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Abstract

Analytic expressions are derived for the complex and real stability radii of non-monic poly-
nomial matrices with respect to an arbitrary stability region of the complex plane. Numerical
issues for computing these radii for different perturbation structures are also considered with
application to robust stability of Hurwitz and Schur polynomial matrices. © 2002 Elsevier
Science Inc. All rights reserved.
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1. Introduction

The robustness issue is a crucial problem for the application of control theory; for
example, one of the basic goals of feedback control is to enhance system robustness
(see [4]). Robust stability is also an important topic in linear algebra [2,20] as well
as in numerical analysis [19].

A fundamental problem in robustness analysis is to determine the ability of a
system matrix to maintain its stability under a certain class of perturbations. A natural
robustness measure is thedistanceof a stable systeṁx = Ax to theset of unstable
systemsof the same form and dimension. The idea of Hinrichsen and Pritchard [9],
defining the stability radius as the distance to instability, has proved to be very fruitful
in stimulating a large amount of research and in establishing interesting connections
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(see [7,17,21]). In many applications, it is more convenient to deal with the charac-
teristic polynomial of the closed-loop matrix, as for instance in the single-input or
single-output cases (see [3]). A desired property of the (closed-loop) characteristic
polynomial is that all its roots are located in a pre-specified, “good” area of the
complex plane,Cg ⊂ C. Let K be either the real fieldR or the complex fieldC. A
polynomial in the complex variableλ,

p(λ) = p0+ p1λ+ · · · + pkλ
k, pk /= 0, pi ∈ K, i = 0:k,

is said to beCg-stable (or simply stable) if all its roots are located in the stability
regionCg. A natural stability robustness measure is the distance of astablepolyno-
mial p(λ) to the set ofunstablepolynomials. The stability radius ofp(λ) is defined
as thenormof the smallest perturbation

δp(λ) = δp0+ δp1λ+ · · · + δpkλ
k, δpi ∈ K, i = 0:k,

needed to “destabilize”p(λ), i.e. forcing at least one root ofp(λ)+ δp(λ) to leave
the “good” region. The norm of the perturbations will be measured with the help of
the norm of a constant matrix (or vector), depending on the polynomialδp(λ).

A current research problem is to extend the stability radii theory to systems de-
scribed by equations other than ordinary differential ones. In this respect, the main
theme of the present paper is to address the robust stability problem of time-invariant
linear systems described by higher order differential or difference equations of the
form

P0+ P1
dx(t)

dt
+ · · · + Pk

dkx(t)

dtk
= 0, t ∈ R+, (1)

or

P0+ P1x(t + 1)+ · · · + Pkx(t + k) = 0, t ∈ Z+, (2)

wherePi ∈ Kn×n. Such systems appear frequently in mechanical engineering. Clas-
sically, associated with the systems (1) or (2) is the polynomial matrix

P(λ) = P0+ P1λ+ · · · + Pkλ
k, Pi ∈ Kn×n, i = 0:k,

that is assumed to be square invertible and to have zeros—i.e. the roots of the poly-
nomial detP(λ)—inside a given regionCg ⊂ C. By extending the stability notion
introduced for polynomials,P(λ) is said to beCg-stable (or just stable) if all its
zeros are located in the stability regionCg. Similarly, a robust stability measure can
be defined as thenormof the smallest “destabilizing” perturbation

δP (λ) = δP0+ δP1λ+ · · · + δPkλ
k, δPi ∈ Kn×n, i = 0:k.

Again, the norm of the perturbations will be measured via the norm of a constant
matrix �, depending on the coefficients ofδP (λ). A detailed problem formulation
will be given in Section 3. It will be shown that the structure of� strongly influences
the computation of the different stability robustness measures.

Thecomplexstability radius theory of polynomial matrices has been investigated
by Pappas and Hinrichsen in [16]. They have analyzed the monic case only, but
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including structured perturbations of the coefficients; moreover, they have obtained
computable formulas for different perturbation structures and for arbitrary norms.

The paper is organized as follows. Section 2 is devoted to some prerequisites
concerning thestability radius. Some particular aspects regarding the scalar polyno-
mial case are emphasized in Section 3, in connection with the problem formulation
for different perturbation structures. In Section 4 we are treating the complex case,
considering Hölder norms. Closed formulas for the real stability radii of polynomial
matrices are then derived in Section 6, with emphasis on the 2-norm case. As a result,
it is shown in Section 6 how both real and complex stability radii can be efficiently
computed for Hurwitz and Schur polynomial matrices. Some additional comments
on computational complexity conclude this section. Future research directions along
with some short remarks are finally indicated.

