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Abstract

In this paper we first recall the general theory of Popov realizations of parahermitian
transfer functions in the context of generalized state space systems. We then use this general
framework to derive linear matrix inequalities for some particular applications in systems and
control. Finally, we indicate how these problems can be solved numerically and what specific
numerical difficulties can be encountered in these applications.

1 Introduction

Parahermitian transfer functions play a fundamental role in systems and control theory : they
represent e.g. spectral density functions of stochastic processes, show up in spectral factorizations,
and are also related to the algebraic Riccati equation. If these transfer functions are positive, they
also form a convex set. This property has lead in systems and control theory to the extensive use
of convex optimization techniques in this area, especially for so-called linear matrix inequalities
[5]. We treat the case of positive transfer functions defined on the unit circle (i.e. the discrete-time
case) as well as on the imaginary axis (i.e. the continuous-time case) since these are the most
relevant to the area of systems and control.

We start by briefly recalling in Section 2 the basic theory of parahermitian transfer functions.
The novelty of this section lies in the treatment of the most general rational transfer functions
for which we propose realizations that reflect the parahermitian structure of the transfer function.
The Kalman-Yakubovich-Popov (KYP) Lemma is re-derived in this general framework, and we
also make the link to the linear matrix inequalities (LMI) which constitute the main thread of this
paper. The KYP Lemma is also presented as an algebraic tool for problems of spectral factorization
of rational matrices.

The rest of the paper contains two parts. Section 3 surveys some recent formulations of LMI
solutions to some specific problems in systems and control. We treat e.g. the particular problems
of positive real systems (including dissipativity), of non-negative matrix polynomials (for which
we derive new necessary and sufficient conditions), of integral quadratic constraints and of model
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reduction (possibly with passivity constraints). These problems either make explicit use of the
generalized state-space formulation of LMI or illustrate some of their particular algorithmic aspects
such as complexity and feasibility. Sections 4 and 5 then survey the basic numerical tools for solving
these LMI problems. The basic approach is the interior-point method for conic problems for which
the basic theory is developed in some detail. We also discuss issues of feasibility, complexity
and speed of convergence. The last section shows that level set and cutting plane methods can
efficiently solve a particular subset of these problems.

We end by proving in appendix some of the basic ideas underlying this paper, which can not be
found in this generality in the literature.

2 Positive parahermitian matrix functions

A matrix function ® : C — C"*” maps the complex variable A to a complex matrix ®(A). In
this paper we restrict ourselves to rational matrix functions, i.e. where the elements of ®(\) are
rational functions of A. We introduce the paraconjugate transpose of this function with respect
to a particular curve I' in the complex plane. For convenience we use a different symbol for the
variable A\ for each choice of I'. These three case are (a) the real axis (including the point at
infinity), (b) the imaginary axis (relevant to continuous-time dynamical systems) and (c) the unit
circle (relevant to discrete-time dynamical systems) :

Op(z) = &*(z) forT' =R, (2.1a)
Be(s) = B*(—s) for T = j R, (2.1b)
Op(z) = d*(1/2) for T = e/ ¥, (2.1c)

where ®*(.) is just the conjugate transpose ®(.). In this paper we will see that these three particular
cases can be treated in much the same way. For this reason, we use the generic notation ®,(.) for
Pp(.), Dc(.) and Pp(.) and A for the variables z, s and z.

If () is rational and analytic in A, so is its paraconjugate transpose as it can be easily verified.
We now say that ®()\) is a parahermitian matrix function, if it is its own paraconjugate transpose,
ie. if

D, (N) = ®(N) (2.2)
for the three cases (2.1a, 2.1b, 2.1c). It is a well known fact that there exist first order conformable
transformations of the complex plane that link the above cases with each other. Since substituting
the real axis for the imaginary axis is a trivial operation (jz = s), only the cases (2.1b)and (2.1c)
will be emphasized in the sequel, in view of the importance of their role in continuous-time and
discrete-time control systems, respectively. Also, results specific to the above two situations will
be identified by using the so-called Laplace operator (A = s) for continuous-time systems and the
delay operator (A = z) for discrete-time systems.

2.1 Generalized state-space realization
Rational transfer matrices can always be represented as simple expressions involving first order

polynomial matrix functions (i.e. pencils). Indeed, every rational transfer matrix G(\) of dimension
p x m is known from realization theory to admit a generalized state-space model [54] of the form

GN) =(C—-AF)ANE-A)"'B+D, (2.3)



which is the Schur complement of the so-called system matrix S(A) of dimension (n + p) x (n+m)

A—\E B] (2.4)

SO = [ C—\F D

with respect to its top left block entry. The minimum dimension n of the invertible pencil (A —AE)
is the McMillan degree of G()) [54], and the generalized eigenvalues of A — A E are then the poles
of G(X\) [54, 29]. A test for the minimality of the realization S()) is the following set of conditions
[43]:

(1) rank[ A—-)ME B ] =n, VYAeC |\l <o

(ii) rank | E B ]| =n;

A—-)\E
(i4) rank C—\F ] =n, VAeC [N < oo; (2.5)
(iv) rank Ilg ] =n.

If these conditions are not all satisfied, then the system matrix (2.4) is not minimal and the state
space dimension can always be reduced so as to achieve minimality [54]. Minimal realizations are
not unique, even though their dimension n is. A simple class of transformations acting on (2.4)
and preserving minimality is defined by

v [A=XE B1 [P 0 A-)E B Q X
so-[A2E B)-[2 0] [anE B¢ n) e

with P, Q invertible matrices and where X is chosen so as to have E X = F X = 0. Indeed, the
Schur complements of S(\) and S(\) are easily checked to be identical so that they are both well
defined realizations of G(A). The minimality conditions (2.5) for S()) are easily seen to hold as
well since left and right invertible transformation of the relevant pencils do not change their rank.
Let us finally point out that there is no unique definition of minimality for generalized state-space
systems.

The zeros of G(\) can also be computed as generalized eigenvalues of a smaller pencil, derived
from S(A). Let M be any invertible row transformation such that

HEIE!

where E is n x n (one can choose M to be unitary to achieve this). Applying this transformation
to S(\) defines the matrices A, B,C and D as follows

S(N) = MS(\) = [ A-AE

5 &

. 2.8
= 3 28
If D is invertible, it follows from [29] that the Schur complement

(A-XE)-BD'C (2.9)

is a so-called zero pencil of the system : its generalized eigenvalues are the zeros of G()\). If D
is not invertible, it is shown in [29] that one can still derive a zero pencil but we will not further
elaborate on this here.



2.2 Parahermitian realizations

It is natural to expect that parahermitian transfer matrices admit realizations (and hence system
matrices), that reflect this property in some structural way. In fact, one will consider in this paper
generalized state space realizations of Popov type

[ 0 A*+sBE* C*+sF*

S(S) = A-sE H11 H12 forT = ] R, (210&)
| C—5sF Hoy Hss
[ 0 zA*—E* zC*—-F*

S(z)=| A-2E Hiq His forT = el ®, (2.10b)
| C—zF Hy, Hss

where
Hyy Hypp
H= € C(ntp)x(n+p)
[ Hy  Hpy
is hermitian. Setting the matrix T (\) = (C — AF)(AE — A)~!, one finds after some algebraic
manipulations that the transfer function corresponding to these system matrices is given by

Hy1 Hio T.(\)

dN) =T\ I 2.11

w=rro 11| w ] .11

which is clearly parahermitian. Note that the above realizations are not necessarily minimal. If it

is the case, then the poles of the transfer function are the eigenvalues of, respectively,
[ 0 A*+sE*] 0 zA*—E*]

(2.12)

A—sE H11 and [A—ZE H11

which are symmetric with respect to I" (i.e. s;,—3; or z;,1/%;). The zeros of the transfer function
are those of the respective system matrices, which clearly exhibit the same form of symmetry. If
we define a transformation matrix M as in (2.7) and then define accordingly :

Al . A Hy Hyp . Hyy Hypp "
5 | =M ~ L m | =M M 2.13
[C] [C]’ [Hm H22] [Hm Hm] ’ (2.13)

this yields a new system matrix S(\) which is similar to S(\) but with F = 0, and which has
the same zeros. If now Hy, is invertible, then the zeros are also the generalized eigenvalues of the
respective Schur complements of the system matrices :

0 A* + s E* c* . L
[ A-sE Hyy ] - [ s } Hy' [ C Hy |, (2.14a)

0 2 A* — B 20" . I
[ A-zE Hi, } N [ His } Hy' [ C Hy ], (2.14b)

which are known in the literature as the Hamiltonian and the symplectic pencils describing the
zeros of the respective parahermitian transfer functions. This could suggest that parahermitian
transfer functions would be always of even degree. This is actually not the case, as exemplified by
the first degree scalar parahermitian transfer function G(s) = 2j/s, which has a pole at s = 0 and
a zero at s = oo; note that odd degree parahermitian transfer functions must have at least one
pole and zero on the curve I'. However, if the transfer function, as considered in the sequel, is not
only parahermitian but also non-negative definite on the contour I', then it has always a minimal
realization of type (2.10); this is easily established from the well known spectral factorization
property ®(\) = G(A\) G.(\) of any such transfer function [64]. We will also show that nonminimal
realizations of the above type always exist.



