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1. INTRODUCTION

Let us consider a discrete periodic system of the
form

Ekl‘kJr] = Akl‘k k= 0,1,2,... (].)

where xg is the given initial state and where the
matrices Ey, Ar € C"*" vary periodically over a
period of length K, i.e.

Ek+K = Ek, Ak+K = Ak,for all k Z 0.

When z, is given, one can solve this initial value
problem provided the Ej matrices are invertible,
which we will assume throughout this paper. We
define the monodromy matrix

®:=FEx' Ag 1...E['A B A0 (2)

and point out that the behaviour over K steps is
easily found from (1) to be time invariant :

x(i—i—l)K = @le i :O,].,... (3)

The system (1) is said to be stable, if all the
eigenvalues of ® are in the open unit disc, i.e
A®) ¢ D = {z € C |z2|] < 1}. The
eigenvalues of ® can also be obtained from the
bicyclic eigenvalue problem

AEy —Ap
A —Az = | A
—Ag_1 AEg_1

where

E= diag{Eo, te ,EKfl},
A= diag{A07 e aAK—l}a
0n I,

I, 0,
Indeed, one easily finds that for N :=nK

det(\E — AZ) =det & det(Mx — E7AZ)
= det& det(\XI, — )

and hence that the generalized eigenvalues of
(A — AZ) are the K-th roots of the eigenvalues
of ®. But the system (1) is not a unique repre-
sentation of the difference equation. Scaling the
equations with a scalar ay # 0 will not alter the
solution zj, and substituting #5141 = Srxgy1 with



scalars 85, # 0 always allows to retrieve x4 from
Tht1-
If we choose a K—periodic scaling o = a4 and

Br = Br+k, for all £k > 0, then we obtain a new
periodic system characterized by

Oé(]_[n
- Az = (A — A2)

akfl-[n
—1

Boln
. = D.(\6 — AZ)Dj!
Br—11n
()

corresponding to the scaled difference equations

(ar By By') &1 = (ax Ag BiYy) &k (6)
—_— [ —
Ey Ap

2. STABILITY RADIUS OF DISCRETE-TIME
PERIODIC SYSTEMS

The robustness issue is a crucial problem for the
application of control theory; for example, one
of the basic goals of feedback control is to en-
hance system robustness. Robust stability is also
an important topic in linear algebra as well as
in numerical analysis. A fundamental problem in
robustness analysis is to determine the ability of
a system matrix to maintain its stability under a
certain class of perturbations. A natural robust-
ness measure is the distance of a stable system to
the set of unstable systems, defined by Hinrichsen
and Pritchard (Hinrichsen and Pritchard, 1986)
as the stability radius of the system.

Assuming the system (1) to be stable implies that
(A — AZ) has only generalized eigenvalues inside
the unit circle. Therefore £ is invertible, ® is well
defined and ® has its eigenvalues inside the unit
circle. One is interested in determining the small-
est perturbations of the coefficients Ejy, Ay that
will make the system unstable. Equivalently, one
analyzes the sensitivity of the generalized eigen-
values of A — AZ to structured perturbations in
this pencil. To be more specific, one has to find
the smallest perturbations

A€ = dlag{(SEo, s ,5EK71},
AA= diag{(SAg, e ,(SAK_l}

such that the system matrix [A (£ + AE) — (A +
AA) Z] has at least one generalized eigenvalue
in the wunstable part of the complex plane, i.e.
outside the open unit disc. Measured in term of
the 2-norm, the minimality of the perturbations in

question is characterized by the stability radius
defined as follows:

TEA = AgngA{ max (|[|AE]|2, [|AA|l2) : IA ¢ D
s.t.det[AME + AE) — (A+ AA) Z]=0}. (7)

Two subproblems of special interest can derived
from this general setting by imposing either the
constraint AE = 0 or the constraint A4 =
0. The corresponding stability radii then take
respectively the form

re = 1Anéf{ [[AE|l2 : 3N ¢ D s.t.
det[A(E + AE) — AZ] =0} (8)
or
A= glfl{ [|AAl2) : 3N ¢ D s.t.
det]AE — (A+ AA) Z] =0}. (9)
Because eigenvalues move continuously with A&,
AA, equalities (7), (8) and (9) can be rewritten
into the form
rea= il inf {max (AC].|AA]L)
det[A(€ + AE) — (A+ AA) Z] =0}. (10)

Note that one has the relations

|AEll2 = max[|0Ex|l2, [|AAllz = max||dAx ][

by definition, since the matrices A £ and A A are
diagonal.