2. Preliminaries and basic results

Consider a partitioning of the complex planeC into two disjoint setsCg and
Cb such thatCg is open and non-empty,C = Cg ∪ Cb. Recall thatK ∈ {C,R} and
consider the matrixA ∈ Kn×n such that�(A) ⊂ Cg, that is,A is Cg-stable (or simply
stable). The two regions that are typically considered forCg are the open left half
planeC− = {s ∈ C : Res < 0} and the open unit discD = {z ∈ C : |z| < 1}. The
stability radiusof the matrixA, defined as

rK(A,Cg) := inf
�∈Kn×n

{‖�‖ : �(A+ �) ∩ Cb /= ∅}, (3)

is the norm of the smallest perturbation� forcing at least one eigenvalue ofA+ �
to leave the “good” regionCg. More details concerning this concept can be found in
[9,11].

The size of the perturbation matrix� ∈ Km×l is measured by the induced operator
norm

‖�‖ = sup
x /=0

‖�x‖Km

‖x‖Kl

(4)

for arbitrary norms onKl andKm, respectively. In (3),l = m = n.
Denote byE the real linear normed space(Kl , ‖ · ‖). Any linear functional onE

can be associated with a vector belonging to the dual ofE, E∗ = (Kl , ‖ · ‖D), where
thedual norm‖ · ‖D is defined by

‖x‖D = max
v /=0

|x∗v|
‖v‖ . (5)

A vectory is said to be the dual of a vectorw if |y∗w| = ‖y‖D‖w‖.
The notation‖ · ‖p stands either for the Hölderp-norm of any vector inKn,

‖x‖p = (
∑n

i=1 |xi |p)1/p, or for the induced operator norm of any linear map� :
Kl → Km, ‖�‖p = supv /=0 ‖�v‖p/‖v‖p. The distinction will be clear from the con-
text. Note also that the dual norm of‖ · ‖p is ‖ · ‖q , where 1/p + 1/q = 1. One has
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that‖�‖2 = σ1(�), whereσ1(U) denotes the largest singular value of the matrixU;
in general, theith singular value ofU will be writtenσi(U).

Remark 1 (see [9,11]). Let∂Cg denote the boundary ofCg. By continuity of the
spectrum of a matrix versus perturbations on its entries, it follows that the eigenvalue
“leaving” Cg for Cb must actually lie on its boundary∂Cg. Therefore

rK(A,Cg) = rK(A, ∂Cg)

= inf
λ∈∂Cg

(
inf

�∈Km×l
{‖�‖ : det(λI − A− �) = 0

})
= inf

λ∈∂Cg

(
inf

�∈Km×l
{‖�‖ : det(I − �(λI − A)−1) = 0

})
, (6)

the last equality resulting from the stability of the initial matrixA: λI − A is in-
vertible forλ ∈ ∂Cg. Relation (6) shows that an important issue in stability radius
computation is to solve the following linear algebra problem: given a matrixM ∈
Cl×m determine

inf
�∈Km×l

{‖�‖ : det(I − �M) = 0
}
. (7)

If both Mand� are complex (or real), then the following result holds for arbitrary
norms onKl , Km (see also [11, Proposition 3.1]).

Lemma 2. For all M ∈ Kl×m and any operator norm

inf
�∈Km×l

{‖�‖ : det(I − �M) = 0
} = ‖M‖−1. (8)

Moreover, there exists always a rank one“optimal” perturbation�opt for which the
infimum in (8) is attained. If v ∈ Km is a unit norm vector such that‖Mv‖Kl =
‖M‖, then�opt = ‖M‖−1v u∗d , whereud is the dual of Mv, ‖ud‖ = 1.

When � is real andM is complex, the problem (7) is more involved. It can
be solved with the help of the following theorem, valid only for Euclidean norms
(p = 2). To our knowledge, there is no other available result forp-Hölder norms.
Define the largestreal perturbation value(or thereal structured singular value) of
M by

µR(M) :=
[

inf
�∈Rm×l

{‖�‖ : det(I − �M) = 0
}]−1

, M ∈ Cl×m. (9)

Notice thatµR(M) = 0 if and only if there is no� such that det(I − �M) = 0.
By introducing

G(λ) := (λI − A)−1,
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one can deduce from relation (6), combined with (8) and (9), that

rC(A,Cg) =
[

sup
λ∈∂Cg

‖G(λ)‖
]−1

and rR(A,Cg) =
[

sup
λ∈∂Cg

µR(G(λ))

]−1

.

