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Abstract

In this paper we derive formulas for constructing the an-
alytic center of the linear matrix inequality defining a
positive (para-hermitian) transfer function. The Riccati
equations that are usually associated with such positive
transfer functions, are related to boundary points of the
convex set. In this paper we show that the analytic cen-
ter is also described by a closely related equation, and we
analyze its spectral properties.

1 Introduction

Positive transfer functions play a fundamental role in sys-
tems and control theory: they represent e.g. spectral den-
sity functions of stochastic processes, show up in spectral
factorizations, and are also related to the algebraic Riccati
equation. Positive transfer functions also form a convex
set, and this property has lead in systems and control the-
ory to the extensive use of convex optimization techniques
in this area (especially for so-called linear matrix inequal-
ities [1]). In order to optimize a certain function F'(X)
over such a convex set, one defines a barrier B(X) that
becomes infinite near the boundary of the set, and then
finds the minimum of ¢- F(X)+ B(X), ¢ > 0, as ¢ = +oc.
These minima (which are function of the parameter c¢) are
called the points of the central path. The starting point
of this path (¢ = 0) is called the analytic center of the
set. In this paper, we give an explicit equation for the
central point of the domain of the linear matrix inequality
defining a positive transfer function. We also show how
it relates to the solution of the algebraic Riccati equa-
tion that typically arises in the spectral factorization of
this positive transfer function. We treat the case of posi-
tive transfer functions defined on the unit circle (i.e. the
discrete-time case) as well as on the imaginary axis (i.e.
the continuous-time case).

2 Continuous-time spectral fac-

torizations

Much of the material of this section follows [3] [4]. Let
® (s) be an m x m rational para-hermitian transfer func-
tion, i.e.

7(=5) = 2 (s),

which admits a minimal realization of the form

®(s)=[ B*(—sI,—A*)", I, ] H[ (s In —L:l)_lB
(1)

where
H::[g é]. 2)

Such a realization implies that ®(s) is proper (i.e. ®(c0) =
R is bounded). It is well known that ®(s) does not define
H uniquely and that H can be replaced by

B*X 0 (3)

H(X)=H+ [ XA+ AX XB]
where X is any n X n hermitian matrix, without affecting
®(s). If moreover, one imposes the condition that ®(s)
must be nonnegative definite on the imaginary axis (fs =
0) :

P(w) =2"(Jw) >0  for —co<w<oo, (4)
then one shows [4] that there exists a hermitian matrix X
such that H(X) > 0. Then, clearly H(X) can be factor-
ized into
L*

H(X) = [ L

[z w 5)

for appropriate r x n and r X m matrices L and W, respec-
tively, and with r the rank of H(X). Therefore, if G(s) is
defined as

G(s)=L(sI, — A™'B+W, (6)

one has

B(s) = G*(—5)G(5). (7)



Clearly, neither the matrix X nor the factorizations (5)
(7) are uniquely defined. An important subset of hermi-
tian matrices X satisfying H(X) > 0 are those where the
rank r is minimal (i.e. equal to the rank of ®(s)). If
®(0c0) = R happens to be nonsingular this subset is easy
to characterize. Since R is a submatrix of H(X) > 0 and
it is nonsingular, it follows that R > 0. The minimum
rank solutions to H(X) > 0 are then those for which
rank H(X) = rank R = m and this is obtained if and
only if the Schur complement of R in H(X) equals zero.
It turns out that this Schur complement is the celebrated
algebraic Riccati equation (ARE)

Rice(X) = Q+ XA+ A*X —(S+XB)R™Y(S*+B*X) =0

(8)
which yields a spectral factorization of ®(s), where G(s)
is now square and invertible.

In [4] the solutions of this ARE are described in great
detail and it is shown that each hermitian solution X cor-
responds to a block-triangular decomposition of the so-
called Hamiltonian matrix :

A— BR™1S*

" —~BR™'B*
| -Q+SR'S* —A*+ SR 'B*

There always exists a similarity transformation of the type

I, 0]4[1. 0]_[A-BF -BR'B
-X I, X I, |~ 0 —A* + F*B*
9)

where
F = R’l(S* + B*X).