Next, we focus our attention on the scalar case,
when n = 1 and Ej, Ay are real numbers, which
can be simply denoted by ey, ag. Accordingly, for
the perturbations matrices § B,  Aj, we write dey,
6ak.

To deal with the problem, let us introduce from
the data the two polynomials of the z variable:

K-1 K-1
P.(z) = [[ (=2/lex]), Pu(z) = J] (1+2/lax)).
k=0 k=0
(11)
Define also the constant a € C by
aK:a(]ala"'aaK—l (12)

€0€1;...,€K—1

which is just another way to write (2) in the scalar
case. Note that, since the unperturbed system (1)
is assumed to be stable, one has the property
la| < 1.

A closed formula for the stability radius (10) is
given by the next theorem and it is expressed in
terms of a polynomial equation involving both P,
and P, introduced above.

Theorem 1. Let (o be the smallest positive real
zero of the polynomial equation

P.(z) — |a|® P,(z) = 0. (13)



Then

re,A = Go (14)
i.e the stability radius (10) is the smallest positive
real root of the polynomial equation (13).

Moreover, a minimal perturbation is obtained by
setting for k =0,1,..., K — 1:

der = —ex Co/lex], Sax = +ax Go/|ar], X = a/la|.
(15)

As an immediate consequence, one has

Corollary 2. The spectral radii r¢ and r4 will be
determined as the smallest positive real zero of
the polynomial equations P.(z) — |a|/¥ = 0 and
1 — |a|® P,(x) = 0, respectively, while minimal
coefficient perturbations can be still defined by
the first or second relation (15).

The case a = 0 is treated separately.

3. OPTIMAL SCALING OF BICYCLIC
MATRICES

The second part of the paper is dedicated to an
alternative derivation of Theorem 1 and Corol-
lary 2. Recall the definitions of rg 4, r¢ and
r 4, respectively. Introduce the following matrices,
parametrized by a variable A:

My =X\ — AZ, (16)
Ny:=(\ —AZ)Z71, (17)
LA::[é}MAl[/\I —I]. (18)

Using structured perturbation results (Van Dooren
and Vermaut, 1997), one can show that appropri-
ate lower bounds for the stability radii (7), (8), (9)
are given by the following optimization problems

-1
re > sup inf owax (DM5'D ) (19)
Al=1 D

-1
TA> { sup inf omax ([)lef)—l)} (20)
[A|=1 D

—1
Te, A > < sup H}f Omax (IA)L)\IA)il) (21)
[A|l=1 D

where D = diag{D1, D5}. For more details, see
(Van Dooren and Vermaut, 1997).

We show in this paper that these lower bounds
are actually equalities in the scalar case (n =
1) and that the optimal scaling in (5) can be
computed relatively easily. Furthermore, one can
also construct the “optimal” perturbations A&,

AA which actually attain the lower bounds in
(19)—(21).

The key point in determining the stability radii
re. A, Te and r4 is to find an optimal scaling
of the matrix M) introduced by (16), such that
the smallest singular value of D, M) D'gl is
maximized, and whereby we have special relations
between D, and Dg. We point out that M) has
bicyclic structure, i.e. it is a linear combination of
a block diagonal and a block cyclic matrix. This
property will be crucial in proving our extremal
properties.

We introduce two classes of diagonal and unitary
block scaling matrices:

D ={D = diag{di I, .
U={U = diag{Uy, ..