2.3 Linear matrix forms and the Kalman-Yakubovich-Popov Lemma

Realizations of the type (2.10) are obviously not unique, since they are invariant under transforma-
tions of the form (2.6). We now introduce the following transformations which leave (E, A, C, F)

invariant :
[T 0 0] [ I XE* XF* 0 A*+sE* C*+sF* ]|
| FX 0 T | |0 0 I | C—sF  Hxn(X) Hxn(X) |
[ I 0 0] [ I XA XC* [ 0 2 A* —E* zC* — F* ]
EX I 0[Sk |0 I 0 =| A—2E H;(X) HpX) |, (2.15b)
| FX 0 I | [0 0 I | C—2F Hxn(X)  Hxp(X)
where the respective matrices H(X) are given by
- | Hun Hiz E . A x
H(X)_[H21 H22]+[F]X[A C]+[C]X[E ], (216
- Hll H12 A * * _ E * *
H(X)_[H21 H22]+[C}X[A o+ ] [F}X[E ). (216b)

Let us emphasize that the Schur complement (i.e. the transfer function) of these realizations does
not change under these transformations.

It turns out that the celebrated Kalman-Yakubovich-Popov Lemma [31, 62, 48] allows one to
express the non-negative definiteness of ®(\) on the curve I' in terms of conditions on H(X).

Theorem 2.1 (KYP Lemma). Every parahermitian transfer function ®(\) has a realization as
in (2.10), with condition (2.5) satisfied. Moreover, it is non-negative definite on T, i.e.

®(A) =0, for almost all X € T, (2.17)
if and only if there exists a hermitian matriz X such that
H(X)*>0. (2.18)

Proof. The basic ideas of the proof are only given. Every parahermitian transfer function admits

an additive decomposition
(N =G\ + G.(N)

(take e.g. G(X) = ®()\)/2). Using a realization G(A) = (C — AF) (A\E — A)~! B + D which is
minimal in the sense of (2.5), we clearly have the identity
T (N)
I

with T'(\) = (C— A F) (A E — A)~!, which is a realization of the type (2.10) because of (2.11). The
corresponding realization is then given by (2.10), where one has

0 B

®(N) = B* D4 D* (2.19)

[ TN 1][

(2.20)

i[5 ot

B* D+ D*
In appendix we show that with condition (2.5) satisfied for the subsystem T'(\), the transfer matrix

given in (2.19) satisfies ®(\) = 0 for almost all A € T"if and only if there exists a hermitian matrix
X such that H(X) > 0. O



The above result is linked to that of spectral factorization. If H(X) > 0 it can be factorized as

L

H(X):[W

} [0 oW, (2.21)

so that S()) is easily seen to be the system matrix of
DN =E(N) EL(N) (2.22)
with the so-called spectral factor Z()\) defined by
EN)=(C—-AFY\NE-A)'L+W. (2.23)
For more details on spectral factorizations of rational matrices, see [43, 64].

Closely related to the above result is the so-called Positive Real Lemma; see, for instance, Theorem
3.2 in Section 3.1 and the references herein.

Another related result is the Bounded Real Lemma. A transfer function G()), which is bounded
almost everywhere on I', has Lo, —norm lower than v > 0 if and only if it satisfies the constraint

G\ G.(\) =+, for almost all A € T, (2.24)
which can be recast in term of the non-negativity condition
I -G\ G.()) =0, for almost all A € T. (2.25)
If GA\) = (C —AF)(AE — A)~! B+ D, then a realization is trivially obtained via

VI-GANG.N=[TN I]H [ T*I(A) ] (2.26)
with T introduced before and H defined as

0 0 B * 7y
H_|:0’)/2_[:|_|:D:|[BD]’
which again is of the type (2.10).

Remark 2.2.

1. We have not assumed anywhere that G()) is stable (i.e. that the generalized eigenvalues of
AE — A are in the stable region of the complex plane, hence G(A) is analytic in Re A > 0). If
®(A) has no poles on T' then G()\) in the above theorem can be chosen stable. This implies
e.g. that the realization for ®()\) is minimal and that the solution X for the KYP Lemma is
negative definite.

2. As pointed out in the proof of Theorem 2.1, every parahermitian transfer function can be
realized as in (2.10) when minimality is given up. The first order transfer function ®(s) =
2j/s has e.g. a realization (2.19) with sE — A =5, B=j,C=1and D=F = 0.

3. Alternatively, one can consider realizations of the form
G\ =C(\E - A~ YB-\K)+D, (2.27)

which are “dual” to the generalized state-space representation in (2.3), in the sense that G, (\)
has precisely a realization of the form (2.3). Then, the state-space representation (2.11) or
the expressions of the matrices H(X) showing up in (2.16) can be rewritten accordingly.



2.4 Linear and Riccati matrix inequalities

As shown before, a transfer function ®()\), non-negative definite on T', necessarily implies the
existence of a Hermitian matrix X such that H(X) > 0. Since the entries of this matrix inequalities
are linear in the elements of the unknown matrix X, they are called linear matrix inequalities.

Let us now further assume that Hoo(X) is positive definite. Then, the Schur complement of H(X)
with respect to Hoo (X ) must be non-negative definite. It is easy to check that this amounts to the
constraints

Hyi+EXA* + AXE*— (Hiy+ EXC* + AX F¥)
(Hp+ FXC*+CXF*)~\ (Hy + FXA*+CXE*) » 0,

Hy+AXA* —EXE*— (Hys+AXC* — EX F¥)
(Hyy +CXC* —FX F*)™' (Hy + C X A* = FX E*) = 0,

(2.28a)
(2.28D)

in the continuous-time and discrete-time cases respectively. These are the so-called Riccati matrix
inequalities introduced in [58].

For appropriate choices of X, one has that rank Hao(X) = rank H(X) so that its Schur complement
in H(X) must be zero. The above inequalities then become equalities, which have the form of the
celebrated Riccati equations for which X appears therefore to be a solution. These equations are
rewritten below for the case that F' = 0 since this can always be obtained under a transformation
(2.7)-(2.13) of the system :

Hii+EXA* + AX E* — (Hys + E X C*)(Has)~! (Ha1 + C X E*) =0, (2.29a)
Hiy+AXA* —EXE* — (His+ AXC*)(Hyp + CX C*)~  (Hy + CX A*) =0.  (2.29b)

The solution X of these equations is obtained from the calculation of eigenspaces of the zero pencils
(2.14) [35]. If there are no repeated eigenvalues in these pencils (this is the generic case) then the
number of solutions X to these equations are finite, whereas the inequalities have typically an
infinite solution set, as shown in a later section.

3 Selected applications

3.1 Positive Realness and Dissipativity

In the study and control of general dynamical systems the energy stored in the system is an
important information. This idea, borrowed from thermodynamics, has been clearly established in
the influential paper of Willems [59], where dissipativity has been introduced as a basic concept in
system theory.

Energy related concepts like passivity and (later) dissipativity have been widely used as control
tools, since the breakthrough by Popov in the early 1960’s. Until the work of Popov [48], passivity
was a basic network theory concept, dealing with rational transfer functions that are positive real
and can be realized with passive elements of a circuit (RLC networks). Popov’s main contribution
consisted in introducing passivity as one of the fundamental feedback properties. He developed
a comprehensive theory of so-called hyperstability. A typical situation is that of a controlled
dynamical system and an associated quadratic index

b= Az 4 Bu, 90,T) =2 Iz + [ [ 2@ w ]| B B2 1[0 g (5

= , MY, - o Hf2 H22 U(t) ’ '



which is called hyperstable if there exist so > 0, s; > 0 such that
sillz(D)[I? < 1(0,T) + sol[z(0)][*, VT >0 (3.2)

along the solution of the differential equation. But (3.2) is precisely the dissipation inequality
(see [60]) satisfied by the linear dynamical system & = Az + Bu, with the quadratic supply rate
w(z,u) =1(0,T).