This also implies that X = Im [ AI)?

space of the Hamiltonian matrix whose associated spec-
trum are the eigenvalues of the closed loop matrix

} is an invariant sub-

Ar = A - BF.

Each solution X of the ARE therefore corresponds to a
selection of n eigenvalues of the 2n x 2n Hamiltonian ma-
trix. It is well known that these eigenvalue are symmetric
with respect to the imaginary axis, and that none of them
lies on the imaginary axis under the assumption R > 0.
Let us define by X_ and X the ARE solutions such that
the spectrum of Ap lies in the left half plane and right
half plane, respectively. Then it is proven in [4] that all
solutions X to the linear matrix inequality satisfy

X_>X>X,.

Notice that this implies boundedness of the domain of
H(X) > 0. The proof of this result relies on the ARE
and does not go through anymore when R is singular. For
a discussion on generalized Riccati equations defined for
singular R, we refer to [6].

|\

3 Discrete-time spectral factoriza-
tions

The disctrete-time analogue to the above section is very
similar and hence only briefly developed here (see also
[3] [6]). Let ®(z) be an m X m rational para-hermitian
transfer function, i.e.

(7)) =@ (2),

which admits a minimal realization of the form

B(2)= [ B L— A, I, | H[ (z1In —I:rlB
(10)

where
H= [ g f;] (11)

Again, H is not defined uniquely from ®(z) and can be
replaced by

A*XA-X A*XB

H(X)=H+ [ B*XA B'XB

| o
where X is any n X n hermitian matrix, without affecting
®(z). If moreover, one imposes the condition that ®(z)
must be nonnegative definite on the unit circle (]z| =1) :
oY) =d*(¥) >0 for 0 <w < 2m, (13)
then one shows [4] that there exists a hermitian matrix X
such that H(X) > 0. Then H(X) can be factorized as

L*

- (14)

a0 = | 1w
for appropriate r x n and r x m matrices L and W, respec-
tively, and with 7 the rank of H(X). Therefore, if G(z) is
defined as

G(z)=L(zI,— A 'B+W, (15)

one has
®(2) = G*(zHG(2).

Again the Riccati equation Ricc(X), defined as :

(16)

Q+A*XA-X—(S+A*XB)(R+B*XB)™!(S*+B*XA) =0

(17)
plays a cucial role since it yields a spectral factorization
of ®(z), with G(z) square and invertible. The solutions
can be obtained this time from a block-triangular decom-
position of the so-called Symplectic matrix :

o[t ||

0 A*—-SR'B*
There always exists a similarity transformation of the type

EEILE

A-BR1'S* 0
—-Q+SR7'S* I

-X I,



A—-BF 0

[T B(R+B*XB)'B* ] "
- 0 I

0 A* — F*B* } ’
(18)
where
F=(R+B*XB) '(S* + B*XA).

This also implies that X = Im [ In is an invariant sub-

X
space of the Symplectic matrix whose associated spectrum
are the eigenvalues of the closed loop matrix

Ar = A—- BF.

Notice that this could have been retrieved from the bi-
linear transform s = (z — 1)/(z + 1) which reduces every
continuous-time system {A, B, Q, R, S} to a discrete-time
system {/1, B,Q,R, S} where

A = I-47I+A4) (19)
B = VaI-A)7'B
g = oy, T=| VXA I-47'B

0 I

This kind of transformation preserves stability, but re-
quires A to have no eigenvalues at 1. Notice that using
this transformation one can also relate the domains of the
continuous-time and discrete-time matrix inequalities. In
order to do this, we first rewrite them as follows :

a=[ & 2]+ 15 S8 SI17 0]
e[ @S]l I S8

S[X v]=[0 S0 S04

we can also rewrite H, as follows

&Rk BT A R

S* R
Apply now the congruence transformation 7' defined in
(19) then we have T*H.T = Hy with

coalelE ol 5

S* R

with A, B,Q, S and R defined as in (19), and X =X. So
the bilinear transformation also preserves the solution of
the Riccati equation as well as domain of the linear matrix
inequality.

The development of this section requires R + B*X B to
be nonsingular, but we refer to [6] for a generalized Riccati
approach when this matrix is singular.

