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Abstract

Positive polynomialmatricesplay afundamentatole in sys-
temsandcontrol theory We give herea simplified proof of
the factthat the corvex setof positive polynomial matrices
canbe parameterizedsingblock Hankel andblock Toeplitz
matrices We alsoshow how to derive efficientcomputational
algorithmsfor optimization problemsover positive pseudo
polynomial matricesover the real line, over the imaginary
axisandovertheunit circle.

1 Intr oduction

Positve transferfunctionsplay a fundamentalole in sys-
temsand control theory: they represente.g. spectralden-
sity functionsof stochasticprocessesshav up in spectral
factorizationsand are alsorelatedto the Riccati equations.
Whensuchtransferfunctionsarerational, it is known since
the work of Youla[11] thatthey possessational spectral
factorizationsLateron, it wasshavn that, usingstate-space
modelsof positive transferfunctions,onecould expressthe
conditionof positiity in termsof linear matrix inequalities
(seee.q.[10]).

Positive transferfunctions obviously form a corvex set,
andrecentlythey werealsobeingstudiedin the convex opti-
mizationliterature[2], [7]. In orderto optimizeover the set
of positive functions,it is importantto have a compact(say
“minimal”) parameterizationf thesefunctionsandrecently
sucha parameterizationvas presented7], [3]. In this pa-
perwe derive thisresultfrom simplerideasandalsodevelop
thealgorithmicaspect®f fastalgorithmsin amorerigorous
manner

First of all, we recall the basicresultsof para-hermitian
transferfunctions, a conceptwe needwhen looking at the
matrix caseof positive transferfunctions,sincepositve ma-
tricesinherentlyrequiresomekind of symmetry Thenwe
recallthe spectralfactorizationresultsfor positive functions
andderive the parameterizatiofrom this basicresult. Con-
nectionawith the positive reallemmaarerevisitedin thisper
spectve in alaterchapter

The optimizationproblemover the corvex setof positive
pseudo-polynomiahatricess consideredWe show thatthis
problemcanbe solved by fastalgorithmsfor matriceswith
block Hankel or Toeplitz structure.

2 Para-hermitian transfer functions

Para-hermitiartransferfunctions®(.) play animportantrole
in systemgheory They aredefinedwith respectoacurvein
thecomplex plane,whichis typically theimaginaryaxis (for
continuous-timesystemspr theunit circle (for discrete-time
systems) put we will considerhereaswell the caseof the
realaxis.

Imaginary axis
This curve is the boundary of the stable region for
continuous-timdransferfunctionsin the complex variable
s (which is also the variable of the Laplacetransformof
suchdynamicalsystems).We denotethe imaginaryaxis as
s € jR.

Unit circle
This curve is the boundaryof the stableregion for discrete-
time transferfunctionsin the comple< variablez (which is
alsothevariableof theso-calledz-transformof suchdynam-
ical systems)We denotethe unit circleasz € e/®.

Realaxis
This curve occursin the standardreatmentof the classical
momentproblem[1], [6]. We will choosehe comple vari-
ablezx in this caseanddenotetherealaxisasx € R.

When we want to stressthat a resultholds for a partic-
ular curve we usethe variable associatedvith that curve.
Otherwisewe usethe variablep. We considerin this paper
only the caseof squarerational transfermatrices®(p), i.e.
m X m matricesd(p) whoseentriesarerationalfunctionsof
thevariablep.

Definition 1 Thepara-conjugateransferfunction®, (p) of
a giventransfermatrix ®(p) is definedasfollows:

D, (s) = [®(—3)]* for theimaginary axis

®,(z) = [®(1/z)]* for theunit circle

o, (z) = [®(Z)]* for thereal axis,

whele M* is theconjugatetransposeadnatrix of a matrix M.

We point out thatthe para-conjugat®. (p) is againara-
tional transferfunction of the comple variablep. Fromthis



definitionwe thendefinepara-hermitiartransferfunctionsas
follows.

Definition 2 A squae transfer function ®(p) is para-
hermitianif it is equalto its para-conjugate @, (p) = ®(p).

