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Keywords: Stability radius, numerical methods, Hamil- and the elements df(P) are also known as theigenvalues
tonian pencils, symplectic pencils. orzerosof P. LetC, C C be an open and connected subset of
C. The matrix polynomiaP()\) is calledC,— stable (or, sim-
ply, stable) iff A(P) C C,. The typical regions considered
for C, are the open left half-plar@® = {s € C;Res < 0}

o e ‘
This paper derives analytic expressions for the real stabili-2nd the open unit disk" = {s € C;|s| <1}. _
ty radius of polynomial matrices with respect to an arbitrary 1n€ differential system in (1) is asymptotically stable if and

region in the complex plane. We are also discussing numeri®nly if A(P) is a subset o€~ in which caseP is called a

cal issues for computing these radii for different perturbationHUrwitz matrix polynomial Similarly the discrete time sys-

structures, with application to robust stability of Hurwitz and telm (2) is asymptotically stable if and onlyAf 7) lies inside
Schur polynomial matrices. C* and thenP is called aSchur matrix polynomial

As we shall see, a natural stability robustness measure for
our systems (1) and (2) is given by thermof the smallest
perturbation

Abstract

1 Introduction

A fundamental problem in robustness analysis is to deter- . k ' nxn s
mine the ability of a system matrix to maintain its “stability” OP(A) = 0Pp+0PiA+ - +0P A%, 0B € R, i =0,

; . . . 4)
under a certain class of perturbations. Since the entries of

; . heeded to “destabilizeP()), and hence causing at least one
such matrices frequently depend on some physical parame-

ters, it seems natural to consideal perturbations In many zero of P()) + 6P()) to leave the stability regio@,. De-

o - . . note byC, the complement oE,. The perturbations will be
applications it is more convenient to deal with the character- . . .
o . . measured via the norm of a constant matkixiepending on
istic polynomial of the (closed-loop) system matrix, as, for

instance, in the SIMO (or MISO) cases (see, for instance,the matrix coefficients oé P(2). Throughout this paper we

[1]). The problem of the stability robustness of polynomials consider mainly Euclidean norms, that f&a || = [|Afl> =

with affine coefficient perturbations has been considered b 71(A), whereo;(-) denotes the—th singular value. A de-
[5] and solved for arbitrary norms dR™ spaces. It is worth- ailed problem formulation will be given in Section 2. As we

) : . shall see, the structure &f strongly influences the computa-
while to be mentioned that robustness to parametric pertur:. . .
tion of the different stability robustness measures.

bations has been an important topic not only in control theory ) . o
[12], but also in linear algebra and numerical analysis [9], for The paper is organized as fo.”OWS' The next section is de-
over two decades. voted to. the problem formul_at|on and some known re_sults
In the present paper we consider the stability robustnes§°NceMNg thqeal perturbation valg_eS)f cqmplex mat.rl—
problem of time—invariant linear systems describedigyer es. We also introduce theal stability radiusfor matrix .
order dynamical equations, the continuous time case _polyno_m|als, asa robqstness_measure. The concept O.f stabil-
ity radius for polynomial matrices has been first investigated
dEx(t dx(t in the pioneering work of Pappas and Hinrichsen [8], but in
dt1(< L Pld—(t) +Pz(t) =0, teRy (1) the complex case only and for monic polynomial matrices
. . in the non—monic case. In Section 3 we derive analytic ex-
as well as the discrete time case, pressions for real stability radii of polynomial matrices. Sev-
Poa(t+k)+---+Pa(t+1)+ Puz(t)=0 t N (2)  eralopen problems are also stressed. More elaborate formu-
las are derived in Section 4 which prove to be useful when
Associate with (1) or (2) the matrix polynomial discussing several computational aspects. Consequently, we
point out in Section 5 that real stability radii can be efficiently
computed for Hurwitz and Schur polynomial matrices. Some
additional comments on computational complexity conclude
this section. Future research directions along with some final
A(P)={X€C:det P(\) =0} remarks complete the paper.