Under certain assumptions (B # 0, “minimal stability”), Popov obtains necessary and sufficient
frequency-domain conditions for hyperstability, showing that the system (3.1) is hyperstable if and
only if

; -1
M) = [ B (gt -4~ 1] | g e || G007 g
for every w € R, det(jwl — A) # 0. In other words, hyperstability is equivalent to the non-
negativeness (on jR) of a particular parahermitian transfer function (also called Popov function).
In [60], Willems then gives an equivalent condition for dissipativity, expressed by the positive
realness of the function II(s), thus linking the concepts of dissipativity and hyperstability to that
of positivity (see [49]). Passivity can be regarded as a special case of dissipativity for the system

& = Az + Bu, y = Cz + Du, with quadratic supply rate

1
w(z,u) = [ A The ] %g* Di—CD* } [ i } . (3.3)
For more details on this relationship, see [28]. The KYP Lemma now expresses that a system is
dissipative if and only if an LMI of the form (2.18) is satisfied by a (negative definite) hermitian
matrix X. It is well-known that the feedback interconnection of two dissipative (or passive) systems
is dissipative (or passive) as well. Actually, LMI show up in most stability analysis problems
involving these concepts. Applications of dissipativity (passivity) can be found in many areas: for
instance, in adaptive control (see [6, 7]), in robot control [2] or in stability analysis and robust
stabilization (see [24, 50, 57] and in the references therein).

Another important problem is the positive real synthesis for linear time-invariant systems, which
has been considered in [53]. Its objective is the design of controllers such that the resulting closed-
loop system is stable and the closed-loop transfer function is positive real. As shown in [53], a
solution to this problem involves solving a pair of Riccati inequalities. These results have been
extended to linear systems with time-invariant uncertainty in [52, 61]. Moreover, observer-based
stabilizing controllers which achieve positive realness have been designed in [36].

Some positive realness results have also been extended to generalized state-space systems in [55]
by using generalized Lyapunov theory, while [65] obtained similar results for both continuous and
discrete generalized state-space systems in terms of LMI. Consider a transfer matrix given in
generalized state-space form with F nonsingular :

G\)=C(\E—-A)""'B+D. (3.4)

Definition 3.1. [25, 26, 55]

a) For A = s, the rational matrix function (3.4) is said to be positive real if G(s) is analytic in
Re(s) > 0 and satisfies G(s) + G(s)* > 0 for Re(s) > 0. It is said to be strongly positive real if
G(s) is analytic in Re(s) > 0 and satisfies G(jw) + G(jw)* > 0 for w € [0, oo].

b) For A = z, the rational matrix function (3.4) is said to be positive real if G(z) is analytic in
|z| > 1 and satisfies G(2) + G(2)* > 0 for |z| > 1. It is said to be strongly positive real if G(z) is
analytic in |z| > 1 and satisfies G(e??) + G(e??)* > 0 for 6 € [0, 27].

LMI conditions for positive realness are now given in the following theorem [25, 53, 55].



Theorem 3.2. The transfer function G(\) = C (A\E — A)f1 B + D is stable and strongly positive
real if and only if there exists a positive definite matriz X such that

EXA*+ AXE* B-EXC* 0 (3.5a)
B*—CXE* —(D+ D" oa
in the continuous-time case (A = s), and
AXA* — EXE* B - AXC*
[ B*—CXA* —(D+D*—CXC¥) } <0 (3:5b)

in the discrete-time case (A = z).

Remark 3.3. If rank E < n, the results in Theorem 3.2 are extended to index 1 systems in [65].
Necessary and sufficient conditions for singular systems to be regular, impulse-free, stable as well
as strongly positive real are obtained in terms of LMI.

3.2 Non-negative matrix polynomials

Positive parahermitian transfer functions obviously form a convex set and were recently studied
in the convex optimization literature [5, 41]. The parameterization of pseudo-polynomial matrices
proposed in [17] fits naturally into the context of this paper. In particular, it can be obtained as
a straightforward application of the celebrated KYP Lemma to an appropriate subset of positive
parahermitian transfer functions. Moreover, this particular problem leads to an algorithm of low
complexity, as shown in Section 4.4.

Let us start with the case of non-negative transfer functions on the unit circle. It follows from its
finite expansion and from its parahermitian character that the corresponding pseudo-polynomial
matrix
n
P(z)= > Pz =0, (3.6)
=—n

has p x p coeflicient matrices that satisfy P_; = P. Consider then the set of hermitian matrices

Yoo You --. Yon
Yio Yipg ... Yo,

Y = . . . )
Yoo Y1 .. Yan

with blocks of dimension p X p and the block shift operator

0 I,
Z = 0
Ip
0
If II(z) stands for I(z) = [ I, =zI, ... 2"I, ]T, the identity
. (2)YTI(z) = P(z) (3.7)
is algebraically equivalent to the equation
Pi= Y Vi, (3.8)
k—l=i



assuming Y ,; = 0 for k and / outside their definition range. Clearly, the choice

PR P ... P,
PP 0 ... 0

Yo=| .| C (3.9)
P 0 ... O

n
is an admissible matrix Y. Then the following characterization theorem can be stated [17].

Theorem 3.4. A hermitian matriz Y satisfies equation (3.7) if and only if it can be expressed as
Y=Y+ X-2"X2Z, (3.10)

where X is hermitian, i.e. X = X*, and has the form

Ko 10 , X €Cwxne, (3.11)

0 0

The set of non-negative pseudo-polynomial matrices on the unit circle can then be characterized
as follows [17].

Theorem 3.5. A pseudo-polynomial matriz P(z) = Z?:_n Pz is non-negative definite on the

unit circle if and only if there exists a non-negative definite hermitian matriz Y with blocks
Yii1,k,1=0,...,n such that (assuming Yy ; = 0 for k and l outside their definition range) :

Pi= Y Yi,  fori=-n,...,0,...,n. (3.12)
k—l=1i

This characterization of pseudo-polynomials non-negative on the unit circle also extends a result
previously obtained by Nesterov [41] for trigonometric polynomials. From a practical viewpoint,
it allows us to efficiently solve various filter design problems using semidefinite programming, see
Section 4 and [1, 10, 16]. It can alternatively be obtained from the theory of positive parahermitian
transfer functions. More precisely, it follows from a straightforward application of the KYP Lemma
to the subclass of positive parahermitian transfer functions that have a pseudo-polynomial form.
Let us derive this simple proof.

Consider a generalized state space realization of a parahermitian transfer function of the form

7 (3.13)

_ *\—1 *
®(z)=[ 2F(I—zE)"" I ]YO[ (2] = B0 F }
with Yy some hermitian matrix. The transfer function ®(z) is non-negative on the unit circle if
and only if the matrix ®(e’?) is non-negative definite definite for all § in the interval [0, 27]. In
this setting, the KYP Lemma states that ®(z) will be a well defined non-negative parahermitian

transfer function if and only if there exits a hermitian matrix X such that

Y(X):%Jr[é]ff[f O]—[?}X’[E* F* ] (3.14)

is non-negative definite. With Yj asin (3.9), E = Z* and F = [0, ..., 0, I,], the following equality
holds

+n )
P(z) = Z Pzt

i=—n

10



Therefore, the pseudo-polynomial matrix P(z) is found to be non-negative definite on the unit
circle if and only if there exists a hermitian matrix X such that the matrix

- X -72*X7Z —-Z*XF*
Y(X) =Y, : %
(X) =Yo + _FXZ _FXF*

is non-negative definite. This is exactly the characterization proposed in Theorems 3.4 and 3.5
provided one substitutes X for Xj.

The same method can be applied to non-negative transfer functions on the real line or the imaginary
axis. It leads to similar results for non-negative matrix polynomials on these curves of the complex
plane [17].

Theorem 3.6. A pseudo-polynomial matriz P(z) = Z?go Pz is non-negative definite on the real
azis if and only if there exists a non-negative definite matriz Y with blocks Yy ;. k,1 =0,...,n such
that (assuming Yy, = 0 for k and | outside their definition range) :

Pi = Z Yk,la ’L :O,...,QTL. (315)
k+1=i

Theorem 3.7. A pseudo-polynomial matriz P(s) = Z?EO P;s' is non-negative on the imaginary
azis if and only if there exists a non-negative matriz Y with blocks Y, k,l = 0,...,n such that
(assuming Yy, = 0 for k and | outside their definition range) :

Pi=(=§) Y Yiu, i=0,....2n. (3.16)
k+1=i

3.3 Integral quadratic constraints

The general concept of Integral Quadratic Constraints (IQC) has its origin in the work of
Yakubovich [63], and has been used for analyzing system stability of special nonlinear problems.
As pointed out recently in [51], IQC have been usually defined in time-domain. Observing that
many developments in robust control can be reformulated in a simple IQC framework, Megretski
and Rantzer [38] extended the concept to the case where IQC are given in frequency-domain. IQC
are used to describe relationships between different components in a complex dynamical system,
exploiting structural information about the uncertainty or characterizing properties of external
signals.