Notice that this definition dependn the choiceof curve
we areconsidering But for eachdefinition,a para-hermitian
transferfunction evaluatedon the correspondingurve, is a
Hermitianmatrix. Indeed,®.(p) = ®(p) impliesfor each
case:

P, (jw) = [®(jw)]* for s = jw ontheimaginaryaxis,

D, (e7¥) = [®(e/¥)]* for z = e/ ontheunit circle,

?, (w) = [®(w)]* for = w ontherealaxis,

wherew € R isthusarealvariableparameterizinghecurve.

Sinceapara-hermitiatransferfunctionis aHermitianma-
trix whenevaluatedon the curve, it will have real eigerval-
uesandwe canthusimposea conditionof positvity onthese
eigervalues.This leadsto thefollowing definition.

Definition 3 A para-hermitiantransferfunctionis positive
(non-neyative)if it is positive(non-neyative) whenevaluated
onthecurve: ®(p) > 0 (®(p) = 0).

It turnsoutthatnon-neative para-hermitiariransferfunc-
tionsalwayspossesa so-calledspectal factorization;

®(p) = G+ (p)G(p), 1)

where the spectralfactor G(p) is againa squarerational
transferfunctionin p. Thisresultwasprovenin the systems
theoryliterature[11], [9].

3 Positive pseudo-polynomials

Pseudo-polynomiahatricesarematriceswith afinite expan-
sionin positive andnegative powersof theindependentari-
ablep :

d(p) = Z ..

k=—r

Dependingnthetypeof curve oneconsidersthe coeficient
matricesof suchpseudo-polynomiahatricesnustpossessa
certainsymmetry

Realaxis
For a para-hermitiantransfer function ®(z) that is non-
negative on thereal axisz € R it follows from the para-
hermitiannaturethat the coeficient matricesof the expan-
sion

O(x) = Z Oz )
k=—r

mustall be Hermitian: ®, = ®;. Moreover, sincez? is
non-n@ative ontherealaxisz € R, we caneasilymultiply

or divide by a power of 22 and then reducesuch pseudo-
polynomialmatricesto polynomialmatricesin z orin .
If onechoosegpositive powersof = onehase.g.

t
®(x) = Z ®pa”,
k=0

andit is easyto seefrom the non-neativity thatthe high-
estdegreecoeficient mustbe of evendegreet = 2n. For
polynomialmatricesin z~! the highestdegreecoeficientis
alsoof evendegree.The standardorm we useherefor non-
negative para-hermitiamatriceson therealaxisis thus

2n
() =) pat, T =2; (3)
k=0

Unit Circle
For a para-hermitiantransfer function ®(z) that is non-
negative on the unit circle z € e/ it follows from the para-
hermitiannaturethat the coeficient matricesof the expan-
sion

O(z) = Y B2t 4

k=—r

must satisfy the condition: ®_;, = &} andthusthatsuch
a pseudo-polynomiammatrix musthave a symmetricexpan-
sion. The standardorm we useherefor non-ngjative para-
hermitianmatriceson the unit circle is thus

(2) = zn: Oz, ® = D} (5)

k=—n

Imaginary axis
For a para-hermitiantransfer function ®(s) that is non-
negative on the imaginaryaxis s € jR it follows from the
para-hermitiamaturethatthe coeficient matricesof the ex-
pansion

O(s) = Y s (6)

k=—r
areHermitianif & is evenandskew-hermitianif % is odd:

Qo = D3y, Popi1 = —P3 .

Thisfollows easilyfrom the changeof variabless = jx con-
verting the real axis in the imaginaryaxis. One canagain
multiply by a power of —s? (which is non-neyative on the
imaginaryaxis)to obtaina polynomialmatrixin s or s = :

t
O(s) =) Pis”,
k=0

andit is easyto seefrom the non-neativity thatthe high-
estdegreecoeficient mustbe of evendegreet = 2n. For



polynomial matricesin s—' the highestdegree coeficient
is also of even degree. The standardorm we useherefor
non-neative para-hermitiarmatriceson the imaginaryaxis
is thus

n
O(x) = Y Bpat, Doy =03, Dopr = — Doy

k=—n
(7)

4 Parameterization of positive transfer func-
tions

In this sectionwe derive a parameterizationf non-ngative
pseudo-polynomiaiatricesin termsof constantHermitian
matrices.