El

Py

P\ =P\ +... .+ PN+ Py (3)

The spectrum of is defined as



2 Problemformulation

Assumethatthe dynamicalsystemslescribedy (1) and(2)

are asymptoticallystable(or C,—stable,for a givenC,). A

fundamentalguestionin robust analysisis to which extent
thesesystemsantolerateperturbation®of the matrix coefi-

cientswithoutlosingtheir stability, i.e. keepingthespectrum
A(P) in thestabilityregionC,. Theansweto thisquestions

givenby the distanceto instability of the associatedstable)
matrix polynomial P.

Let usassumehat P(\) givenby (3) isC,—stableregular
(i.e. det P(A\) # 0) andthat P, is nonsingular The real
stability radius of suchpolynomial matricesis the norm of
thesmallestperturbation

o

OP(X) = 0Py+6P A+ - 4+0P\E, 6P € R™™™, i =0,
5)

neededo “destabilize” P()), andhencecausingatleastone

zeroof P(\) + §P()) to leave the stability regionC,.

If we measurehe perturbationsvia the norm of a constant

matrix dependingn the matrix coeficientsof § P()\)

thenthereal stability radiusof P(\) with respectoC, can
beexpressed

rr(P;Cy) = mf{||All : A(P) NGy # 0} (7)

Let
det P(\) = angA™ +--- + a1\ + aq, 8

wherea,,;; = det P;. If det P, # 0 thenthe zerosof P()\)
move continuouslywith the perturbationof the coeficients
0 P;. Thentheabove formula(6) becomes

T']R(PQCg) =
nfa{[|A]l : 3x € 8C, s.t. det(P(A) +3P(N)) = 0}
©)

For ary polynomialmatrix P andfor every Ay € Cintroduce

vi(P, o) = inf{[| A : det(P(Ao)+6P(X)) = 0}, (10)

wherevr (P, \o) is the norm of the smallestperturbation
neededo causeat leastoneeigervalueof P to be precisely
Ao. Hence

TrR(P;Cq) = inf vgr(P,A)

11
redC, 1)

The above equality (11) statesthat the computation of

v (P, \) becomes key issuein evaluatingthe real stabil-

ity radiusof P.

If Py is singular thenwe distinguishtwo cases:

a)det P(X) # 0, thatis, P isregular. In thiscasethepolyno-

mial in (8) hasat leastonezeroat co sincea,,;, = det P, =

0. Arbitrarily small perturbationscan placethis root arny-

whereon a (sufficiently) large circle in C andcanhave posi-

tive or negativerealpart.

Consequentlythe“singular’ casewvhendet P, = 0 becomes

irrelevant to stability radii problems,sincethe zerosat in-
finity canbe destabilizedby arbitrarily small perturbations.
This meanghatin suchsituationsthe distanceto instability
is zero. The above argumentalsoshows thatthe distanceto
instability is alwayslower or equalto the distanceto singu-
larity.
b) det P(\) = 0 which implies that there exist arbitrarily
small perturbationghat place zerosarnywherein the com-
plex plane(see[11]) andhencemake it unstable.
As a conclusionwe may say that polynomial matricesthat
have aleadingcoeficientthatis singularandthatis allowed
to be perturbedhasdistancezerofrom instability, sincear
bitrarily small perturbationswill make it unstable.In other
words,if Py is singularthenrg (P;C,) = 0. For thesame
reasonwhendet Py, # 0 oneshouldnot worry aboutthese
perturbations P, thatwill make P,, + § P, singular:for es-
sentially the sameperturbation the polynomial matrix will
bealsounstable.
The above agumentshaws thatthe only relevantcasein ro-
bust stability analysisis when P, is nonsingularand P())
is regular. Moreover, in suchcasesthe zerosof P(\) move
continuouslywith the perturbation.
However, let us finally notice that by restrictingto pertur
bationsthat do not change infinite zeros, then a different
analysishasto be performed. This kind of problem will
be addressedeparatelyanddoesnot make the objectof the
presenpaper

We shall considerbasically the following perturbation
structures:
0P
A1:[5P0 6P]€:|,A2:
0P,

0P,

Az = (12)
0P,

Thepolynomialmatrix perturbationd P(\) canbeexpressed
as:

I
A
SP(X) = Ay =[1 A AT ] A
AR T
I
. . GAT
=[1 &' &1 ] As : (13)
& AR T

where¢; € C arearbitrary &; # 0. Let& = [& -+ - &]7.
For ary A for which P()\) is is invertibleintroduce

I
A

My(A) == P71(\), Ms(\€):=

MeT



1

GAl —1 -1 -1

= : PN [T &' & 'I'] and
gk,'\kl
Moy(\) =P '\ [ I A ANI] (14)

By usingthe well-known equality
det(I + AB) = det(I + BA),
onecandeducdrom (13) and(14) thatfor: = 1,2,3
det(P(A\) + 6P(\) =0 &

det(I4+35P(A\)P1(\) =0 < det(I+P 1(A\)SP(N\) =0
& det(I + A;M;(N) =0. (15)

Let uscheckfor instancg15) for i = 2. Onehas
det(P(X\) +6P(\) = 0 < det(I + P (A\)§P(N) =0

sdetI+P N[ I A M ] A) =0
=g det(I + Mg()\)Az) =0,

whichisthesameas(15)for i = 2. Henceanimportantissue
in the computationof the real stability radiusis to solve the
following linear algebraproblem: Given a comple matrix
M eC*™, determine

Aei]ﬁixz{HAHQ : det(I — AM) = 0}.
This problemis solvedby the next theorem.
Definethelargestreal perturbationvalueof M by

p(M) = [ inf ([ A]l2 = det(I — AM)=0}] "

(16)
Noticethatur (M) = 0if andonly if thereis no A suchthat
det(I — AM) = 0.
For any comple« matrix (vector scalar)M e C*™, let
M, € R™™, M, € R'*™ denoteits real andimaginary
part, respectiely, thatis M = M, + jM,. Associateto
M the2l x 2m real matrix dependingon thereal parameter
v €(0,1]

M, —vM
me=| N ] an
Thenthefollowing resultholds.
Theorem1 [6] LetM e C*™. Then
pwr(M) = veﬂ(l({H o2 <NM(“/)) (18)

Thefunctionto be minimizedon the right hand-sideof (18)
is a unimodalfunctionon (0, 1].

Furthermoee, assumehattheoptimumin (18)is attainedfor
somey,,: € (0,1]. Then,the “optimal” perturbation,i.e.

theminimumnormrealmatrix A sucthatdet(T—AM) =0
is givenby

A:Uiipt[vm vy][um uyf (29)

Uy Vg

whee u = andv = are a pair of left and

Y Y
right singularvectoss of thematrix Nas (7,,¢) corresponding

to 02,0pt. Moreover ulu, = viv,, ulu, = vIv, and

T — T
uyuy = ’Uy Vy.

We have usedA' to denotethe Moore-Penroségeneralized)
inverseof the matrix A.

Remark 2

1. Theminimizationin (18)is quiteeasydueto thefactthat
o9 (NM(W)) is unimodalon (0, 1]: anylocal minimum
is a globalone

2. ThemapM — pur(M) is uppersemi-continuousThe
only discontinuitypointsare at real M (M, = 0).

Now thefollowing preliminaryresultholds.

Lemma 3 Thereal stability radius (9) of the matrix poly-
nomial P(\) with respectto the perturbation matrix A;,
1 =1,2,isgivenby
—1
rr(P,Cq; A;) = [ sup Nm(Mi()\))]
redC,

L i=1,2 (20)

Proof. Since P()\) is C,-stable, P() is invertible for ary
A € 0Cy, S0 M;(A), 1 = 1,2 is well defined.For the pertur
bationstructuresh;, : = 1, 2 relation(10) reads

vr(P,A; Ad) = inf{[|Aq - det(P(A)+3P(X)) = 0} (21)

Looking at the equivalencesn (15), the above equality (21)
becomes

v (P A) = inf{ A« det(T + AM;(V) = 0}

-1 .

