab with a prescribed
tolerance of tol=10−5. We also compared these results with what one could call “exact” methods
where we replaced the GMRES calls by sparse solves (Matlab’s backslash for sparse matrices).
These two other algorithms were called respectively Alg3 and Alg4 in the experiments. In all the
solves we used a simple diagonal preconditioner scaling the row norms to 1.

7.1 Random Matrix

This is the benchmark RAND from the Benchmark Collection reported in [2]. The matrices A, B,
C are sparse randomly generated. The matrix E is the identity. The state dimension is n = 100,
the input dimension is m = 2 and the output dimension is p = 2. We generated the n×m matrix X
randomly using the Matlab function randn. We ran two experiments : one with the interpolation
point α = 1 and Jα a Jordan block of dimension 10, and one with multipoint interpolation using
a 10 × 10 upper triangular matrix J with eigenvalues in the right half plane. The figure below
describes the spectrum of the original matrix A and of the preconditioned shifted matrix A − αIn

needed for the solves.
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An orthonormal basis of the generalized Krylov subspace K is computed using the four algo-
rithms described above. Since GMRES performs reasonably well for this random matrix example,
we set the maximum number of inner iterations in GMRES to 10. The accompanying table gives
the total number of GMRES steps performed by algorithms 1 and 2.

10



1 2 3 4 5 6 7 8 9 10
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

R
el

at
iv

e 
er

ro
rs

 o
f t

he
 r

es
id

ua
l

Column index of residual

Preconditioned RAND model   Tol=1.E−5  Maxiter=10  Jordan at α=1

Alg1
Alg2
Alg3
Alg4

κ(R
i
)

Alg1 24 23 23 23 24 25 25 25 25 25

Alg2 12 12 13 15 17 19 20 22 23 24

We observe here that the total amount of work performed by the two methods is comparable,
but that Algorithm 2 indeed yields the required error level in the transformed coordinate system,
whereas the naive algorithm looses all accuracy by column 7 of the residual. When replacing the
iterative solves by exact solves (Algorithms 3 and 4) the starting accuracy is, as expected, much
better, but as one progresses further in the Krylov subspace, accuracy decreases. The solid line
equals κ(R(1 : i, 1 : i)) which is a progressive way to measure how poorly conditioned the original
Krylov matrix was.

In the second test we look at multipoint interpolation.
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i
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Alg1 28 30 29 36 36 31 28 30 30 30

Alg2 15 25 27 34 38 39 41 46 54 58
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Here we see that even the exact solves used in the naive algorithm cannot produce the same
accuracy as Algorithm 2 with approximate solves. The loss of precision in both naive algorithms
is very drastic but Algorithm 2 has to compensate this with more work as can be seen from the
number of GMRES steps needed.

7.2 CD Player

This system describes the dynamics between the lens actuator and the radial arm position of a
portable compact disc player [2]. The matrices A, B, C are sparse and E is the identity. The state
dimension is n = 120, the input dimension is m = 2 and the output dimension is p = 2. We again
generated the n×m matrix X randomly using the Matlab function randn and ran two experiments
: one with the interpolation point α = 1000 and Jα a Jordan block of dimension 10, and one with
multipoint interpolation using a 10×10 upper triangular matrix J with eigenvalues in the right half
plane. The figure below describes the spectrum of the original matrix A and of the preconditioned
shifted matrix A − αIn needed for the solves.
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An orthonormal basis of the generalized Krylov subspace K is again computed using the four
algorithms. The original spectrum of A is quite dispersed but the diagonal preconditioning puts all
eigenvalues on a half circle which is a considerable improvement. Good results were obtained when
setting the maximum number of inner iterations in GMRES equal to 10. A first experiment was
done with α = 1000 and a Jordan block Jα of dimension 10 (the size of the eigenvalues of A is also
in the thousands). The accompanying table gives the total number of GMRES steps performed by
algorithms 1 and 2.
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Preconditioned CD model   Tol=1.E−5  Maxiter=10  Jordan at α=1000

Alg1
Alg2
Alg3
Alg4

κ(R
i
)

Alg1 28 24 29 28 26 29 29 26 28 29

Alg2 17 20 43 45 73 76 99 94 100 100

Both naive algorithms again have significant difficulty getting any reasonable accuracy, and
Algorithm 2 again pays the price of the precision it manages to obtain.

The last experiment involves a multipoint approximation : J is chosen random upper triangular
with eigenvalues in the right half plane. This problem turns out to be better conditioned as the
growth of κ(R(1 : i, 1 : i)) indicates.
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Preconditioned CD model   Tol=1.E−5  Maxiter=10  Multipoint interp.

Alg1
Alg2
Alg3
Alg4

κ(R
i
)

Alg1 34 38 34 39 35 38 35 38 36 37

Alg2 21 22 23 23 23 25 27 27 33 34

8 Concluding Remarks

It is clear that Algorithm 6.1 performs better than Algorithm 4.1. Nevertheless, problems can
appear some of which will be discussed in the full paper.

One drawback of Algorithm 6.1 is that at each step, we first compute the vector ki, i.e. the
i-th column of the Krylov matrix K, before the iterative step. It turns out that the norm of the
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successive columns of the Krylov matrix K can grow very fast. This can lead to poor convergence of
GMRES. Moreover, important numerical errors can appear in the orthogonalization step. In order
to remedy this problem, it should be possible to normalize the matrices J and X iteratively. It is
also possible to address this by considering applying the suggested modification to more advanced
Rational Krylov algorithms that can be placed in this framework, e.g., Dual Rational Arnoldi and
Rational Lanczos.

The choice of preconditioning use with GMRES clearly has an effect on the efficiency possible
given a desired tolerance. More detailed work is required on this.

The ideas presented here can also be applied in a nontangential sense. A comparison with non-
tangential techniques, e.g., using an SVD in order to find the most important directions iteratively
for X, is needed.

Finally, we briefly noted that we can interpret the effect of the error in terms of a backward
error on the original system. The form here was a simple one-sided statement. This can be done
in a true two-sided form and can be coupled with constraints on the form of the error to provide
a more complete framework in which to conduct a rigorous error analysis of the Rational Krylov
family of methods with approximate solutions to the linear systems and Sylvester equations.
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