Realaxis
Let

2n
P(z) =) Pt (8)
k=0
beam xm para-hermitiapolynomialmatrixwith Hermitian

coeficients: P, = P}. We considerthe setof Hermitian
matrices

Yoo Yo1 ... Yo
Yip Yip ... Yo,
H= . . . )
Yoo Yoi1 ... Yun,
with blocksof dimensionm x m. Definethearray
II(z) = [ I, <zI,, z"1,, ]T,
thentherelation
1L (z)Y1I(z) = P(x) 9)
impliesthat
Pe= > Yi; k=0,..2n, (10)

i+j=k

wherewe assumeheblocksY; ; = 0 for i andj outsidetheir
definition range. We obsene thata simple choicefor Y for
obtainingthisidentity is

p 1P
ip P
Yo=| 2" 77 N GEN)

1
: 5P 1
1
§P2n71 P2n

We alsointroducetwo (n 4+ 1)m x (n + 1)m block matrices.

Let

betheblock shift operatoranddefinea matrix of theform
X = , (12)

with Xo € C™"™*™™_ Thenwe have thefollowing character
izationtheorem.

Theorem1 A Hermitian matrix Y satisfies(9) iff it canbe
expresseds

Y =Yy+2'X - X2,
with X, skew Hermitian,i.e. Xo = —X.
Proof : The if part is obvious since one has
IL(z) [ZTX — XZ|(z) = 0 for ary matrix X of

theform (12). Corverselylet Y be a solution,thensolving
(10) in termsof X oneobtains

X = 32 ~%)(2) (19
=0
aswell as
X =S¥ -V #Y, )
k=0

provided X hastheform (12), whatis readily verified from
relations(10). Finally, onederivesthe skew symmetryof X,
from comparing(13) and(14). 0
Imposing the condition that (8) is also a non-nejative
transferfunctionleadsto thefollowing theorem.

Theorem?2 A matrix polynomial P(z) is hon-neative on
thereal axisiff there existsa non-n@ativedefinitematrix Y’
satisfying(10).

Proof: Becauseof the previoustheorem we needto prove
the“only if” partonly. We derive this from the existenceof
aspectrafactorization

P(z) = G.(2)G(),

where G(z) is polynomialin z : G(z) = > ;_,Gnz™

Choosehen

Y=[Gy G Gn '] Go Gi Gy .

Thismatrix Y is non-negative andsatisfieghe constraintof
thetheorem. 0
This thusprovesthefollowing theorem:

Theorem 3 A pseudo-polynomiahatrix of form (8) is non-
negative definiteon the real axis if and only if there exists
a non-ngative definite matrix Y with blocks Y; ;,4,j =
0,...,n sud that (assumingy; ; = 0 for ¢ and j outside
their definitionrange):

Po= ) Yy

it+j=k

fori=0,...,2n. (15)

O



It turnsout thatthis characterizatiorf matrix polynomials
non-ngjativeontherealaxisextendsaresultearlierobtained
by Nesterw [7] for scalarmpolynomials.

Unit Circle
We now turn to the non-nagative transferfunctionson the
unit circle. It follows from the finite expansionand from
its para-hermitiarcharacterthat sucha pseudo-polynomial
matrix:

P(z) = Z Pp.2",

k=—n

(16)

hasm x m coeficientmatricesthatsatisfy P_;, = P;;. The
setof Hermitianmatricesof interesthereis definedby the
equation

IL (2)YII(z) = z": Pz, 17

k=—n

wherewe usedthe samenotationasabove for the matrix Y
andIl(.). Thisis algebraicallyequivalentto therelations

Po= ) Yij

i—j=k

(18)

assumingy; ; = 0 for ¢ and;j outsidetheir definitionrange.
Clearly, thechoice

P P ... P,
vw=| T 0 0 (19)
P: 0 ... 0

isanadmissiblamatrixY". Thecharacterizatiotheorenrmow
takesthefollowing form

Theorem4 A Hermitianmatrix Y satisfiesequation(17) iff
it canbeexpressedas

Y =Yy+X—-27XZ,

wheie X hastheform (12) with Xy anmk x mk Hermitian
matrix,i.e. Xo = X{.