. ,dKIn} d, € ]R—F} (22)
LURYUSU; = L) (23)

which play an important role in this analysis. It is
clear that any V € {f and D € D commute with
each other. Therefore if D,, Dg € D we have

Omax{Da Mx D'} = omax{Da UM\ V* D3}

for any U,V € U. So instead of optimizing the
scaling of M) one can as well optimize the scaling
of UM,V *. This is exploited in the sequel.
Let us also point out that for any matrix M and
scaling D € D and U,V € U, since omin < |Amin|
and opax > |Amax|, we have the inequalities

O'min(_DMDil) < |)\mm(UMV*)| <~
Omax(DM™ID™Y) > Amax (VM TIU™)|. (24)

3.1 The scalar case n =1

We consider this case separately since it has a
closed form solution. Recall the notation intro-
duced in Section 2 for the special case when n = 1.

By using the well-known Floquet transform (see
(Sreedhar. and Van Dooren, 1997)) and some el-
ementary algebraic manipulations, one can prove
the following important result.

Lemma 3. For the A-family of matrices M) in
(16), there exist unitary matrices U,V € U such
that, for A := a/|al|, one has

* —1 _ —1
VMU = M.

We are now ready to state the key result of this
section. The proof appeals to Perron-Frobenius
theory and uses the inequalities (24), as well as
Lemma 3.



Lemma 4. Let M)y be given by (16). Then there
exists a unit modulus value A such that
sup  sup |/\maX(V*M>\_1U)| = /\maX(|M5\_1|)
IA|l=1 U,Veu
= inf omax(DM'D71). (25
Sup ot ma (DM ). (25)
Moreover, there exist unitary matrices U,V € U
and a diagonal matrix D € D such that actually
attain both equalities in (25).

As an immediate consequence, one can find easily
an optimal scaling for the A-matrix of interest
showing up in (21), that is, Ly defined by (18).
If we now choose V := diag{V, ZVZT},

U := diag{\'U, —U}, then we have indeed

* I ens-
VLXU:[Z]V MU 1]

LI

which is the required scaling for Ly. From this,
the next result trivially follows.

Corollary 5. Let Ly be given by (18). Then there
exists a unit modulus value A such that

sup  sup  [Amax(V*LaU)| = Amax (L5 )

A=1 0,Veu

= sup inf Omax(DLAD7). (26)
[\|=1 DeD

Similarly, one can look at the optimal scaling for
r 4, which is again a similarity scaling but on the
matrix Ny ' = ZM; '. Take W := ZVZ7 (which
is diagonal and unitary) and check that

* n7—1 _ * —1 _ -1 _ —1
WINU = ZVM U_Z|M5\ |_|N5\ [,
which is now the optimal scaling for IV 5 '

Let us finally note that the case a = 0 is treated
separately.

We may now state the main result of the paper.

Theorem 6. Let Dg 4, Dg and D 4 be the optimal
scalings for the A-matrices Ly, M/\_1 and N/\_l,
respectively; these scalings are directly obtained
from the Perron vectors of |Ly|, |M5 '] and [Ny '|.
Then

re.a= (max(1L3)) ™ (27)
re = (Amax (1M41])) (28)
ra=(maNTD) (29

Remark 7. One can now check without difficulty
that equalities (27) and (14) coincide.

3.2 The casen > 1

Here we use an algorithm that tries to narrow
down the gap between the upper and lower bounds

inf Omax(DV M 'U*D ™)
> sup [Amax(VDM 'D71U*)|.  (30)
U,V

and we try to reach a scaled matrix that the gap is
zero (and hence satisfies the equal modulus prop-
erty). Notice that the structure of M is such that
every eigenvector has non-zero subvectors (corre-
sponding to the blocks). So the iterative proce-
dure works as follows : compute the dominant left
and right eigenvectors of the current matrix M.
Scale with D so that subblocks satisfy the equal
modulus property. These left and right vectors are
not equal but if we “rotate” the subvectors then
they become equal. Then iterate on this new M
matrix. This appeared to converge quadratically
on matrices with real elements.

One should show that at each step the singular
value can only decrease and the eigenvalue only
increase.
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