Two signals w € L?™[0,00), v € L*![0, c) are said to satisfy the IQC defined by ®, if

/°° [ (jw) rq,(jw) [ Z(é:)) } dw > 0. (3.17)

oo | (W)

Here w and v are the Fourier transforms of the signals w and v, respectively; ® is typically
a parahermitian rational function that is bounded on the imaginary axis. It is also said that
A : L*10,00) = L*™]0, 00) satisfies the IQC defined by @ if, for every v € L*![0, o), inequality
(3.17) holds for w = A(v) and v.

Consider the typical interconnection used in the study of robust control problems (see Figure 1) of
“absolute stability” type, which consists of a rational transfer function G(s) = D+ C(sI — A)~'B
and an uncertainty or perturbation A:

v = Gw+f
w = A(v)+e

11



Figure 1: Standard configuration for robustness analysis

The stability theorem given below includes classical dissipativity (passivity) results as particular
cases.

Theorem 3.8. [38] Let G(s) € RH'X™ and let A be a bounded causal operator. Assume that for
every T € [0,1) the interconnection of G and TA is well-posed and that the IQC defined by ® is
satisfied by TA. If there exists € > 0 such that

[ G(gw) }*Q(jw) [ G(gw) } < el VweR (3.18)

then the feedback connection of G and A is stable.

By choosing appropriate (constant) values for ®(jw), one can retrieve classical results, as the

Small Gain Theorem (& = { é _OI ]) or the Passivity Theorem (® = [ ? é ]) The role of the

“multipliers” ® (belonging to a given set of ®’s, say ®) is to summarize information about the
uncertainty A. In practice, the set @A, which describes the IQC corresponding to A, is defined
by a finite number of variables and can be written in the form

N
O(jw) = Zxkﬂk(jw), rp € Ry
k=1

It can be shown that there exist matrices A and B and symmetric matrices Hy, 1 < k < N, of
appropriate dimensions, such that for every 1 <k < N

[ G(}'w) ]*Hk(jw) { G(}'w) ] _ [ (jwl —IA)*lB ]Hk [ (jwI —IA)*lB ] |

The frequency domain inequality (3.18) can be eventually rewritten as

jwl —A)'B 1" jwl — A)'B al
[(7” I) ] H[(W I) ]5—51, VweR, H:];xkﬂk.

By applying now the KYP Lemma it turns out that (3.18) is equivalent to a system of linear
matrix inequalities in the variables X and xj, 1 < k < N. Note that the above frequency domain
inequality has been written in its dual form (see point 3. in Remark 2.2).

Large-scale methods for the above problems are usually based on cutting planes methods, which
do not require auxiliary variables : they directly work in the frequency domain[46, 32]. These
schemes are discussed in Section 5.2. Moreover, they can be extended to transfer functions G(\)
given in generalized state-space form.

12



3.4 Model Reduction

Problems arising in applications give the motivation for studying issues of approximation and
model reduction. Some of these problems are: systems described by PDEs, systems arising in
circuit simulation, weather prediction, components of mechanical structures (e.g. the space station).
Model reduction aims at replacing a system of differential or difference equations of high complexity
by one of much lower complexity. At the same time, one tries to preserve certain critical properties
of the system (e.g. stability or passivity) and approximate important features (e.g. the system
response) appropriately. During the last two decades, a lot of progress has been made in the theory
of this approximation problem.

Roughly speaking, the model reduction problem consists of finding a rational matrix function of
McMillan degree r, say G.., such that, for a given transfer function G of McMillan degree n, G(\)
and G,.(\) are close in some sense and r < n. Among the most popular model reduction techniques
are the balanced truncation [39, 47], the optimal Hankel norm model reduction [19], the coprime
factorization reduction [37] and those based on Krylov methods [23]. Some of these techniques
provide guaranteed L., error bounds, expressed in terms of the sum of the “neglected” Hankel
singular values of the system.

A problem of great interest has been the lower order approximation in the H,, norm. A first
characterization of the solutions to the Ho model reduction problem has been derived in [34],
by converting it into a Hankel norm approximation problem through an appropriate embedding
scheme. Numerical issues concerning this embedding step seem to be still open. An alternative
approach for suboptimal Hy, model reduction has been proposed by Grigoriadis [22] in terms of
an LMI system and a coupling non-convex rank constraint set. Further, the main result in [22] is
reproduced for continuous-time systems with complex coefficients. The discrete-time counterpart
is similar, and can be found in the same paper.

H.. model reduction via LMI Given the stable and proper rational transfer matrix of order n
G(s) = C(sI — A)"'B+ D, (3.19)

find a stable and proper rational matrix function G,(s) = C,(sI — A,) !B, + D, of order r such
that :

1. r <n.

2. ||G — Gy||s is minimized or, for pre-specified v > 0, |G — G|l < 7 (7-suboptimal H
model reduction).

The next result [22] provides necessary and sufficient conditions for the solution of the «-suboptimal
H, lower order approximation problem.

Theorem 3.9. There exists an r-th order transfer function G, to solve the ~y-suboptimal H
model reduction problem if and only if there exist matrices X >= 0 and Y > 0 such that the
following conditions are satisfied:

X I

vl Y

AX+XA*+BB* <0, YA+A*Y+C*C <0, [ 0y

} >0, rank[ X } < n+r. (3.20)

All v-suboptimal r-th order models that correspond to a feasible matriz pair (X,Y) are given by

[D”' C”'
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where L € CP+r)x(m+7) s strictly contractive and Gy, i = 1,2,3 depend on X, Y and ~.

The above LMI (3.20) are Lyapunov type inequalities combined with a rank condition. As discussed
in Section 4, this makes the problem intrinsically difficult to handle. However, computing an
optimal zeroth order approximation Go(s) = Dy does not require this rank condition, as pointed
out in [22]. For this particular approximation problem, standard methods can thus be used.

Passive model reduction Passivity is a natural property for many physical systems, such as
RLC networks, or certain mechanical systems. Passive systems are represented by positive real
transfer matrix functions, see Definition 3.1. The above mentioned model reduction methods do
not guarantee automatically the positive realness of the reduced order transfer matrix function, if
the higher order transfer matrix function is positive real. A first solution to this problem has been
obtained by Opdenacker and Jonckheere [45], who used balanced stochastic truncation techniques
(see, for instance, [11, 21, 27]) to obtain a stable, positive real reduced order system. Later on,
H norm error bounds on the approximation error have been derived in [9], by using similar
methods. More recently, Wang and Huang [56], combined Hankel norm approximation techniques
with the LMI approach in [22], and provided only sufficient conditions for the existence of a reduced
order positive real transfer function with prescribed Hy, norm error bound. They formulated the
optimal H,, norm lower order approximation problem as a non-convex optimization problem in
the following manner:

A*P+ PA—-L*L —-PBW! —2L*

W TB*P-2L (P+4)D*+D) " -2r |30 (32

inf v subject to
P>0,X>0,Y >0

and to the LMI system (3.20). Here Z(s) = L(sI — A)~! B+ W is a spectral factor of G.(s) +G(s).
Let us point out that LMI (3.21) expresses a condition written exclusively in the terms of the
initial data, G(s), which severely restricts the class of systems to deal with.

Alternative reduced order passive modeling techniques for large RLC networks are based on Padé
approximations and proved to be accurate and numerically stable. Unfortunately, the Padé reduced
order model cannot be guaranteed to be passive for general RLC circuits. On the other hand, the
Arnoldi based dimensional reduction technique [44] produces, under certain conditions, passive
reduced-order for general RLC circuits. Using a similar approach, a general projection technique
for computing reduced-order models, based on block Krylov subspaces has been proposed recently
by Freund [15]. This type of technique ensures the passivity of the reduced-order model only for
a particular class of transfer functions and matches only half as many moments as the Padé based
techniques.

4 Conic problems and interior-point methods

In the previous sections we have seen that many important problems in control theory can be
written in some special convex settings. Nowadays, linear matrix inequalities are considered to
be easily solvable by standard software. However, the blind use of any LMI toolbox is potentially
hazardous. Important issues like strict feasibility, nondegenerate operators, rank conditions, nu-
merical complexity and stability are often disregarded by practitioners. Our aim is mainly to bring
the reader’s attention to these mathematical issues, which can prevent the numerical schemes from
solving the problems at hand.

14



4.1 Elements of Convex Analysis

In order to treat our convex problems by the modern numerical schemes, we need to put them in a
standard form. Let us start from the description of corresponding objects. We do that on a quite
abstract level since the problems we are interested in have various nature (real/complex variables,
real /hermitian/complex matrices, etc.).

Denote by £ a finite dimensional linear vector space. And let £* be the dual space; that is the
finite-dimensional space of real-valued linear functions on €. Clearly, (£*)* = £. For any z € £
and s € £* we denote

(s, x)

the value of the function s at . Sometimes, when we need to emphasize the space of the variables,
the notation (s, )¢ is used.