Proof:
By duplicatingtheargumentusedin the proofof Theoremi,
oneshawvsthatthesolution X of equation(18)is givenby

X = S - o)),

andthatthe resultingmatrix X hasthe statedform because

of (12). 0
Thepositive pseudo-polynomiahatricesontheunit circle

canthenbecharacterizedsfollows.

Theorem5 A pseudo-polynomialmatrix P(z) is non-
negative definite on the unit circle iff there exists a non-
negativedefinitematrix Y satisfyingequationg18).

The proof of this theoremis againbasedon the samespec-
tral factorizationargumentasin Theorem2 andis therefore
omitted.

Imaginary axis
Thethird kind of non-neyative pseudo-polynomiafnatrices
is thatwith respecto theimaginaryaxis. Thisformulationof
the problemdoesnot requireary specifictreatmentsinceit
canbereducedo thecaseof therealaxisin astraightforvard
manner Indeed consideithe para-hermitiampolynomialma-
trix

2n

P(s) = Z Pys*
k=0

with s € jR. If s = jz, onederivesfrom P(s) the para-
hermitianpolynomialmatrix

(20)

2n 2n
P(z) =) (j*P)z" =D Pa*
k=0 k=0

with respecto therealline. In particular this implies P; =
(—1)* P, for all k. Therefore applyingTheorem3 to P(z),
oneobtainsfor P(s) thefollowing result:

Theorem6 A pseudo-polynomiahatrix of the form (20) is
non-ngative on the imaginary axis iff there exists a non-
negativematrix Y with blocksY; ;,4,5 =0, ... ,n sud that

Pe=(=j)" Y Yi;. k=0,...
i+j=k

,2n.

5 The optimization problem

Sincethe optimizationproblemwill be definedin termsof
scalarproducts,we arefirst recallingthe appropriatedefini-
tion whenworking on the spaceof comple« matrices. For
ary coupleof matricesX andY we definethescalamproduct
(X,Y) asfollows

(X,Y) =Re(Trace XY*) =Re » > z:;7,;, (21)
g

wherez; ; andy; ; arethe scalarentriesof the matricesX
andY’, respectiely. It follows from this definitionthat

(X,Y) = (Re(X),Re(Y)) + (Im (X),Im (Y)).

It seemsappropriateto call this the Frobeniusscalarprod-
uct sinceit inducesthe Frobeniusnorm: (X, X) = || X|%.
From the above relationit easily follows thatif X andY
arepartitionedconformablyinto blocks X; ; andY; ; thewe
have theidentity

(X,)Y) = ZZ(XM’YLJ')-

Next we defineon the setof pseudo-polynomiatatricesa
scalarproductthatis conformablewith the above definition.



Realaxis
We first startwith non-neyative matricesontherealaxis. For
a setof non-n@ative polynomialsP(z) = Zilo Pyz* and
Qz) = Ziio Qrz" we definea scalarproduct(P, Q)» as
follows:

2n

(P,Q)n =D _(Pr, Qx)-

k=0
It turnsoutthatseveralimportantoptimizationproblemscan
beformulatedin thefollowing standardorm :

min {<07P>§R : <A€aP>§R:b€a€: 17 aq}a

Pekyx (22)

for givenC, A, andb,, andwhere/Cy is the coneof matrix
coeficients

P =[Py, Pi,..., Py ]

of the polynomialmatrix P(z) whichis non-neyative onthe
realaxis,i.e.

P(z) =0, zeR.