= [IJ‘IR(MZ(A))] , 1=1,2, (22)
takingalsointo accountthat ur (M) = pur(—M), asdefi-
nition (16) shows. The conclusionfollows now immediately
from (22) and(11). |

Onecanexpressur (M;(\)) andur (M2()\)) via Theorem
1. Thethird problemur (Ms(X,€)) is a constrainedrob-
lem which is much moredifficult to solve dueto the block
diagonalstructureof Az. We shall give in this casesome
lower and upperbounds,but thereis no closedformula. It

is only conjecturedhatthe degreeof freedomofferedby &;,

1 = 1, k, might leadto sucha formula, when considering
Euclideamorms.




Conjecture4 Let¢ = [¢;...&]T, whee¢; # 0,1 = 1, k.
Thenfor any A for which P(}) is invertible

inf{|[Asl> = det(I + AsMs(),€)) = 0}

= min pm (Ms(\, €)) = ug! (Ma(X, €opt))

whee &, is theoptimalscalingattainingthe minimum.No-
tice thatthe optimalscalingdepend®n A\ aswell.
Furthermoe, thereal stability radius(9) of the matrix poly-
nomial P(\) with respectto the perturbationmatrix As is
givenby

(23)

TR(P,Cy; Az) = [ Sl;g /llR(MS()\ag)\))]il
AedC,

(24)

whee &, is the optimalscalingobtainedfor given\ € oC,.

Furtherwe derive someupperand lower boundsfor the
real stability radiusof P()\) in the A3 case. Thesebounds
areexpressedn termsof the real stability radii determined
in Lemma3, by usingtheavailablestructureandby choosing
anappropriatesectoré.

We start by stating without proof two additional re-
sults, which hold for arbitrarily p—Holder norms, ||A|| =

sup, ., LAzl
270 Tal, -

Proposition5 Let A = diagA;, i = 1,k, A; € CiX™i,
Then

Al = T%llAil\p (25)

The next Propositionis a known factin linear algebra(see

(3]).
Proposition 6

1. LetA = [ Al AQ
m = Zle m;. Then

Ak} } Eclxnl,Ai eclxmi'

p—1
max [|Aq]l, < [|Afl, < &7 Ta_?zHAin (26)
Iy
FZ Ix l; % k
2. Letl' = eC”"™ Iy eC ™l =% i
Iy
Then

1
max [T, < |T||, < k% max [[Ts[l,  (27)
i=1,k i=1k

Thesecondnequalityin (26) and (27) becomesn equality
if A; = Ay andl’; =Ty, respectivelyvi, j € 1, k.

Lemma?7 Let vr(P,\;A;), ¢ = 1,2,3 be the function
v (P, \) readwith respecto theperturbationstructuesA,.
Then,for all A for which P()\) is invertible, thefollowingin-
equalitieshold:

(k+1)7 vr(P,A; A1) < vr(P,A; Ag) < vr(P, X Ay)
(28)
and

(k+1)77 vR(P,\; Ay) < vr(P,X\; As) < vr(P,X; Ap)

(29)
Proof. Let

Ay = [ Ao A Ay g },

As g A3z

ACR Az

Ay = ) , Az =

AQ,k AS,k

(30)

bethe minimumnormreal matricessuchthat
det(I + A1M1(>\)) = det(I + AQMQ()\))

= det(I + A3M3()\,£)) =0

for somecomplex scaling¢ andwith M, My, Mj intro-
ducedby (14). In otherwords,
vR(P, A A) = ||1Adllp, 1=1,2,3 (31)
We shall actually prove only inequalities(28), sincerela-
tion (29) followsin asimilarway. Let A¢ = diag (A, ;) and
AL = [ Aso Az Asy ]. Thenit follows from
(13)—(14)that

det(I + AsM3z(\,€)) =0 < det(I + AY M3(\, €)) =0

& det(I + ALM (V) =0 < det(I + A Mi(N\) =0

SinceAs is “optimal” with respecto all block diagonalper
turbations,one hasthat || Az ||, < [|A%[,. But ||A%], =
max; ||A ;||p, as Proposition5 shavs. By applying now
Proposition6 to A; onegets

18s], < 1ALl < 1 Asllp < (6 + 1) AL, (32)
Ontheotherhand,A; is “optimal” with respecto all block
line perturbationshence|| A, ||, < ||A|l,. By applyingnow
Proposition6 to A}, onegets

Al < 1AS] <

< (b + 1) max [Agilly = (+ 1) |Asfl, (33)



asPropositiorb states By combiningnow (32) and(33) one
obtains

183l < 1Al < (k+ 1) [ As]l,,
or, equivalently,

(k+ 17 18]y < [Aslly < [|Aally (34)
Theconclusion(28) follows now immediatelyby combining
theabove relation(34) with equality(31). |

The next resultis a direct consequencef formula (11) and
of thepreviouslemma.

