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Abstract  Recently, a compact characterization of scalar positive polynomials on the real
line and on the unit circle was derived by Nesterov [3]. In this paper we show how to extend
this result to pseudo-polynomial matrices, and also present a new proof based on the positive
real lemma. The characterization is very similar to the scalar case and also allows the use of
fast algorithms for computing the central point of the corresponding convex set.

1 Introduction

Positive transfer functions play a fundamental role in systems and control theory: they repre-
sent e.g. spectral density functions of stochastic processes, show up in spectral factorizations,
and are also related to the Riccati equations. When such transfer functions are rational, it is
known since the work of Youla [6] that they possess rational spectral factorizations. Later on
it was shown that using state-space models of positive transfer functions one could express
the condition of positivity in terms of linear matrix inequalities (see e.g. [5]).

Positive transfer functions obviously form a convex set, and recently they were also be-
ing studied by people in convex optimization [1], [3]. In order to optimize over the set of
positive functions, it is important to have a compact (say “minimal”) parameterization of
these functions and recently Nesterov presented such a parameterization for scalar positive
polynomials. In this paper we look at the same problem via the state-space theory and hence
via the more general class of rational matrix functions.

First of all, we recall the basic results of para-hermitian transfer functions, a concept we
need when looking at the matrix case of positive transfer functions, since positive matrices
inherently require some kind of symmetry. Then we recall the positive real lemma which
essentially gives the linear matrix inequality describing the positivity conditions for positive
transfer functions.

From this general theory, we then derive Nesterov’s parameterization of positive polyno-
mials and also extend it to the matrix case and to pseudo-polynomial transfer matrices. We
end by showing a particular application to systems and control, where the above results are
of direct use.
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2 Positive para-hermitian transfer functions
Let @ (s) be a m x m rational para-hermitian transfer function, i.e.

b.(5) = @ () 1)
= &(s).

It is a well known result of state-space theory [4] that any proper transfer function of that
type admits minimal realizations of the form
(2)
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where H is some appropriate hermitian matrix. Note that the assumption ®(s) proper (i.e.
®(s) bounded at s = oo) is made for the sake of simplicity and could be lifted with the help
of generalized state-space representations or of an appropriate transformation of the variable
s. Clearly, H is not uniquely defined from ®(s). Indeed, let us replace H by H(X), defined
as follows :

Huj:H+[XA+AX XB]

B*X 0 (3)

and where X is any n x n hermitian matrix. ®(s) is easily verified by direct inspection not
to be affected by this substitution, which clearly preserves the hermitian property of the
realization.

Let us now consider the subset of para-hermitian transfer functions that are nonnegative
definite on the imaginary axis (®s = 0)

P(w)=d"(Jw) >0 for —oo <w < o0 4)
and partition H conformably with (2) and (3)

H:[Hn Hrz]. 5
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It appears from (2) and (5) that ®(o0) = Hyy so that Hy is nonnegative definite.
Let us now further assume that there exists a hermitian matrix X such that H(X) is
nonnegative definite. Then, H(X) can be factorized into

}{LX)::l<éi ][ L, w| (6)

for appropriate r x n and r X m matrices L and W, respectively, and with r the rank of

H(X). Therefore, if G(s) is defined as
G(s)=L(sI,— A)'B+W, (7)

one has

D(s) = G(s)G(s). (8)



Hence, the existence of a hermitian matrix X such that H(X) is nonnegative definite appears
to be a sufficient condition for ®(s) to be a para-hermitian transfer function nonnegative on
the whole of the imaginary axis (Rs = 0). Moreover, it can be shown under mild assumptions
that this exhausts the class of all possible hermitian realizations of ®(s) with given (A, B)
pair, and hence, this condition is also necessary for H(X) [7]. Clearly, neither the matrix X
nor the factorizations (6) (8) are uniquely defined. It can be shown however that, if Hyy is
positive definite, there exist solutions X such that H(X) is nonnegative definite with rank
H(X) = m. These special solutions X can be obtained from the algebraic Riccati equation

Hiy+ XA+ A*X — (Hig+ XB)H3,' (Hy + B*X) =0 (9)

and yield a spectral factorization of ®(s) as ®(s) = G.(s) G(s), where G(s) is defined from
(6) and (7), and is now squared and invertible.

3 Extension to the real line and unit circle

Para-hermitian transfer functions exhibit a symmetry property with respect to the imaginary
axis. It is a well known fact that equivalent classes of transfer functions can be defined by
substituting to the imaginary axis other special contours of the complex plane, namely the
real axis and the unit circle. Let us briefly recall the corresponding substitutions.