Let &, be another finite dimensional linear vector space. Consider a linear operator
AE=E
Then we can define an adjoint linear operator A* as follows:
(A(z),u)e, = (A" (uw),x)e V€&, ueél,.

Thus, A*: & - E*. f A: & — £, then A*: £ — E*.
Let M be a linear operator from £ to £*:

M(z) € £, Vxel.
The operator M is called symmetric if M* = M. It is called positive definite if

(M(z),z) >0, Vzel)\{0}.

If the above inequality is not strict, the operator M is called positive semidefinite. The set of all
symmetric operators from £ to £* is denoted by S(€); we use S+ (€) to denote positive semidefinite
operators and 53_ (€) to denote positive definite operators.

Let us fix some M € S9(£). Then we can define the Euclidean norm on &:

lzll3 = (M(2),2), ze€.
Since € is a finite-dimensional space, all Euclidean norms on £ are topologically equivalent.
In what follows we often work with convex cones in £. A cone K C £ is called convex if

reK,7>0 = T1xeK,
r,ye K = z+yek.

For any convex cone K C £ we can define the dual cone K* C £*:
K*={se&*: (s,x) >0Vz € K}.

If the cone K C & with int £ # 0 is closed, convex and proper (contains no straight line), then
the dual cone K* also has all these properties. We call such cones the regular cones. Note that
(K*)* = K. It is important that s € int * if and only if (s,z) > 0 for all z € K.

Consider a real-valued function f(x), dom f C &, int(dom f) # 0. For differentiable functions we
can define the gradient f'(x) at some z € int(dom f):

fl@+h) = f(x) + (f'(x), b} + o(llhllam), =+ h € int(dom f).
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Clearly, f'(z) € £*. Note that the gradient does not depend on the choice of M € S9(€). Similarly,

for twice differentiable functions we can define the Hessian f"(x):
1
fla+h) = f@) + (@), h) + 5(f"@)h.h) + o(||hl[%), @+ h € int(dom f).

Thus, f"(z) € S(£). If f(x) is convex then f"(x) € S, (£). If f(x) is strongly convex then
f(z) € SY(E).

Let f(z), z € dom f C &, be a closed convex function (its epigraph is a closed convex set). Then
we can define the conjugate (or dual) function fi(s), s € dom f, C £*:

fu(s) = sup{—({s,2) = f(x), 2 € dom f}.

Note that f.(s) is also a closed convex function. Moreover, (f*)* = f.

Finally, let us introduce some special barrier functions, which are used in the interior-point schemes.
Let Q C &€ be a convex set with nonempty interior. A closed convex three times differentiable
function f(x) is called self-concordant if dom f = int ) and for any z € int ) and h € £ we have

D? f(2)[h, h, h] < 2[(f" (@), h)]*/*,

where D3 f(z)[h, h, h] is the third-order differential of f(z) at the direction h (notation: f € SC(Q)).
Such a function is called a self-concordant barrier (denoted as f € SCB,(Q)) if in addition there
exists a constant v > 1 such that

(f'(z),h)* < w(f"(z)h,h), YzemntQ, hek.

The constant v is called the parameter of the barrier. The simplest example of such a function is
the logarithmic barrier for Ry = {x € R: z > 0}:

fl@)=—Inz, v=1
The most important operations, which preserve the above properties, are as follows:

f(z) € SCBL(Q) = f(z) + (¢, z) € SCB,(Q),
f(z) € SCBL(Q) = f(z) € SCB,({z € Q: A(z) = b}),
f(z) € SCB,(Q) = f(A(y) +b) € SCB,({y : A(y) +b € Q}).

fl(w) € SCBW (Ql)7 i = lv 2a = fl(lU) + fQ('T) € SCBV1+V2 (Ql ﬂ Q2)
For regular cones we need to impose one more property of the barriers. Let L C £ be a regular cone.

The function f(z) is called a v-normal barrier for K (denoted as f € NB,(K)) if f € SCB,(K)
and for any x € int £ and 7 > 0 we have

flrz) = f(z) —vinT. (4.5)

For example,
f(X)=—Indet X € NB,(S+(R")).

It is important that if f(z) is a v-normal barrier for K then f.(s) is a v-normal barrier for *.
4.2 Standard conic problems
In the previous sections we have seen two different types of convex problems: the feasibility prob-

lems and the optimization problems. Let us describe these problems in a general form. In what
follows we always assume that we work with regular cones.
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4.2.1 Feasibility problems

In feasibility problems we need to find a point from a convex set, which existence justifies some
property of our object. We will see that any of these conic problems can be written either in the
“primal” or in the “dual” form. Since the conic duality is symmetric, we have a choice to call
any of these form the “primal” one. In order to avoid a misleading terminology, let us follow the
following convention. The problems, in which the feasible set is formed as an intersection of a
convex cone with an affine subspace, given by the equality constraints, will be always called the
primal problems. The convex cone in this setting will be seen as the primal cone. The problems
in which the feasible set is formed by an intersection of an image of a linear operator with some
convex cone will be called the dual problems. The convex cone in this setting will be seen as the
dual cone.

Let ¢ € £* and A be a linear operator, A : &€ = &£. Then A* : £ — £*. The general conic
feasibility problem has the following form:

Findyeé&, : c—A"(y) e K". (4.6)

In accordance to our convention, this is the dual problem. Note that the feasible set of this problem
is a convex set (which may be empty). This problem can be treated by interior-point schemes if it
is strictly feasible. That is there exists § € &, such that ¢ — A*(g) € int £*.

In order to solve the problem (4.6) by interior-point schemes, we need to specify which point from
the feasible set we are looking for. In our case it is convenient to specify this point as a minimizer
of the following strictly convex function:

f*(3)+<3;1'0>, SZC—A*(y) GK*: yegr:

where z is an arbitrary (scaling) point from int K. Note that this function is strictly convex and
its unique minimum exists for any feasible set in (4.6) with non-empty interior.

Thus, we come to the following form of our dual problem

min| f.(s) + (s,20) : s=c—A*(y) ]. (4.7

Y

The advantage of this formulation is that it can be rewritten in an equivalent primal form. For a
completeness of presentation, let us sketch this transformation.

Iguyn[ fo(8) + (s,m0) : s=c— A*(y) ]
= minmax| f.(s) + (¢ — A*(y),z0) + (s — c+ A*(y), z) ]

S8,y T

— maxmin £.(s) + (¢, z0) + (A(2) — A(zo), y) + (s — c, )]

T S8,y

= max —f(z) - (e,2) + {e,20) : A(@) = Alzo) ).

Thus, up to a constant term, our primal problem is
min[ (z) + {e,2) : A(z) = Alzo) ] (4.8)

Note that the objective function of this problem is self-concordant and we have a strictly feasible
point z = xg, which can be used as a starting point for interior-point schemes.
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In fact, there is a particular case of the problem (4.8), which is much easier for numerical methods.
That is the case ¢ = 0, which corresponds to homogeneous feasibility problem (4.6). Then the
objective function in (4.8) is a self-concordant barrier and (4.8) becomes the problem of finding
the analytic center of the corresponding convex set. In Section 4.3 we will see how we can solve this
problem by interior point schemes. And now, let us show that any non-homogeneous feasibility
problem can be rewritten in homogeneous form.

Indeed, the initial non-homogeneous feasibility problem (4.6) is equivalent to the following;:
Findye€é&.,, yeR: ~yc— A*(y) € KL*, v>0. (4.9)
In order to put this problem in a standard form, let us define
£, =6 xR E=ExR  K*=K*xRy,
e w3457
Then the problem (4.9) can be rewritten as
Find u € &,, —A*(u) € K*. (4.10)

Choosing some scaling points 2o € int K and 79 > 0, and using the regular barrier f(z) —In7 for
K =K x Ry, we come to the following primal problem:

oo o-wr 4 2]) -4([ 2 )

Eliminating 7 by the last linear equation in the system, we get the problem
mxin[ fo(z) = f(z) —In(ro — {c,x — o)) : A(z) = A(zo) ]. (4.11)
Note that the objective function in this problem is a self-concordant barrier:

fo(z) € SCBL11(Q ={z € K: {¢c,z —xo) < T0}),

and the point & = xg is strictly feasible. At the same time, this problem captures both homogeneous
and non-homogeneous feasibility problems. The only difference is that in the first case @) is a cone.

4.2.2 Convex optimization problems

Let c€ £*, b € & and A be a linear operator, A : £ — &. The general conic convex optimization
problem has the following form:
min (¢, x)g,
T
st. A(x) =0b, (4.12)
z € K.
In accordance to our convention, that is the primal problem. This problem can be rewritten in the
following dual form:
max  (b,y)e,
5,y
st. s+ A*(y) = ¢, (4.13)
se* ye&,.