Corollary 8 In theabovecontet

(k)+1) P 7"]R(P C A]_) S TIR(P;CQ;A?,) S T[R(P;Cg;Al)

(35)

and
(k+1) PR (P;Cy; Ag) < 1 (P;Cy; Az) < 1 (P;Cys Ay)
(36)
n

For reasonablevaluesof k all stability radii shouldthusbe
quitecloseto eachother

3 Main results

Themainpurposeof this sectionis to derive aclosedformula
for rr (P;C,) with respecto A; andA,. Thethird casewill
beasusualtreatedseparately

First, we shallderive appropriatestatespacerealizationgor
the rationalmatrix functions M; and M5, respectrely. Let
usintroduce

0, I, On,
- .. 0y,
Al = . - s Bl = . )
On I’ﬂ
R —Pr1 P I
On —-F
AQ = In 5
On _szfl
In _Pk
Cy=[0, 0, I, ] (37)
Straightforvard computationshow that
1
A
Mi(\) = P AN =(0\E—A) 'B; and

AT
(38)

= Cy(AE—Ay)™!
(39)
Formulas(38)—(39)shav that the real stability radii prob-
lemsof polynomialmatricesareequivalentto realstructured
stability radii problemsof “companion”pencils like (E, A;)
or (E, As). Furthermorerealizationg38)—(39)enableusto
expressthe real andimaginarypartsof M7 (\) and My (),
respectiely, in termsof theinitial data.
Let

My(N) =P '\ [ I M ART ]

A=Ay +jAy and M;(\) := M, +j M;y, i =1,2

whereM; ,, M;, arerealmatricesof the samedimension

asM;. Thenonehas

Re(AE - 4;) ' = [AE—A)+ N E\E—A) 'E]
(40)

and

m[()\E — Ai)_l] =

Ay A E—A) (A B—A)+ X EONE-A) ' E]
(41)
It follows automaticallythat
My, = Re[AE Ay)7'By
My, = Im[AE-—A;)7'B;
Mg’x = CQRG AE — A2 -1 (42)
Mg’y = CgIm )\E A2 -1

Explicit formulasfor u (M7 (X)) andp(M2(N)) aregivenbe-
low.

Lemma9 Let M, , and M, ,, i = 1,2, be givenby (42).
Then

. M, M,
M;(\)) = inf e iy 43
H(MX) weu(lo,l}@([ v My Mig D “3)

Proof. Theproofof (43)is adirectconsequencef Theorem
1 appliedto M;()), i = 1,2 givenby (38)—(39). |

By combiningnow Lemma3 andLemma9 we obtainthe
mainresultof thesection.

Theorem 10 Thereal stability radius(9) of the polynomial
matrix P(A) with respectto the perturbationmatricesA,,
1 =1,2,isgivenby

TR (P;Cq; A;) =
—1
B L?éf: o Uz([ i, ] ﬂ
(44)
n

Someadditionalcommentsaregivenbelow.



Remark 11 Formulas(42) showthat M; ., M, , depend
explicitly on the real andimaginary part of A\, i.e. ), and
Ay, respectivelyWhenconsideringHurwitz or Scur stabil-

ity, M; , and M, , will dependon a singlereal parametey
sud asw: w = A, for Hurwitz stability or e/ = X\, + j\,

for Schur stability.

Accoding to Remark2, since ur is discontinuouswhen
M;(X) is real, onegetsnon-continuousunctionof A which

hasalsoto be minimizedon the boundaryof the stability re-

gion,as(20) shows.Therfore it canbedifficult to elaborate
appropriate numericalalgorithms. More detailsconcerning
theseaspectsanbefoundin [10].