As P € Ky necessarilymplies P, = P;; for all k, thereis
no restrictionto assumeall the m x m blocksC}, of C and
blocks A, ;, of A, to be Hermitianaswell, sincethe anti-
hermitianpart of thesematriceswould disappeaanyway in
the scalarproducts. As shavn in the precedingsection, P
will bein the coneCy iff thereexists a non-neyative block
matrixY” with blocksY; ;,4,j = 0, ...n of dimensionmxm
satisfying

Po= Y Y, k=0,1,...,2n
i+j=k

(23)

By definition,thedualcone/Cy; is madeof thematrix coef-
ficients@Q = [Qo, Q1, ..., Q2 ] Of thematrixpolynomials
satisfyingthe constraint

(Q,P)p >0, VP < Kx.
If H(Q) denotegheblock Hankel matrix
Qo Q1 ... Qn
mg=| @ T (24)
: ' C Qo

Qn . Q2.n71 QZn

it turnsoutthatonehastherelation

(Q, Py = Z<Ql\7pk>§RZZ Z (Qk,Yi j)w
k=0 k=0 it j—k
= (H(Q),Y) (25)

becauseof (23) and the propertiesof the scalar product.
Moreover, it canbeshowvn that

(H(Q),Y)>0 VY =0« H(Q) = 0.

Thereforethe dualconelCs, is characterizethy H(Q) > 0.
As a consequencehe optimizationproblem(22) canbe
restatedn its dualform

q q
max {Z bouy : H(C — ZUgAg) - 0}. (26)
Yt T —1

Fromanumericalpointof view, this dualformulation(26)
hasa considerabladvantageoverthe primalform (22) since
it involvesan optimizationin a spaceof variablesof dimen-
siong ratherthan(n + 1)m2. It is well known [8] thatopti-
mizationproblemsof this type canbe solvedefficiently with
the help of interior point methodsand that their numerical
implementatiorrequiresthe calculationof the first andsec-
ond derivativesof thebarrierfunction

q
f(u) = —Indet H(C' = Aguy).
(=1

Thesederivativescanbe expressedisfollows. Denote

q
S=C=Y Ay
£=1

Thenonederivesthat

91w — (H(S)~1, H(A)),

Oup
27
9 f(w) @7)

OugOug = <H(S)71H(A€)H(S)71)H(As)>

Unit circle
The sameproperty holds for optimization over the set of
non-ngyative pseudo-polynomiamatriceson the unit cir-
cle. The scalarproductto be usedfor pseudo-polynomials
P(z) =3__, PzFandQ(z) =Y 1_ . Q2" is defined
asfollows:

n

(P,Q)c = Z (P, Qr)-

k=—n
The optimizationproblemnow reads:

PHGIIICIE{<C’P>C : <A€;P>C = be’f: 1,... aQ}7 (28)

whereK is the coneof matrix coeficients
P=[P.,,,..., P.]

of non-neyative pseudo-polynomiainatrices
P(z) =0, zee®

on the unit circle. We note that suchmatriceshave coefi-
cientsthatsatisfy P, = P andthat P € K necessarily
implies

P, = Z Yi, k=-n,...,n. (29)
i—j=k



As before,thereis no restrictionto assumehatthem x m
blocksCy, of C andblocks A, i, of A, have the sametype
of symmetryastheblocksof P, sincethiswill notaffectthe
scalarproducts.
Thedual coneICE is madeof the matrix coeficients
Qi[Qf’rL’ PR | QTL}

of thepara-hermitiapseudo-polynomialsatisfyingthecon-
straint

<Q,P>C >0, VPe Kc.

If T(Q) denotegheblock Toeplitz matrix

Qo @1 ... @Qn

rQ=| @ @ (30)
: .. .. Ql
Q. -+ QF Qo

onehastherelations

z": (Qk, Pr)w = Z”: Z (Qk,Yi )%

k=—n k=—ni—j=k

= (T(Q),Y)

(@Q,P)e =
(31)

so that the dual cone K, is characterizedy 7(Q) > 0.
Thereforethe dual optimizationproblemof (28) becomes

q q
max {Y boug: T(C =Y upde) = 0} (32)
=1 /=1

UL,---,Ue

for whichthe appropriateébarrierfunctionis

fu) = —Indet T(C =Y~ Aguy).