A+1 B
A-I B

A+1 B
A-I B

A* T

H, = i
d[ B* 0

4 Boundedness of the domain of
an LMI

As mentioned in the preceding section, it is of importance
for numerical reasons to analyze the domain (or solution
set) of the linear matrix inequality H(X) > 0 and to iden-
tify conditions which guarantee its boundedness. It turns
out that this is precisely the case if the pair (A4, B) is con-
trollable. In order to prove this, we introduce the notation
Hy(X) = H(X) — H for the homogeneous part of H(X).

Lemma
The continuous-time system &(t) = Ax(t) + Bu(t) is con-
trollable if and only if

A*X+ XA XB .
implies X = 0.
Proof :
To prove the only if part, define z*(t) = [z*(¢), u*(t)]
so that 2*(t)Ho(X)z(t) > 0 is found to be equivalent to

d

St X a(t) 20,

a relation which can be integrated over an interval [0, T
so as to yield the inequality

2(T)* X z(T) — 2(0)* X z(0) > 0.

Since z(0) ad z(T") can be chosen arbitrarily if (A, B) is
controllable, Hy(X) cannot have any other solution than
X=X*=0.

The if part is proved by contradiction. If X = 0 is the
only solution of Ho(X) > 0 and if the pair (A4, B) was not
controllable, then an isometry U, i.e. U*U = Ij, could
be found whose columns would span the uncontrollable
system subspace. Therefore, one would have U*B = 0
and U*A = A, U* with A, = U*AU Setting X = U X, U*
where X, is some k x k matrix, one would then obtain

Ho(X) = U(A: X, +0Xu AU 8
As a nonzero solution X, of the inequality (A;X, +
Xy Ay,) > 0 can always be easily constructed, there would
exist a non zero solution X = U X, U*, contradicting our
assumption.

The discrete time version of this lemma is very similar :

Lemma
The discrete-time system x(k + 1) = Axz(k) + Bu(k) is
controllable if and only if

[ A*XA-X A'XB

(21)

implies X = 0.



Proof:
To prove the only if part, define z*(k) = [z*(k), u* (k)]
so that z*(k)Ho(X)z(k) > 0 is found to be equivalent to

z(k+1)* X z(k+1) > z(k)* X z(k),

a relation which can be repeated over an interval [0, K —1]
so as to yield the inequality

z(K)* X z(K) —z(0)* X z(0) > 0.

Since 2(0) ad z(K) can be chosen arbitrarily if (A, B) is
controllable, Hy(X) cannot have any other solution than
X=X*=0.

The if part is proved by contradiction. If X = 0 is the
only solution of Hg(X) > 0 and if the pair (A4, B) was not
controllable, then an isometry U, i.e. U*U = I, could
be found whose columns would span the uncontrollable
system subspace. Therefore, one would have U*B = 0
and U*A = A, U* with A, = U*AU Setting X = U X, U*
where X, is some k x k matrix, one would then obtain

U(AL Xy Ay — X,)U* 0
Hy(x) = | U ) ]

0 0

As a nonzero solution X,, of the inequality (A% X, A, —
Xy) > 0 can always be easily constructed, there would
exist a non zero solution X = U X, U*, contradicting our
assumption.

|

On the basis of this lemma, let us show (by contradic-
tion) that H 4+ Ho(X) > 0 has a bounded solution set for
X. Indeed, if the (convex) set of solutions X was sup-
posed to be unbounded, it would contain a “ray” ¢- X for
t € [to, oc] such that H+t-Ho(X) > 0, whence Ho(X) > 0
for t — oo. Therefore, there would exist a nonzero hermi-
tian solution X to the problem.

5 Analytic center of the convex set

We treat here both the continuous-time and discrete-time
cases. Suppose that there exists X = X7 with H(X) > 0.
Since the domain of H(X) > 0 is bounded, we can define
its central point as follows. We choose a barrier function

B(X) = —Indet H(X), (22)

and define the analytic center of the domain of H(X) >

0 as the minimizer of this barrier. Such a point is well

defined (see [2]). Let us find its characteristic equation.
The gradient of the matrix function B(H) equals

OB(X)/0X = —H(X) .. (23)

With the notation < .,. > for the Frobenius scalar product
of matrices, it appears that X will be an extremal point
of the barrier if an only if

< —OB(X)/0X,AH(X)[Y] >=0, VY =Y*, (24)

where AH(X)[Y] is the incremental step in direction Y.