(10)

The first equality in (10) has been proved in [9,11], while the second one is due to
[11,14]. For Euclidean norms, an explicit formula forµR has been derived by Qiu
et al. in [14], and it is presented in Theorem 3. An alternative approach was pro-
posed by Hinrichsen and Pritchard in [11], considering arbitrary pairs of norms, but
it proved to be effective for the rank one case only (and in particular whenm = 1
or l = 1). Further, both approaches will be reviewed hereafter with emphasis on
properties specifically relevant to our treatment.

For any complex matrix (vector, scalar)M ∈ Cl×m, letMx ∈ Rl×m, My ∈ Rl×m
denote its real and imaginary parts, respectively, that isM = Mx + jMy . Associate
to M the 2l × 2m real matrix depending on the real parameterγ ∈ (0, 1]:

NM(γ ) :=
[

Mx −γMy

γ−1My Mx

]
. (11)

Then the following result holds.

Theorem 3 [14]. LetM ∈ Cl×m. Then

µR(M) = inf
γ∈(0,1] σ2 (NM(γ )) (12)

and the function to be minimized on the right-hand side of(12) is a unimodal function
on (0, 1].

The remarks below are due to Qiu et al. (see [14]).

Remark 4.
1. The minimization in (12) is quite easy sinceσ2(·) has only one local minimum

which is also a global one, except when the infimum is attained forγ → 0.
2. The mapM �→ µR(M) is continuous almost everywhere. At its discontinuity

points one has necessarilyMy = 0. This leads to a non-continuous function of
λ which has also to be maximized on the boundary of the stability region, as
shown by (10). This is not a simple numerical problem; the question is discussed
in some detail in [18].

3. It can be shown thatµR(M) = σ1(M) if and only if the minimal value ofσ2 is
attained forγ = 1.

Remark 5. Assume that the optimum in (12) is attained for someγopt ∈ (0, 1].
Then the “optimal” perturbation, i.e. the minimum norm real matrix� such that
det(I − �M) = 0 is given by
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� = σ−1
2,opt

[
vx vy

] [
ux uy

]†
, (13)

where

u =
[
ux
uy

]
and v =

[
vx
vy

]
are a pair of left and right singular vectors of the matrixNM(γopt) corresponding
to σ2,opt, such thatuT

xux = vT
x vx , uT

xuy = vT
x vy anduT

yuy = vT
y vy . We have used

A† to denote the Moore–Penrose (generalized) inverse of the matrixA. Except for
special cases (for which we refer to [14] for more details), it follows from (13) that
rank� = 2.

As already mentioned, there is an alternative method to determineµR (and im-
plicitly rR), proposed by Hinrichsen and Pritchard (see [9,11]). For anyv1, v2 ∈ Rm

andu1, u2 ∈ Rl , define the smallest operator norm of all linear maps� : Rl �→ Rm

which takeu1, u2 ontov1, v2 as

δ(u1, u2; v1, v2) = inf
�∈Km×l

{‖�‖ : �u1 = v1,�u2 = v2
}
. (14)

Note thatδ = ∞ if and only if there is no� such that�u1 = v1, �u2 = v2.
If ‖�‖ = σ1(�), a closed formula forδ can be obtained on the basis of Theorem

4.3 in [11]. Furthermore, the following result holds for arbitrary pairs of norms on
Rl andRm, respectively.

Proposition 6. LetM ∈ Cl×m, M = Mx + jMy. Then

µR(M) =
[

inf
(vx ,vy) /=(0,0)

δ(Mxvx −Myvy,Mxvy +Myvx; vx, vy)
]−1

. (15)

Note that the right-hand sides of (12) and (15) are the same for Euclidean norms,
but, to our knowledge, there is nodirect proof of showing this equivalence in the
general case.

Let us end this section with some additional remarks. Recall thatδ can be de-
termined explicitly in the case of Euclidean norms onRl and Rm. However, this
approach does not yield an alternative computational scheme forrR orµR: the com-
putational complexity of calculatingrR or µR appears to be too high, due to the
optimization overvx, vy .