=1

As in theblock Hankel casejts derivativescanbe expressed
asfollows:

91 — ((8)1, T (Ay)),

Ouyg

SIW — (7(S) T (A)T(S) L, T(A,)),

(33)

where

q
S = C — Z AgUg.
(=1

Imaginary axis
Theimaginarycasereformulationis left to the readersince,
asshowvnin the previoussection it canbereducedo thereal
line problemin atrivial manner

6 Computational aspects

In this sectionwe consideHermitian(n+1) x (n+ 1) block
Toeplitzmatriceswith arbitrarym x m matrix blocksT; :

o Tv ... T,
re | T To :
Ty ... Ty To

and(n +1) x (n+ 1) block Hankel matriceswith Hermitian
m X m matrixblocksH; :

Hy H; H,
g |
. Lt . Hgnfl
Hn H2n71 HQ'rL

Let usfirst definethe block permutatiormatrix J :

o ... 0 I,
J = 0
0 . . :
I, 0 ... O

The displacementheoryof ToeplitzandHankel matrices
is well established5] andis the basisunderlyingmostfast
algorithmsfor decomposinguchmatrices.Usingthe block
shift matrix one definesa “Toeplitz displacemenbperator”
V: anda“Hankel displacementbperator’V,, asfollows:

V. =T-2'TZ, V,H=H-ZHZ.

It is easyto seethat

o T ... T,
TF 0 0
=\ . . ; (34)
> 0 ... 0
Hy O . 0
v,i=| (35)
: 0 - 0
Hn cee Hanl H2n

From the above expressionsone seesthat the original ma-
tricesT” and H canbe recoveredfrom their respectie dis-
placementand the inverseoperatoris easyto write down.
Oneeasilycheckshat:

T=vT+20 VT -Z+...+2"7-Nv,T-Z" (36)
and

H=V,H+Z-NyH-Z+...+2"-VH-Z". (37)



The proof of theseinversionformulasis obtainedby merely
applyingthedisplacementperatoragainto bothsidesof the
equations.

It is alsousefulto point out that both displacementsire
closelyrelatedto eachother Permutingthe block rows of a
block Hankel matrix H yieldsindeedablock Toeplitzmatrix
JH, which we candefineas T provided we chooseT; =
Hip, i = —n,...,n. SinceZT = JZJ we alsohave
thatthe displacemenbperatorsare thenrelatedin a similar
fashion:

T=JH < V,T=JV,H. (38)

Fromthe sparsitystructureof the matricesin (34,35)it is
obvious that the ranksof VT and V, H cannotbe larger
than2m. Thisrankis calledthe “displacementank” of the
correspondingnatrix. Thetheoryof displacementanks[5]
tells usthattheinverseof T or H (whenit exists) hasadis-
placementankboundedoy thatof the matrixitself :

rankV,7~! <rankV,T, rankV,H ! <rankV,H.

(39)

Since the displacementank of a block Toeplitz or block

Hankel matrix is typically muchlower thanthe dimensions
of the correspondingnatrix, andsincethe displacemenbp-

eratorcanbe inverted, it is economicalto represensucha

matrix by a rankfactorizationof its displacementFromthe

expressiong34,35)it is very simpleto constructlow rank

factorizationof V;T or V, H :

Vi:T = F}.Gy, V,H=F;.Gp, (40)

where the number of rows of F; and G; equalsr; =
rankV,T" and the numberof rows of F;, and G} equals
rn, = rankV, H. But givensuchfactorizationsthereexist
fastalgorithmsto derive from themthecorrespondindactor
izationsof the displacemenbf theinverses

vtT71 = AI,Bt, V}LHil = ;(L-Bha (41)

andtheseprecisedecompositionsvill be usedin the sequel.
We shouldpoint out thatthesefactorizationsare not unique
andthat for positive definite matricesT’ and H thereexist

particularchoicesof factorizationghatindeedreflectthese
properties.In the sequelwe will not worry abouttheseas-
pectssincethey will only affect maminally the complexity

resultswe wantto stress.