As the variable transformation s = jz maps the imaginary axis ®s = 0 onto the real
axis Sz = 0, one can transform any para-hermitian transfer function ®(s) into a hermitian
transfer matrix U(z) = ¥*(z) = ®(jx) and conversely. Therefore, by setting A := —j A
and B :=) B, one can transform any para-hermitian transfer function ®(s) into a hermitian
transfer function W(z) admitting hermitian realizations of the form

(10)
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where H is the same hermitian matrix as before. Furthermore, if ¥(2) is nonnegative definite
for real z, one derives from (3) and (6) that there must exist skew-hermitian matrices X =
— X~ such that the hermitian matrix

(11)

B XA+ AX -XB
H(X>_H+[ B*X 0 ]

is nonnegative definite.

Similarly, the variable transformation s = (2 —1)/(z4 1) maps the imaginary axis ®s = 0
onto the unit circle |z| = 1. Therefore, one can transform a para-hermitian transfer function
®(s) into a para-reciprocal transfer function Y(z) = ®[(z — 1)/(z + 1)] and conversely in
the sense that it verifies the equality Y(z) = T*(1/2). Furthermore, it can be shown by



elementary algebraic manipulations that, if one makes the substitutions 2

B I I (I-A)'B
=\ g1 = ax) I]Hl 1 ]

B:=2(I— A)~2B,
A= (- AT+ A)

T (z) admits the hermitian realization

(12)

T() = B (L~ 24", I, | H[ (1 _L:‘)_lB ]

Finally, if T(z) is nonnegative definite on the unit circle (|z| = 1), the equivalent form of (3)
is found to be

A*XA-X A*XB

so that, if T(z) is nonnegative definite on the unit circle (|z| = 1), there must exist a hermitian
matrix X = X* such that H(X) is nonnegative definite.

4 Positive pseudo-polynomial matrices

Pseudo-polynomial matrices are matrices with a finite expansion in positive and negative
powers of the independent variable (i.e. s, z or z). For a transfer function ®(s) that is
positive on the imaginary axis (Rs = 0) it suffices to consider an m x m matrix polynomial

of the variable s~!

B(s) = Y Qs (14)

since one can eliminate positive powers of s by multiplying by (—52)_4 (which is positive on
the imaginary axis). So let us investigate the conditions under which this matrix polynomial
is nonnegative definite on the imaginary axis (%s = 0). A first observation is that its degree
is even (¢ = 2k) and one has Q; = QF and Q; = —Q7 for ¢ even and odd, respectively. Setting
s = Jx, one transforms ®(s) into a polynomial W(z) = ®(jx) of the variable 21

2k
U(z) = Z:Pix_i (15)

that is nonnegative definite with ®(s) (on the real axis Sz = 0) and where P; = j'Q; = P7.

Therefore, these two problem formulations are identical so that it is sufficient to consider its
U(z) formulation.

2Tn case A has 1 as an eigenvalue, one may use equivalently the variable transformation s = (1—z2)/(e—&z)
with € any unit modulus complex number.



Let us then introduce the following hermitian block tridiagonal matrix

[ Py Poy_y1/2 i
Pyp_1/2  Pop—o  Pyp_3/2
Pyy_3/2
H= (16)
P2
| Pl/Q Py

and observe that W(z) can be rewritten as (10) with A the km X km matrix and B the kmxm
matrix, respectively, defined by

0 I, i 0
0o I, 0
A= 0 , B=| : (17)
I, 0
L 0 - Im
From (11), it then appears that U(z) will be nonnegative definite if and only if there exists
a skew-hermitian matrix X = —X™* such that the matrix
0 0 ... 0 0 0 X1 X2 ... Xy
X Xqg ... Xqp O 0 Xo Xog
Y=H+| X Ko O : (18)
: 0 Xkl ng P ka
X1 Xpg ... Xpp O 0 0 0 ... 0

is nonnegative. It turns out that this characterization of matrix polynomials nonnegative on
the real axis extends a result earlier obtained by Nesterov [3] for scalar polynomials. This is
made explicit in the following theorem.

Theorem 1
A pseudo-polynomial matriz of form (15) is nonnegative definite on the real axis if and only
is there exists a nonnegative definite matriz

Y =[Yu5t=0,...,k] (19)

such that (assuming Y;; =0 for i >k and j > k) :

2k—1
P=> Yy_ij; fori=0,...,2k (20)
=0
Proof :
The proof is a direct consequence of the linear matrix inequality ¥ > 0 since the pattern
of the X;; blocks implies exactly condition (20). |



Let us now briefly consider the same characterization problem when the unit circle (|z| =
1) is substituted for the real axis (32 = 0). The problem reads as follows : find a necessary
and sufficient condition such that the pseudo-polynomial matrix

T(z)= _z: Pz (21)

is nonnegative on the unit circle : Y(e?) > 0 for 0 < 8 < 27. A form (12) is easily obtained
for this transfer matrix by using the same A and B matrices as in the real axis situation and
by defining the hermitian matrix

0 0 0 P
0 0 Py

H=1 : S P (22)
0 0 ... 0 P
P, Py ... P P

where P = P_j. Therefore, it appears from (12) that Y(z) will be nonnegative on the unit
circle if and only if there exists a km X km hermitian matrix X such that the matrix

0 0 0 ... 0 X1 Xi9 ... X4 O
0 Xi1 Xyo ... Xy Xoi Xop 0
V=H+|0 Xn Xow | =1 Lo (23)
0 : Xkl ng ka 0
0 X1 Xpo ... Xp 0 0 ... 0 0

is nonnegative definite. This then leads to the following theorem which extends Nesterov’s
characterization of scalar positive functions to the matrix case.