3. Problem formulation

Consider the polynomial matrix

P(λ) = P0+ P1λ+ · · · + Pkλ
k, Pi ∈ Kn×n, i = 0:k,
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and define the spectrum ofP as

�(P ) = {λ ∈ C : detP(λ) = 0
}
.

The elements of�(P ) are called theeigenvaluesor zerosof P(λ). We shall say that
P(λ) is Cg-stable (or just stable) if�(P ) ⊂ Cg and callCg the stability region. The
typical regions chosen forCg are the open left complex half plane and the open unit
disc.

Let us assume thatP(λ) is Cg-stable,regular (i.e. detP(λ) �≡ 0) and thatPk is
non-singular. The stability radius of such polynomial matrices is the norm of the
smallest perturbation

δP (λ) = δP0+ δP1λ+ · · · + δPkλ
k, δPi ∈ Kn×n, i = 0:k,

needed to “destabilize”P(λ), and hence forcing at least one zero ofP(λ)+ δP (λ)

to leave the stability regionCg.
Assume that we measure the perturbations via some appropriate norm of a con-

stant matrix� depending on the coefficients ofδP (λ). Precise definitions of� will
be given later. Then thestability radiusof P(λ) with respect toCg has the expression

rK(P,Cg) = inf
�

{‖�‖ : ∃λ ∈ Cb s.t. det(P (λ)+ δP (λ)) = 0
}
. (16)

By conventionrK = +∞ if there is noδP (λ) such that det(P (λ)+ δP (λ)) = 0 for
someλ ∈ Cb. Let

detP(λ) = ankλ
nk + · · · + a1λ+ a0.

We rule out the caseank = detPk = 0. In order to see this, let us first deal with the
scalar case, whenPi = pi ∈ K.

We shall prove thatHurwitzstability radii problems are trivial if the leading coef-
ficientpk is zero. Assume e.g. thatpk = pk−1 = · · · = pl+1 = 0 andpl /= 0. It then
appears that the degreek polynomialp(λ) hask − l zeros at infinity (to see this,
observe that the polynomialxk p(1/x) has a zero of multiplicityk − l at x = 0).
In such a situation, there exist arbitrarily small perturbationsδp0, δp1, . . . , δpk such
thatp(λ)+ δp(λ) has a zero in the unstable partC \C− of the complex plane. For
example, chooseδpi = 0 for all i /= l + 1 andδpl+1 = −εpl with ε > 0 but arbi-
trarily small; then the zeros 1/x of the perturbed polynomial appear to be given by
the roots of the polynomial equation

xk−l−1(− εpl + plx + pl−1x
2+ · · · + p1x

l + p0x
l+1) = 0. (17)

This polynomial has a zero of orderk − l − 1 atx = 0, while its other zeros are the
solutions of−εpl + plx + · · · + p0x

l+1 = 0; in particular, they satisfy the relation

x = ε − 1

pl

(
pl−1x

2+ pl−2x
3+ · · · + p1x

l + p0x
l+1). (18)

For ε sufficiently small and in view of the polynomial zero continuity theorem, the
above equation has a solution of the formx = ε + O(ε2), arbitrary close toε > 0
for ε → 0. Therefore, the perturbed polynomial is unstable.
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To sum up, it appears that thedistance to instability of a polynomial with zero
leading coefficientis inherently zero. The same is true for matrix polynomials with
singular leading coefficient matrix; indeed, the above argument can be extended to
cover the matrix case without difficulty. It is left to the reader to verify that the
various formulas for the stability radii presented in this paper are coherent with this
property; for example, one findsδPi = 0 in (39) as expected in caseP(λ) is singular
at infinity. Let us finally note that the stability radii theory of polynomials can be
retrieved as a particular case of the stability radii theory of polynomial matrices.

Thus one can rewrite (16) as

rK(P,Cg) = inf
�

{‖�‖ : ∃λ ∈ ∂Cg s.t. det(P (λ)+ δP (λ)) = 0
}
. (19)

For any polynomial matrixP and for everyλ0 ∈ C introduce

νK(P, λ0) := inf
�

{‖�‖ : det(P (λ0)+ δP (λ0)) = 0
}
, (20)

i.e.νK(P, λ0) is the norm of the smallest perturbation needed to make one eigenvalue
of P equal toλ0. From (19) and (20), one obtains

rK(P ;Cg) = inf
λ∈∂Cg

νK(P, λ). (21)

Therefore, the computation ofνK(P, λ) appears to be the key issue in evaluating
the stability radius ofP. Moreover,νK is involved as well in determining the real or
complexpseudospectraof polynomial matrices (see [8,12]).