Let usfocusfirst on the caseof Toeplitz displacemenof
amatrix X andsupposeave have computedarankr; factor
izationof its ToeplitzdisplacemenV; X :

V.X = A*- B (42)

whereA and B have dimensiong; x m(n + 1). We define
an upperblock triangular Toeplitz matrix U (B) asa func-
tion of the partitionedmatrix B, whereeachsub-blockhas
dimensiong; x m :

B=[ By Bi B ],

By By ... B,

L. By
0 ... 0 B

Doing the samefor the matrix A we have

A=[4 A A ],
Ay 0 ... 0

: - w0

LA;; AT AgJ

It follows from the displacemenequationV; X = A* - B
that

X = zn:(Azj)*(BZj) =U(A)U(B) =
j=0

Ay 0 ... 0 By By ... B,
A A} 0 By :
s .0 : . By
Az AT A 0 ... 0 B
(43)

This formula, when appliedto a particular choice of dis-
placementactorsA and B for the inverseof a Toeplitzma-
trix 7', is alsoknown asthe Gohbeg-Semencuformulafor
X=T"

For aHankel displacemen¥;, X of amatrix X we havea
similar representatiostartingfrom therankr;, factorization
of Vi, X :

VX =A*-B (44)
If we now partitionthematrix A in reversedorder
A= A A, | e AT=] A, A, |

thenit follows from therelationJV;, X = V;(JX) that

X = zn:(ZjJA*)(BZj) = JU(A)'U(B) =

j=0

Ax AT A By By, ... B,
; 0 0 B

A Af : B

Ay 0 0 0 0 By

(45)



Whenappliedto a particularchoiceof displacementactors
A and B for the inverseof a Hankel matrix, this formula
is alsoknown asthe Christofel-Darbouxformulafor X =
H~!. The compleity of the constructionof the generators
for theinverseof X is O(rm?nlog® n)..

Let usnow seehow to computescalamproductsof thetype
(X,2%), (X,(Z2)")

whereV,; X is given. For a Hermitianmatrix X, it turnsout

that (X, (Z))T) = (X, Z*) sothatonly oneexpressionhas

to be evaluated. WhenV;, X is given we needto evaluate

scalarproductsof thetype

(X,JZ%), (X,J(Z")")

but for Hermitian matrices we have (X,J(Z)T) =
(X J,Z") sothatagainonly oneexpressionhasto be eval-
uated.

We first considermatricesX given by their Toeplitz dis-
placemenv; X = A* - B. Sincewe canwrite

= diag{Ax}2*, U(B)=)_ diag{Bi}2".
t=0 k=0

andwe have that
(diag {X} 77, diag {Y}Z") = 6; j(n+ 1 —i)(X,Y)
thenwe obtain

(U(A)U(B),Z2%) =

((n+1—j)B;A0+ .+2B;_An._j1+ B A, ;).

Oneeasilycheckghat

(U(B)'U(4),2%) =

<(7’L +1-— ])A;Bo + ...+ 2A:‘71Bn,j,1 + A;Bn,J>
Notice thatsince X is Hermitian,only oneof thesetwo ex-
pressiondasto be computedsincethey areidentical. These
quantitiesclearly result from the cornvolution of the block
vectors

[(n+1)Bo,nB1, 2B, 1, By, [0, A1, , An_1, Ay),
and

[(n+1)Ag,nA1,---24A,-1,4,)], [Bo,B1, -+, Bn_1,B,],
which has a compleity of O(rymnlog,n). For a ma-

trix of displacementank r;, the overall complexity is thus
O(rsnlog, n), providedthatthematricesA and B aregiven.

We thenconsidermatricesX given by their Hanlkel dis-
placementV, X = A* - B. The considerednner products
canin factberewrittenin termsof J X asfollows:

(X, J(Z))") =((JX)", Z"),

(X,JZ9) = (JX, Z9),

andsinceJ X is block Toeplitz,we canagainapplythesame
formulasasabove. Our choiceof relabelingthe sub-blocks
of thematrix A in reversedorderin (45), actuallyyields ex-
actly the sameformulasfor theseinnerproducts.