In order to guarantee the equivalence of these two problems, we need the following assumption.
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Assumption 4.1. The pair of the problems (4.12) and (4.13) is strictly feasible: there exist &, §
and g such that
zeintk, A(Z)=0b, Se€intK*, §+A"@Y) =c

Sometimes, it is reasonable to treat the problems (4.12), (4.13) simultaneously, as a primal-dual
problem:
gﬂ;r; <Ca ﬂf)g - <ba y)SM
st. A(x) =0, s+ A*(y) = ¢, (4.14)
€K, seK*, yet&,..
From Assumption 4.1 we get the optimal value of this problem equal to zero. Therefore the problem

of finding e-solution to (4.14) can be written as a feasibility problem:

re, se K*, yeé&,,
Find (z,s,y) : A(z) =b, s+ A*(y) = ¢, (4.15)
(c,z)e — (b, y)e, < €.

4.3 Interior-point methods

As we have seen, the general convex feasibility problem can be written in the form

min[f(z) : A(z) = A(zo) |, (4.16)

T

where () is a convex set and f € SCB,(Q). This problem is solvable if and only if our initial
feasibility problem has an interior solution.

The simplest algorithm for solving the problem (4.16) is the Newton method. For s € £* and
z € int () define

pe(s) = angmax] (s, ) — (" (2)h, ) : A() = 0],
(4.17)
ro(s) = (s,p.(s))'/.
Note that this problem is equivalent to the following system of linear equations :
f”(x)pz(s) + A*(yz(s)) =S
4.18
A (419
Then the scheme of the Damped Newton method is as follows:
!
PnF@)) gy (4.19)

T T T e (F(an))

The method stops when r;, (f'(z1)) < § with some g € (0,1). If (4.16) corresponds to (4.11),
then the point

g = (10 = {c;xk = 20)) Y, (f' (1))

is a solution to the feasibility problem (4.6). Denote by z* the optimal solution to (4.16). Then
the number of iterations of the Newton method is bounded by

f(wo) = f2")

ST (4.20)
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Another approach for solving the problem (4.16) is the path-following scheme. Let us define the
central path of the problem (4.16) :

2(t) = argmin[f (z) — 1(f'(z0),7) : A(z) = A(zo)], ¢ €[0,1].

Note that z(1) = 0 and z(0) = z*. The path-following scheme updates the approximations to the
central path ast — 0 :

k41
skv1 = f(ak) — (1 - %) [ (o)
k=0,1,.... (4.21)

Thy1r = Tk — Pay (Sk41)

The stopping criterion for this scheme is again r,, (f'(zx)) < 8. The upper bound for the number
of iterations of this scheme looks as follows:

O <\/ﬁln MW) . (4.22)

4.4 Applications

Let us now apply the above formalism to the problems described in the previous sections. For each
of them, we need to specify

e two finite dimensional vector spaces and the corresponding inner products;
e the cone K and/or its dual K£*;
e the linear operator A and/or its dual A*;

e the associated barrier functions.

From these data, one can compute all the necessary elements presented at the beginning of this
section.

In the sequel, the set of n X n hermitian matrices and the set of n x n hermitian positive semidefinite
matrices are denoted by " = S(C") and S} = S, (C"), respectively. In the context of linear
matrix inequalities, the cone of positive semidefinite matrices is our main object of interest. In
order to be concise, we now briefly mention all the related mathematical objects, which are common
to these problems. The standard inner product on S™ is defined by

(X,Y)c = Re Trace(XY™). (4.23)

where Trace A denotes the trace of A. Since the cone S? is regular, we can associated a v- normal
barrier function to it. It is the logarithmic barrier function

f(X)=—Indet X, X €intS”. (4.24)

with parameter v = n. Moreover, the cone S is self-dual, i.e. (S})* = S}. The conjugate function

is f.(S) = f(S) —n.
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4.4.1 Kalman-Yakubovich-Popov Lemma

The KYP Lemma is a characterization of positivity equivalent to checking feasibility of a given

LMI
A

H(X):H+[E}X[A* 0*]+[C

F ] X[E* F*]»o. (4.25)

Hyy Hyp
Hy, Hso

This is exactly a conic feasibility problem. To see this, we need to identify our objects. Our two
finite dimensional vector spaces are & = 8" and &, = S™. The standard inner products (4.23)
are used on both spaces. Since we are dealing with LMI, it is not surprising that the primal and
dual cones are both Sfrp . They are associated with the standard logarithmic barriers. The dual
linear operator A* : £, — £* is given by

E
F

where H = [ ] is hermitian.

A

A*:ST%S*:X%—[ c

]X[m w]_[ ]X[W P (4.26)

Identifying y with X and ¢ with H in (4.6) completes the proof of our statement.

Let us now write the primal problem which we actually solve, see (4.11). Let us fix X, € int Sf_er
and 19 > 0. The linear operator A is

* # " A N N E
A€ Xo—|E F]X[C}—[A c]x[F} (4.27)
Since the barrier function associated to £ is F(X) = —Indet X, we get the analytic center problem

min  —Indet X — In(7o

—{
st. [B° P x| +[a o ]x|E
e ];LC[ ]é{ } ko ][Xf[}ﬁ ] (4.28)

X €SP
This problem can be solved using the methods presented in the previous subsection. In order to

apply a Damped Newton method or to follow the central path, we must be able to compute the
gradient and the Hessian of the self-concordant function

f(X)=—Indet X —In(ro — (H, X — Xq)¢)- (4.29)
One can easily check that they are given by the expressions
H
"X)=-X""'+ 4.30
f(X) (A X = Xoc (4.30)
HAH
/(XA =XTtTAX 1+ (4.31)

(r0 — (H, X — Xo)c)?
The linear system (4.18), which is at the core of both optimization schemes, can thus be rewritten
as

HPx(S)H
(0 — (H, X — Xo)c)?

_[ﬁ}YX(S”A* C*]—[g}Yx(S)[E* F*]=5 (4.32)

X 'Px(S) X1 4+

21



~[ E* F*]PX(S)[A]—[A* 0*]PX(S)[E]:0 (4.33)

c F

where Px (S) € S and Yx (S) € S™. According to our notation, Px (S) is the common Newton-
like direction associated to both schemes. Since we optimize on the matrix space Sﬁ“’ , it is not
surprising that this direction is a matrix. In order to obtain a unique solution to (4.32)—(4.33),
we must assume that the linear operator A* is nondegenerate . The following theorem gives a
necessary and sufficient condition for our linear operator A*, see (4.26).

Theorem 4.2. Let A,B € C"*" m > n. Then the symmetric continuous Sylvester equation
AXB*+ BXA*=0, X=X~ (4.34)

has only the trivial solution X = 0 if and only if the Kronecker canonical form of AB — A is such
that (i) AB — A is a full column normal rank, (ii) there is no nilpotent block, (iii) the generalized
eigenvalues of the Jordan block are not symmetric w.r.t the imaginary azis.

A sketch of the proof is included in the appendix. A similar result is easily derived for the symmetric
discrete Stein equation AXA* — BXB* =0, X = X*.

4.4.2 Bounded real lemma and L., norm

The bounded real lemma checks that the Lo, norm of a transfer function G(X) is bounded by ~
by checking feasibility of the LMI (4.25) with

H:{SWSI]_B][B* D1, (4.35)

see Section 2.3. The definitions of the above paragraph can thus be applied as well.

However, if we actually want to compute the L., norm of a transfer function G()), we can solve
an optimization problem. First we need to introduce a non-negative variable § = 72 to convexify
our problem. Its optimal value d,p¢ is the square of the Lo, norm of G()) and is obtained through
the optimization problem

min ¢
0

M}+[1€]X[A* C*]+[é}X[E* F* ] =0,

I\/.—

B . 0
D]B D +[0
§>0,X = X*.

4.36
The finite dimensional vector spaces are £ = S"? x R and &, = S x R. The inner product( on 2’
(&) is obviously defined as
(X,0a),(Y,8)) = (X,Y)c + af, (4.37)
where (X, Y )¢ is the standard inner product on S"*? (S"). The dual linear operator A* is defined
by

X[ B F*],-9).

(4.38)
As can be seen immediately from the constraints, the dual cone K* is Sfrp x Ry . This cone is
regular and self-dual. The corresponding n + 1-normal barriers are

A*;ST%S:(X,é)—)(_[g +?51}_[§}X[A* C*]—[é

F((X,0) = —Indet X —Ind, (X,0) € int K (4.39)
f«((S,pu)) = —Indet S —Inp—(n+p+1), (S,pu) €int K* (4.40)

22



B
D
conic optimization problem. It can be solved up to an accuracy € via the feasibility problem (4.15)
and one of the optimization schemes presented before. The key ingredients are thus the gradient
and the Hessian of an appropriate self-concordant barrier. Since the methodology has already been
presented, the details are left out here.