Let us consider the following perturbation structures:

�1 =
[
δP0 · · · δPk

]
,

�2 =
δP0

...

δPk



�3 =
δP0

...
δPk

 .

(22)

The corresponding polynomial matrix perturbationδP (λ) can be expressed, respec-
tively, as

δP (λ) =�1


I

λI
...

λkI

 = [I λI · · · λkI
]
�2

= [I ξ−1
1 I · · · ξ−1

k I
]
�3


I

ξ1λI
...

ξkλ
kI

 , (23)
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where theξi ∈ C are arbitrary,ξi /= 0. For anyλ for whichP(λ) is invertible, intro-
duce

M1(λ) :=


I

λI
...

λkI

P−1(λ),

M2(λ) := P−1(λ)
[
I λI · · · λkI

]
,

M3(λ, ξ) :=


I

ξ1λI
...

ξkλ
kI

P−1(λ)
[
I ξ−1

1 I · · · ξ−1
k I

]
.

(24)

By using the well-known equality det(I + AB) = det(I + BA), one can deduce
from (23) and (24) that

det(P (λ)+ δP (λ)) = 0 ⇐⇒ det(I + δP (λ) P−1(λ)) = 0

⇐⇒ det(I + P−1(λ) δP (λ)) = 0

⇐⇒ det(I + �iMi(λ)) = 0, i = 1, 3. (25)

Let us check, for instance, (25) wheni = 2. One has

det(P (λ)+ δP (λ)) = 0 ⇐⇒ det(I + P−1(λ) δP (λ)) = 0

⇐⇒ det
(
I + P−1(λ)[I λI · · · λkI ]�2

) = 0

⇐⇒ det(I +M2(λ)�2) = 0.

Remark 7. The perturbation structures�1 and�2 are dual to each other, because
solving the problem for�1 yields automatically a solution for�∗2, and hence for�2.
Henceforth, we shall restrict our discussion to�1 and�3.

The following preliminary result holds.

Lemma 8. The complex and real stability radii(19) of the matrix polynomialP(λ)
with respect to the perturbation matrix�1 are, respectively, given by

rC(P,Cg;�1) = inf
λ∈∂Cg

‖M1(λ)‖−1 =
[

sup
λ∈∂Cg

‖M1(λ)‖
]−1

(26)

and

rR(P,Cg;�1) = inf
λ∈∂Cg

µ−1
R (M1(λ)) =

[
sup
λ∈∂Cg

µR(M1(λ))

]−1

. (27)
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Proof. SinceP(λ) is Cg-stable,P(λ) is invertible for anyλ ∈ ∂Cg, soM1(λ) is
well defined. For the perturbation structures�1, relation (20) reads

νK(P, λ;�1) = inf
�1

{‖�1‖ : det(P (λ)+ δP (λ)) = 0
}
.

In view of the equivalences in (25), the above equality can be transformed into

νK(P, λ;�1) = inf
�1

{‖�1‖ : det(I + �1M1(λ)) = 0
}
, (28)

for anyλ for whichP(λ) is invertible. IfK = C, Lemma 2 shows that

νC(P, λ;�1) = ‖M1(λ)‖−1, (29)

and (26) follows automatically from (28) and (21). Analogously, ifK = R, it follows
from definition (9) that

νR(P, λ;�1) = µ−1
R (M1(λ)) . (30)

In view of (21), equality (27) holds as well.�

Remark 9.
1. Using a similar argument, one can also deal withstructuredperturbations. As-

sume e.g. that the coefficients ofδP (λ) are expressed asδPi = D�Ei , i = 0:k,
whereD andEi are given, and� is the perturbation. LetE(λ) := E0+ E1λ+
· · · + Ekλ

k. It is not difficult to see that

det(P (λ)+ δP (λ)) = 0 ⇐⇒ det(I + �E(λ)P−1(λ)D) = 0.