We alsoneedthe computatiorof innerproducts

<T(M)'TY)T(M) 27>, j=0,...,n.
which canbeobtainedfrom
{—T(Y) T<M>]1:
T(M) 0
0 T(M)™*
[ T(M)*1 T(M)*lT(Y)T(M)*1 }

The matrix on the left can also be permutedto a block
Toeplitzmatrix :

rer] g 150 |-
I I
[ ] [ )

but with 2m x 2m blocks. In orderto apply fastalgorithms
to 7' oneneedsto assumehat certainsubmatricesf 7" are
invertible but this follows easily from the positive definite-
nessof T'(M). SoonecanconstructthefactorsA and B of
the factorizationv,7’ = T — ZTTZ = A*B atlow cost.
Selectingthe appropriaterows of thesematriceswill yield
a similar factorizationfor V(7' (M)~'T(Y)T(M)~') and
thenwe againapply the above formulasto computethe rel-
evantinner products. Theresultsfor Hankel displacements
arecompletelyanalogous.

7 Positive para-hermitian transfer functions

It is a well known resultof state-spac¢heory[9] that ary
propertransferfunction of thattype admitsminimal realiza-
tionsof theform

(I)(S) = [ B*(_Sln —A*)fla I, ]YO l: (Sln _A)le :|

Im
(46)

whereY, is someappropriateHermitian matrix. Note that
the assumptiond(s) proper(i.e. ®(s) boundedat s = o)



is madefor the sale of simplicity and could be lifted with
the help of generalizedstate-spaceepresentationsr of an
appropriatetransformationof the variables. Clearly, Yy is
notuniquelydefinedfrom ®(s). Indeed /et usreplaceY;, by
Y (X), definedasfollows:

XA+ A*X XB

(47)

andwhere X is ary n x n Hermitianmatrix. ®(s) is easily
verifiedby directinspectionnotto beaffectedby this substi-
tution, which clearly preseresthe Hermitianpropertyof the
realization.

Thewell known positivereallemmal12], [9] saysthatthe
existenceof a Hermitianmatrix X suchthatY (X) is non-
negative definite is a necessarand sufiicient condition for
®(s) to be a para-hermitiartransferfunction non-neyative
onthewhole of theimaginaryaxis.

Asthevariabletransformatiors = jx mapstheimaginary
axisontotherealaxis,onecantransformary para-hermitian
transferfunction into a hermitiantransfermatrix and con-
versely Thecorrespondingealizationthenbecomes

-1

‘I’(:E) _ [ B*(m[n —A*)_17 Im }YO |: (.Z'In —IA) B :|
m

(48)

whereY is the sameHermitian matrix as before. Further
more,if ®(x) is non-ngative definitefor realz, onederives
from previous casethattheremustexist skew-hermitianma-
tricesX = — X * suchthatthe Hermitianmatrix

- XA+ A*X —-XB

(49)

is non-nagyative definite.

Similarly, thevariabletransformations = (2 — 1) /(2 +1)
mapstheimaginaryaxis ontothe unit circle. Thereforeone
cantransforma para-hermitianiransferfunctionthatis non-
negative on theimaginaryaxisinto a para-hermitiariransfer
functionthatis non-neativeontheunit circleandcorversely
(seee.q.[3]). Therealizationthenbecomes

- -1

B(z) = [ 2B*(In — 24", In | Yo [ (zIn IA) B ]
m

(50)

and®(z) is non-negative definiteon the unit circle, iff there
existaHermitianmatrix X suchthat

Vo0 =w [ AXAK AXE] ey
is non-ngyative definite.
Fromtheseconditionsonecanre-derive the resultsof sec-
tion 4. Thisis donein thepaper{3] startingfrom realizations
of the pseudo-polynomiatatrix ®(p) for eachof the three
cases.Theresultfollows by using A = Z, the block-shift

matrix,andB = [0, ... ,O,Im]T. Usingthesedefinitionswe

indeedhave

(pI — A)~'pB=T(p)(p™")

which links the realization to our pseudo-polynomials.
Moreover, the linear matrix inequalities(49,51,47)thenbe-
cometheequationsn X, Y and X, of section4.
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