Identifying y with X and ¢ with (— } [ B* D* ],0)* in (4.13), it follows that (4.36) is a

4.4.3 Model Reduction

In the context of model reduction problems, our problems can usually be recast as conic feasibility
or optimality problems, provided that the rank constraint is dropped. These constraints are non-
convex and can greatly increase the complexity of solving our optimization problems. For instance,
several well-known NP-hard problems can be formulated using rank constraints. We refer to [3, 40]
for complexity results in systems and control.

Alternating projection algorithms can be used to enforce these “hard” constraints on the solution
[12]. Note that these algorithms can only guarantee a local convergence to a feasible solution, which
might be suboptimal. In general, optimization problems with rank constraints can be efficiently
solved if and only if the optimal solutions to the corresponding relaxed problems can easily be
converted to satisfy the rank constraints. For instance, conic optimization problems formulated on
any cone of non-negative scalar polynomials naturally induce low-rank optimal matrices.

4.4.4 Non-negative matrix polynomials

First let us focus on the cone of matrix polynomials non-negative on the unit circle, see Section
3.2. The scalar product to be used for pseudo-polynomials P(z) = Y°,_  P2* and Q(z) =
> e, Qrz" is defined as follows :

n

(P,Q)p = Y (Pr, Qr)c.

k=—n
The primal optimization problem reads :
Il;ﬂelrlé{<CvP>D <A’I“7P>D:b’l“,r:17"',q}7 (441)
where K is the cone of matrix coefficients P = [P_,,, ..., P, | of non-negative pseudo-polynomial

matrices P(z) on the unit circle. Remember that the coefficients of such matrices satisfy P_; = P;*
and that P € K necessarily implies

Pi= Y Y, i=-n,...,n (4.42)
k—l=1i

where Y is a non-negative block matrix with blocks Y} ;, k,I = 0,...n of dimension p X p.

The dual cone K* is made of the matrix coefficients Q = [Q—p, ,..., @y ] of the parahermitian
pseudo-polynomials satisfying the constraint
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If 7(Q) denotes the block Toeplitz matrix

QO Ql Qn

T@=| 9 Qo (4.43)
: - - Ql
Q. - Q1 Qo

the dual cone K* is characterized by 7(Q) > 0 [17].
Therefore the dual optimization problem of (4.41) becomes

q

q
max { E bru, : T(C — E upAy) = 0} (4.44)
TyeeesUp . —1

=1
for which the appropriate barrier function is f(u) = —Indet 7(C — >_1_, A,u,).

From a numerical point of view, this dual formulation has a considerable advantage over the primal
form (4.41) since it involves an optimization scheme in a space of variables of dimension ¢ rather
than (2n + 1)p?. Any optimization problem of this type can be solved efficiently with the help of
interior point methods [42]. Their numerical implementation requires the calculation of the first
and second derivatives of the barrier function. They can be expressed as follows :
1) (7 (sy A,

T (4.45)

TIW _ r($) (4 T(S) ™ T(A)e,

Ou,O0ug -

where S = C — i A,

r=1
All these inner products can be efficiently computed using the displacement structure of block
Toeplitz matrices [17, 30]. The cost of one Newton step is found to be approximately equal to
O (grip*nIn® n + ¢*p*n), where ry is the displacement rank of 7 (r; < 2m). Since interior-points
methods require O (,/npIni) Newton steps to solve the optimization problem (4.44) up to an
accuracy e [42], this is a remarkable result for solving an optimization problem in a (2n + 1)p?-

dimensional vector space, subject to ¢ linear constraints and p semi-infinite inequality constraints
(see (4.41)).

This example illustrates the fact that tailor-made algorithms are often much faster than general
algorithms : they can rely on both the problem formulations and the underlying problem structures.
Note that the optimal polynomial Popt (2) can often be obtained from a low-rank block matrix Y,ps,
via spectral factorization of Popi(2).

Similar results have been developed to deal with other curves of the complex plane, see [17].
However, it should be pointed out that the resulting LMI can be inherently difficult to solve.
For instance, if we use the standard polynomial basis 1,z,..., 22" to describe the set of matrix
polynomials non-negative on the real line, the previous formula hold provided that the block
Toeplitz structure 7 (Q) is replaced by a block Hankel structure. In particular, the constraint of
the dual optimization problem involves a positive semidefinite block Hankel matrix. Since the set of
positive definite Hankel matrices is composed by exponentially ill-conditioned matrices, numerical
errors definitely corrupt the computation of the gradient and the Hessian. By using the Chebyshev
basis as functional basis, the block Hankel structure is replaced by a block Hankel-plus-Toeplitz
structure which is intrinsically better than the Hankel one. One could also reformulate the problem
directly on the unit circle and get a block Toeplitz structure.
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This last example illustrates that formulating a problem as an LMI is only half the way to solving
the problem. It should be checked that (i) the problem is well-posed and (ii) the algorithm is
sufficiently stable or accurate for this particular problem.

5 Alternative methods

5.1 Level sets

In order to simplify our notation, we restrict ourselves here to a parahermitian transfer function
®(s) with respect to the jw axis although everything easily extends to the unit circle as well. Since
®(s) is parahermitian it is also hermitian for every point s = jw :

[2(jw)]" = ®(jw), weR (5.1)

Two important quantities of such transfer functions are the maximum and minimum eigenvalues
onweR:

£min = glelﬁ )\min@(jw)a fmam = Iilgfg )\mam@(jw)- (52)

It is easy to see e.g. that ®(jw) is non-negative on w € R if and only if &,,;, > 0 and that ®(jw) is
bounded on w € R if and only if &, < co. This can be used to solve important problems related
to transfer functions :

1. The L norm of an arbitrary transfer function G(s) is defined as

Ymaz = max TmaxG(jw)

which is clearly equal to g}n/ﬁz of ®(s) = G(s)G.(s). Notice that if G(s) is stable, the Lo
norm is also the H., norm of the transfer function.

2. Positive realness of G(s) implies

0< meiﬁ Amin|G(Jw) + G (jw)]
which amounts to checking 0 < &4, for ®(s) = G(s) + G.(s).

We describe now a level set algorithm to find the extremal values &,,,;, and &,q. of the eigenvalues
of ®(jw), w € R. Since both problems are dual to each other, we focus on &,,,, only. It is shown in
[33] that a hermitian matrix ®(jw) of a real variable w has real analytic eigenvalues as a function
of w, if ®(jw) is itself analytic in w. Since we consider here rational functions of s = jw — where
the “frequency” w is real — this is certainly the case. In Figure 2, we show these functions \;(w)
for a 2 x 2 matrix ®(jw). We also indicate a level & for which we want to check if there is any
eigenvalue \;(w) = &. Clearly these are the intersections of the level £ with the eigenvalues of
®(jw). Assume that these intersections occur at frequencies w;. Since

det(®(jw;) — &I) =0

each frequency w; is an imaginary axis zero of the shifted transfer function ®(s) — & I. These
can be computed as the eigenvalues of the corresponding zero pencil that are located on the jw
axis. Notice that if there are no imaginary axis eigenvalues, then the level £ does not intersect
the eigenvalue plots and hence

60 < fmin or 60 > £max-
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Figure 2: Level set iterations

In order to find a value & for which there are eigenvalue crossings one can e.g. choose
&0 = Amaz®(jwo) for an arbitrary value wg. Using these ingredients, one then derives a bisec-
tion algorithm to find &4, : each interval will contain an upper bound §,, and a lower bound &,
for &4 and the bisection method checks whether there are eigenvalues on the jw axis equal to
the new level (&, + &yp)/2 [8]. This algorithm has obviously linear convergence.

A faster convergence can be obtained by using information on the eigenvalue functions (see [4, 18]).
Start from a point &,4 which intersects the eigenvalues of ®(jw) as in Figure 2, and obtain from
this the intervals for which Az (w) > &ua (these are called the level sets for &,4). In Figure
2 these are the intervals [wi,ws] and [ws,ws] (in this context we need to define A4, (w) as the
piecewise analytic function that is maximal at each frequency w). In [18] it is shown how to use
the information of the derivative of A4 (w) in each point in order to determine the relevant “level
sets”. It is also shown there how to obtain these derivatives at little extra cost from the eigenvalue
problem of the underlying zero pencil. Using these level sets and the derivative of Ap,q.(w) at
their endpoints, one then constructs a new frequency wye Wwhich is a good estimate of an extremal
frequency wpaz :
Emaz = Amaz[(ﬁ(jwmam)] = mu?*X )\max[@(jw)]-

It is shown in [18] that such a scheme has global linear convergence and at least cubic asymptotic
convergence. Each step requires the calculation of the largest eigenvalue & e of @ (jwnew) and the
eigenvalues and eigenvectors of the zero pencil defining the zeros of ®(s) — &,e . The complexity
of each iteration is thus cubic in the dimensions of the system matrix of ®(s).
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5.2 Cutting plane methods

In order to simplify our description of cutting plane methods, we now consider the general formu-
lation of a convex optimization problem :

min{f(z) :z € Q CR"} (5.3)

where f(z) is a convex function and @ is a closed convex set.