4 Simplified formulas

Specialattentionwill be payedto the particularstructureof
both M7 (X) and Mz () (see(14)). This structurewill be ex-
ploitedin thelight of Theoreml, in orderto reducethecom-
plexity of the minimizationover v whencalculatingry and
to obtainsimplerexpressiongor thesmallest'destabilizing”
perturbationsThethird casewill betreatedseparately

If XP(\)~! = X;()\) +j Yi()), whereX,;,Y; € R™",
1 =0,k then

Xo Yo

X4 Yi
Ml,m = . and Ml’y =

Xk Yk

Let usalsodefine

N A
Ay =) = [ Sy, ] !

— _ Xo —Yo
Mol = Mooy = | T |

andfori = 1,2

M;

_"/Mi,y :|
Ni(\,7) == Ny, =| _ :
( '7) M;(X) (A/) [ v lMi,y

Mi,m
Fromthedefinitionof X;, Y; onehasthat

—-Y;

Xz XO *'YYO
Y, X,

:| = (A’Y®In) |: 771}/0 XO

Thenthereexistsanorthogonaimatrix
I € R+ R0 g chthat

} (45)

Ny
(Ay ®I,,) No
N, = : = (A1(\,7) ® I) No, (46)
(A} ® 1) No
where
I
A’Y

Consequently
02(N1) = o2 (A1 (A7) @ 1) No ), ¥y € (0,1]  (47)

SinceAT A, is positive definite,onecanfind aCholesly fac-
tor Ly, thatis, LT L, = AT A;, with L, in uppertriangular
form. However, L; hasno rationalexpressionin termsof
(or \). With the above considerationsn mind, relation(47)
becomes

02(N1) =02 (L1 ® I) No) (48)
Introduce
As(N\y) =L A, Aﬁ ]
If L, is a Cholesly factor of A,A%, since
My = [ Xo X3 Xe ], and My, =
[ Yo 11 Y ],onecanprovein asimilarmanneras
beforethat

02(N2) = 09 (No (L2 ® In))- (49)
Thenext resultis adirectconsequencef Lemma3 andThe-
oreml, combinedwith relations(48) and(49).

Theorem 12 Thereal stability radius(9) of the polynomial
matrix P(\) with respecto the perturbationstructues A,
and A, is givenby

rR(P;Cy; A1) =

—1
SUbyeaC, inf,c(0,1) 02 ((L1 ® In) Np-1(») (’Y))]
and
TR (P;Cy; Ag) = 1
SUp,\ c4C, 10fye(0,1 92 (prl(x) () (L2 ® In)):|

(50)

Let A, betheminimumnormdestabilizingoerturbatiorwith
respecto M- (\) anddenoteby A, ; its i-thn xn blockcom-
ponent,i = 0, k, asin (30). Let also Z” } and[ Z”” ]
Yy Yy
be a pair of left and right singular vectors of the matrix
N1(X\, Yopt) correspondingo the“infimum” o2 o, (N7), that

Ve Uqy * Ug Vx
N1 |: :| =020 |: :| N. =0
,opt ) 1 2,0pt .
Uy Uy Uy Uy

Introduce
V= [ Vr Uy } and Up := [ ux(ln) uy(ln) }7

respectiely.

Similarly, if As is the minimum norm destabilizingpertur
bationwith respectto M>(X), thenAs;, i = 0, k, stands
for its i-th n x n block componentasin (30). Let, ashe-

fore, [ Uy ] and{ Us ] be a pair of left andright singular
u?/ Uy



vectorsof thematrix N2 (A, vop:) correspondingo the “infi-
mum” Ulz’opt(Ng), thatis,

’ ’ ’ ’
v ’ u u ’ (Y
€T —_ xT * xT —_ T
N2 |: v/ :| = O—Q,Opt |: u/ :| ) N2 |: u/ :| = O—Q,Opt |: 7.)/ :| .
Yy Yy Yy Y

With a certainlack of consisteng in the notation,let
Vor=[vi(1:n) wy(l:n) ] and U:=[u; uy |,

respectiely. Essentiallyrelying on formula (19) and on
equality(45), thefollowing resultholds.