Theorem 2
A pseudo-polynomial matriz of form (21) is nonnegative definite on the unit circle if and only
is there exists a nonnegative definite matriz

Y =[Yu5t=0,...,k] (24)
such that : .
P=> Yy fori=0,...k (25)
=0
Proof :
The proof is a direct consequence of the linear matrix inequality ¥ > 0 since the pattern
of the X;; blocks implies exactly condition (25). |

Let us remark that the characterizations (18) and (23) involve in practice the solution
of a linear matrix inequality, i.e. to find a hermitian or skew-hermitian matrix X such that
Y > 0, and that efficient numerical methods exist nowadays to solve such kind of problems.



5 Application to checking controllability

An important robustness problem in systems and control is to check whether or not an
(A, B) pair remains controllable under perturbations of norm d or less. The perturbed system
(A4 AA, B+ AB) is then said to be robustly controllable. A simple test for controllability
states that (A + AA, B+ AB) is controllable if and only if

ou | A+ AA=AL, B+AB|>0, viecC. (26)

Using standard perturbation theory for singular values, one finds that if d < CZ, where

d:= r/{lelél oy, [ A—-AX,, B } (27)

then (26) holds for all perturbations of 2-norm less or equal to d :
I a4, AB ||l <d. (28)
Moreover, it is shown in [2] that d = sup d for which this holds. Finally, (27)-(28) imply that

A* = NI,

By =| A=A, B}.[ P

] —d*1, >0, Y)eC. (29)

With r» = |A], 2= A/|A|, one has A = r.z so that ®; can be rewritten as
®y(r,2) = AA*+ BB* — d*I, — r(2B* +27'B) + 7?1, >0, VreR, ze e (30)

It is not easy to test if this two variable pseudo-polynomial matrix is positive, since its
elements or singular values are not convex functions of the variable A = r.z. But if one
“freezes” r = p or z = (, then the problem is reduced to checking the positivity of ®,(r,()
over the real line for the variable r, or of ®,(p, z) over the unit circle for the variable z.

So for a given ¢ and with ®4(r,() = Zo + rZ; + r?Z,, where

Zo=AA*+ BB* —d*I,, 7Z1=—((B*+('B), Zy=1I,, (31)

the results of the preceding sections can be applied to establish that one will have ®4(r, () >
0, Vr € R if and only if there exists a matrix X = —X™* such that
_ * -1 9

—-(B*4+("'B)/2+ X  AA*4+ BB*-d°I,

or equivalently, by putting ¥ = X — ((B* — (7'B)/2, if and only if there exists a matrix
Y = —Y™ such that
[ In —(B Y > 0. (33)

—(T'B4Y AA*+ BB* - d?I,

Similarly, if for a given p one expresses ®,(p, z) as ®(p,2) = 271 R_; + Ro + zR; where

Ry =R, = —pB*, Ry= AA"+ BB — d*I, + I, (34)



one can use the same argument as above to prove that ®4(p, 2) > 0, Vz € & if and only if
there exists a matrix X = X* such that

(AA* + BB* — d2I, + p*1,)/2 — X —pB*

—pB (AA* + BB* — &I, + p*I1,) )2+ X 20 (35)

or equivalently, by putting Y = X — (AA* + BB* — d*I,, — p*I,,) /2, if and only if there exists
a matrix Y = Y™ such that

p’L, —Y —pB*

“pB  AA*+ BB —&2I,+v | =¥ (36)

Both these problems are tractable by themselves since they can be solved via semi-definite
programming techniques. A procedure to find d would then be to maximize d such that

Dy(r.z) >0

and for checking the above condition one can use either (33) for all values of ¢ or (36) for all
values of p.

6 Conclusion

In this paper we extended the conditions that a polynomial is nonnegative on the real axis
or the unit circle, to the case of pseudo-polynomial matrices. We believe that this extension
will have important applications in systems and control, and we indicated a simple but basic
problem where such matrix problems do indeed occur. The characterization is elegant in the
sense that it has an inherent Hankel or Toeplitz structure. This structure can be exploited
with fast FFT-based algorithms for solving the basic Newton iterations needed in the semi-
definite programming techniques.
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