For continuous-time systems, the increment of H(X)
corresponding to a hermitian incremental direction Y of
X is found to be

AY+YA YB

areop] = | R

], VY =Y*. (25)

The equation for the extremal point then becomes

A*Y+YA YB

<aeo [T

}>:0, VY =YY"

(26)
Defining

F=R YB*X+S5*), P=Q+A*X+XA-F*RF,

I[o &l 7]

and (26) then becomes equivalent to
< Pt 0 I —F*
0 R |’]0 I

[A*Y+YA YB][ I 0

then H(X) factorizes as

I F*

H(X):[o I

(27)

] >=0, VY =YY",

B*Y 0 -F I
(28)
or also
<P YUAY+YA-F'B'Y -YBF >=0, VY =Y".
(29)
This is equivalent to
P'A + ApP™' =0 (30)

where we define
Ar = A - BF.

We point out now that P is nothing but the Riccati equa-
tion Rice(X) defined earlier, and that Ap is the corre-
sponding closed loop matrix. For the classical Riccati so-
lutions we have P = Ricc(X) = 0 and the corresponding
closed loop matrix is well-known to have its eigenvalues
equal to a subset of the corresponding Hamiltonian (which
subset depends on the chosen Riccati solution).

But for an interior point of the domain of H(X) > 0
it is obvious that we also have P = Ricc(X) > 0, and
hence P has a Hermitian square root T satisfying P = T2
Multiplying (30) on both sides with the invertible matrix
T we obtain

T AT + TAT ! = 0.

Hence TArT ' is skew Hermitian and has all its eigen-
values on the imaginary axis, and so does Ap. Therefore,
the closed loop matrix Ap of the analytic center has a
spectrum that is also “central” in a certain sense.



For discrete-time systems, the increment of H(X)
equals

[ A*YA-Y A'YB

(31)
Defining

F=(R+B*XB)"'(B* XA+ 5%),
P=Q+A'XA-X - F*(R+ B*XB)F,
Ap = A — BF,
then H(X) factorizes as

I F~

H(X):[o I

Ik

and the equation for the extremal point becomes

P 0 0
0 R+B*XB I’

[P 0 I —F
0 (R+B*XB)'|'|0 I
AYA-Y AYB[ I 0 .
[ BYA B*YBH—F I]>_O’ vy =Y",

(33)
oralsoVY =Y*,

<P Y ARYAp-Y >+ < (R+B*XB) ',B*YB >=0.
(34)
This is equivalent to
ApP 'Ay - P '+ B(R+B*XB) 'B=0, (35)
which is not a homogenous Lyapunov equation anymore.
Since (A, B) is controllable (by assumption), sois (Ar, B)
and it follows then from (35) that the eigenvalues of Ap
are now strictly inside the unit circle. This is clearly dif-
ferent from the continuous-time case where the spectrum
of Ap was on the boundary of the stability region, an in
some sense “central”.

Notice that we could have transformed the solution of
the corresponding continuous-time problem via the bilin-
ear transform, which would then yield a feedback that
puts all eigenvalues on the unit circle, but the feedback
would of course be different.

6 Concluding remarks

In this paper we described the analytic center of the con-
vex domain of

[Q s A*X+XA XB .
H_[S* 2l By J | zox=x"
(36)

and of
TQ s A*XA—X A*XB -
H_[S* R]+[ x4 pxp|20X=4"

(37)

corresponding to a continuous-time and discrete-time pos-
itive transfer function, respectively. We discussed some of
its properties as compared to the classical Riccati solu-
tions. This point is of more practical importance when
optimizing over a class of positive functions, say e.g. the
class of functions of the above type where now ) R and S
are arbitrary. A typical example are the positive pseudo-
polynomials which can be described like this [5]. In such
a case, one can use convex optimization techniques and
the central path plays a crucial role in those optimization
problems.

Another point that might be important is that the ana-
lytic center is obviously always an interior point (at least
when the domain has a non-empty interior). For this rea-
son, it is also less sensitive to perturbations on A, B, Q, R
and S than any boundary point (like those described
by the ARE). Such issues still need to be investigated,
though.
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