As the function f(z) is convex, there exists at any = € dom f at least one subgradient g(x) such
that

f(y) > f(z) +{9(x),y —x), Vyé€ domf. (5.4)

If f is not differentiable at x, then the subgradient is not unique. In that case, the set 9f(z) of all
subgradients is called the subdifferential of f at x.

Cutting plane methods belong to the set of optimization methods based on first-order oracles. At
each point z € R", such an oracle returns the following information :

e If x € Q, it computes the function value f(z) and an associated subgradient g(x).

e If z ¢ (), it returns a separating hyperplane g : {9,y —z) <0, Vye€ Q.

At each iteration, these schemes update the current iterate using the information returned by this
oracle at the current query point.

The generic cutting plane algorithm works as follows. At each iteration k, it refines a so-called
localization set Ly, which contains the optimal solution x*, using the information returned by the
oracle. More precisely, the following operations are performed

1. Get a new query point z; as a “center” of the localization set Ly;

2. Call the oracle at this point and generate an associated cutting plane : (gg,zx — 2*) > 0.
Depending on the location of zj, this cut is called either an optimality cut (zx € @) or a
feasibility cut (z ¢ Q).

3. Update the localization set : Lr41 = L N {z : {9k, zr — x) > 0}.

There exist several cutting planes methods (inscribed ellipsoid method, volumetric center method,
analytic center method,...), which mainly differ in the choice of the next query point [14, 13]. The
goal of an optimality cut is to reduce the objective function value by selecting the appropriate part
of the localization set. A feasibility cut separates the current query point from the feasible set.
Both cuts are performed using exclusively the oracle output. Figure 3 illustrates the procedure.
Note that the oracle is clearly problem-specific : it should be provided by the user of any cutting
plane algorithm, see e.g. [20].

The main drawback is the memory requirement needed by this class of methods. Indeed, most
of the schemes keep all the cutting planes from the very first iteration. Hopefully, the use of
appropriate cuts and of modern computers tends to reduce this problem. The advantages are the
optimal efficiency estimate and the possible avoidance of extra variables. Let us exemplify this last
issue with a one-dimensional problem. As seen in Section 2, the problem of minimizing the L
norm of a transfer function G(A) can be formulated as

min 2

st YT —GNG.(\) >0 (5.5)
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Figure 3: Cutting plane methods : feasibility cut (left) and optimality cut (right)

Using the KYP Lemma, the equivalent optimization problem for the continuous-time case is

min 2
B . s 0 0 E . A -
s. t. —[D][B D ]+[0 7ZI]+[F]X[A C]+[C]X[E F* ] 0.
X =X*
7 >0

(5.6)
However, the latter formulation introduces an extra symmetric matrix X of size n. For large n,
these @ variables can be difficult to handle : they greatly increase the size of the linear systems
to be solved at each iteration. Apart from an important complexity increase, it also use an excessive
amount of memory. This could prevent any generic LMI solver from resolving the problem with an
acceptable execution time. The former formulation does not introduce this variable X. It allows
us to use a cutting plane algorithm, for which we briefly sketch an oracle. Let §; = 77 be the
current square L, norms of G(\). Then at each iteration, the linear matrix inequality

5l — GG, () =0, VAeT (5.7)

is checked by using appropriate pencils. Indeed, we need to find A such that det(dx 7 —G(N\)G.(N)) =
0, which is a procedure similar to the level set iteration (see the previous subsection). Cuts are
then easily derived from the above inequality. For instance, feasibility cuts are obtained using any
eigenvector of (5.7) corresponding to a violating A. Note that the level sets method applied to a
convex function is a one-dimensional cutting plane method.

Nowadays, there is a growing interest for the use of cutting planes methods in systems and control
[32, 46]. Theoretical properties (complexity estimates, ...) of these schemes are extensively studied
in the optimization literature : it gives a strong background to any problem-specific algorithm
based on them. Indeed, it is of paramount importance to provide these schemes with oracles
adapted to the problem structures. A well devised oracle is the key ingredient for an efficient
algorithm.

However, these cutting planes method could also suffer from (numerical) instabilities. For instance,
let us consider a conic optimization problem on the cone of polynomials of degree 2n non-negative
on the real line and the analytic center cutting plane method. The dual formulation allows us
to use the Hankel structure, which is potentially ill-conditioned. The corresponding semidefinite
constraint is thus difficult to check numerically for moderate n. The primal problem does not
necessarily display a better behavior, as shown by a careful analysis of the cutting plane scheme :
the next query is obtained by solving a sequence of linear systems with a potentially positive
definite Hankel structure ! This class of problems must thus be solved with care. In this case, the
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rule of thumb is to translate the problem from the real line to the unit circle, to solve the problem
in this much more stable setting and to translate back the solution.

A Appendix

A.1 KYP Lemma for generalized state-space systems

A—-AE

Lemma A.1. Let [ C_\F

] have only right Kronecker blocks in its canonical form, then there

ezists an invertible transformation M = [ X[i V)E ] such that
A-\E A- )
M[C—/\F}_[ C } (&.1)
where (A, C) is observable and A is strictly stable.
. E . E I .
Proof. Since r has full column rank, it is easy to construct M - Fl=1o to obtain

the required form (A.1). This does not affect the Kronecker canonical form of the new pencil and
hence (A C’) must be observable. The strict stability of A is then easily obtained from a pole

placement argument, of which the corresponding transformation can be incorporated in M. O
If we now define T'(\) = (C — AF)(AE — A)~! and T( ) = C(M — A)~! then clearly the rows of
[T\ I, IM=[TNU+V TAWW+Y | and [T\ I, |
both span the left null space of (A.1). Therefore Tl( ) T(MW + Y must be invertible and

1

[T L [M=Ti(\)"
This then allows us to prove the following theorem :
Theorem A.2. Giwen A, E € C*", O, F € CP*", H € Cletm)x(+n) yhere H = H*, det(\E —
A-)E
A)$0andP[C )\F}Q
(C—AF)(AE — A)~!

[T) 1, ]. (A.2)

= diag{L;(\)}, the following statements are equivalent for T'(\) =

1.

N =[ TN I, ] [ g; ZZ ] [ T*I(j)

2. there exist a hermitian matriz X = X* € C**" such that

H(X) > 0.

} >0 for almostall A €T (A.3)

Proof. Since T1(X) = T(A\)W +Y is invertible we have

TN NN =T I, |H [ T*I()‘) ] =0 foralmostall A\ eT (A4)

»
where FI~i M HM*. The expression on the right is now in standard state space form with a stable
matrix A, for which it is known to be equivalent to the existence of a hermitian matrix X such
that H(X) > 0 [48]. Since M is invertible, this is also equivalent to H(X) > 0 for the same matrix
X. O
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A.2 Symmetric Sylvester equation

Theorem A.3. Let A, B € C™"*"™ m > n. Then the symmetric continuous Sylvester equation
AXB*+BXA*=0, X=X" (A.5)

has only the trivial solution X = 0 if and only if the Kronecker canonical form of A\B — A is
such that (i) AB — A is a full column normal rank pencil, (ii) there is no nilpotent block, (iii) the
generalized eigenvalues of the Jordan block are not symmetric w.r.t the imaginary axis.

Proof. Without loss of generality, the pencil AB — A is assumed to be in Kronecker canonical form,
i.e.

AB — A = diag({Ls, \ ¥y, LT (), T — AN, A = J) (4.6)
where {L;(A\)} is the (k + 1) x k bidiagonal pencil
Y -
1
Ly(A) = ; (A7)
A
1

N is nilpotent and both N and J are in Jordan canonical form.

“If part”. Let us partition the matrix X according to the structure of the canonical form of A\B— A :
AkalBl* + BkalA; =0. (AS)

If conditions (i)—(iii) are satisfied, all the equations (A.8) have only the trivial solution X;; =0 as
can easily be checked by inspection. Therefore, X = 0.

“Only if part”. If at least one of the conditions (i)—(iii) does not hold, there always exists a
non-zero solution to at least one of the equations (A.8). To see this, consider the diagonal block
X;; associated with the unsatisfied condition. For instance, if (i) is not satisfied, set X, =
[1,0,---,0]7[1,0,---,0] for the index k corresponding to one of the LZ; blocks. O
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