Theorem 13 For every A € C which is nota root of P and
for everyi € 0, k wehave

Ay = fazftl)pt( ) (VT A? - ud and

Ny |
= 51
AZ,z‘ = 70’2,(1)pt(N2) Vo A UT ( )

7
Yopt
Furthermoe,

SP(N) = —og. b (Ny) (V)T [ sk x‘AgopJ UZ and
SP(N) = ~03 (N2) Vo [ T w7, U

(52)
]

As alreadymentionedwe canderive for thethird caselower
andupperboundsin termsof rr (P;C,; A;), ¢ = 1,2. The
resultis adirectconsequencef Corollary8 for p = 2.

Lemma 14 Thefollowing inequalitiesholdfori = 1,2 :

(k+1)"2rm(P;Cy3 A;) < r(P;Cy; Ag) < 1 (P3Cy3 Ay)
(53)

Let A3z be the minimal norm perturbationperturbationthat
attainsur (M3())). An appropriatecounterparbf Theorem
13is conjecturedelow.

Conjecture 15 Let N3(\,§,7) == Nag(ne (7). For ev-
ery A € C which is not a root of P, ther exists ¢7 :=
(1 & & | sudthatfor everyi € 0,k wehave

_ 1 = { T
A?’qi = 092 opt (NJ) Vo —%,Yopt A UO ’

Yopt

(54)

whee Z; , € IR?*? dependon ¢; and~. Furthermoe,

k

OP(A) = 0 4y (N3) Vo | D iy (M) | U
=0
(55)

5 Computational aspects

The above real stability radius can be computedefficiently
for Hurwitz and Schurpolynomial matrices,by exploiting
formula (50) and by appealingto some previous work on
similar topics(see[10]). First, let usnoticethatdC, is, for
theHurwitz andSchurcasetheimaginaryaxis(A = jw) and
the unit circle (A = e/*), respectiely. Therefore,\ € C,
will be parametrizedby a singlerealvariable.The optimiza-
tion of (50) consistsof two subproblems.At a given fre-
gueny w we optimize. Despitethe higherdimensionof
M; and Mo, this only involvesat eachstepthe SVD of a
2n x 2n matrix,asTheoreml2 shows. Moreover,

02 (L@ 1) Npaoy(1)) = 0,24 (Ney () (L1 @ 1,))
and
o) (prl(,\)(“Y))(L2®In)) =05 ((L51®In)NP(A) (7))'

which shawv thatthe computationof the real andimaginary
partsof P~1(\) is replacedyy a simpleinversionof a2 by 2

upperor lower triangularmatrix L;.

For agiven~, onethenfindsanew frequeng pointaccording
to aschemeproposedn [10]. Thecrucial pointis to realize
thetransferfunctions

N (A 7)Ni(A, ) = p°T

and
No(X,7)N5 (A7) = p°L.

Onecannow usethe standardealizationg37) from Section
3. Take, for instance\ = jw andi = 1. Then

Ni(jw,v) = C1y(jwE — A1) By,

where

~ | A 0 ~ 1 B vB1
Al — |: 0 7A1 :| 9 Bl,'y - _/§ |: 7’}/71B1 B1 9
~ 1 I ~I ~ | E 0
6=t ] mam=[E 0]

It turnsoutthatp is asingularvalueof N, (jw, ) if andonly
if w is a (generalizedpigervalueof the following Hamilto-
nian structure

Ai — _zleH éiv'y‘g,{’Y/B
—CL,Cry/p —Af — jwEy

A similar schemeworks for the Schurmatrix polynomials,
whenthe above Hamiltonianstructureis replacecby a sym-
plecticone.Consider\ = e/* andi = 2. Then

Na(e7,7) = Co (e By — A>) ' Bayy,



~Cel¥ ~ | =1 0
_(Celw ] and FEs = [ 0 A, } .
Again, pis a singular value aVy (e~ v) if and only if e/ is

a (generalized) eigenvalue of the followisgmplecticstruc-
ture

b, = L |
TR lyie

AVQ — ewaQ enggﬁgg:,y/p
CZWCQW/P e/ Ay — B3
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