Replacing nowM1(λ) by E(λ)P−1(λ)D into (26) in Lemma 8, one retrieves
precisely Theorem 2.2 in [16] or Lemma 2.5 in [8].

2. One can expressµR(M1(λ)) either via Theorem 3 (when considering Euclidean
norms) or via Proposition 6 (when considering arbitrary norms).

The problem� = �3 is a constrained problem which is much more difficult to
solve due to the block diagonal structure of�3. Further, some upper and lower
bounds for the stability radius ofP(λ) will be given in the case when� = �3 and
when consideringp-norms. These bounds are expressed in terms of the stability
radius determined in Lemma 8, by using the available structure and by choosing
appropriate scalarsξi .

Lemma 10. LetνK(P, λ;�i ), i = 1, 3, be introduced as in(30). Then for allλ for
whichP(λ) is invertible, the following inequalities hold:

(k + 1)−1/qνK(P, λ;�1) � νK(P, λ;�3)

� νK(P, λ;�1), 1/p + 1/q = 1. (31)

Proof. The proof is very simple and left to the reader; it is based on the definition
of νK combined with the following facts:
1. If � = (diag(�i ))i=1:k, then
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‖�‖p = max
i=1:k

‖�i‖p . (32)

1. If � = [�1 �2 . . . �k] ∈ Km×l , �i ∈ Km×li , l =∑k
i=1 li , then

max
i=1:k

‖�i‖p � ‖�‖p � k1/q max
i=1:k

‖�i‖p, 1/p + 1/q = 1. (33)

The inequalities are tight in the sense that they can be reached for particular�i ,
i ∈ 1:k. �

The following result is a direct consequence of equality (21) and of the previous
lemma.

Corollary 11. The following inequalities hold:
(k + 1)−1/qrK(P ;Cg;�1) � rK(P ;Cg;�3)

� rK(P ;Cg;�1), 1/p + 1/q = 1. (34)

4. Complex stability radii

The aim of this section is to obtain a computable version of the formula (26) when
consideringp-Hölder norms. In order to prove something about thep-norms for the
perturbation structures (24), we first need the following lemma. For the proof, see
[6].

Lemma 12.
1. For every Hölder(or p) norm and vectors x and y, one has the multiplicative

property

‖x ⊗ y‖p = ‖x‖p‖y‖p. (35)

2. The following identities hold true for the induced matrix p-norm:
‖(x ⊗ I )M(y∗ ⊗ I )‖p = ‖x ⊗ I‖p‖M‖p‖y∗ ⊗ I‖p

= ‖x‖p‖M‖p‖y∗‖p. (36)

We can now state the main result of this section.

Theorem 13. For all λ for whichP(λ) is invertible, one has the relation

νC(P, λ;�i ) = inf
�i

{‖�i‖p : det(P (λ)+ δP (λ)) = 0
}

= ‖di(λ)P−1(λ)‖−1
p , (37)

wheredi(λ) for �i , i = 1, 3, is respectively equal to
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d1(λ) =
(

k∑
i=0

|λ|ip
)1/p

and d3(λ) =
(

k∑
i=0

|λ|i
)
. (38)

Proof. Let us prove first (37) fori = 1. By rewriting the equality (29) updated to
p-norms and by applying then Lemma 12 to the particular structure ofM1(λ), one
obtains

νC(P, λ;�1) = ‖M1(λ)‖−1
p =

‖P−1(λ)‖p

∥∥∥∥∥∥∥∥∥


1
λ
...

λk


∥∥∥∥∥∥∥∥∥
p


−1

= (‖d1(λ)P
−1(λ)‖p

)−1
.

Let ξ ∈ Ck. According to statement 2 in Lemma 12,

‖M3(λ, ξ)‖−1
p =

‖P−1(λ)‖p

∥∥∥∥∥∥∥∥∥


1
ξ1λ
...

ξkλ
k


∥∥∥∥∥∥∥∥∥
p

∥∥∥∥∥∥∥∥∥


1
ξ−∗1
...

ξ−∗k


∥∥∥∥∥∥∥∥∥
q


−1

=: (‖P−1(λ)‖p‖x‖p‖y‖q
)−1

�
(
‖P(λ)−1‖p

(
k∑

i=0

|xi | |yi |
))−1

= (‖d3(λ)P (λ)
−1‖p

)−1
, 1/p + 1/q = 1.

The above inequality is nothing else than the Hölder inequality, applied to the vectors
x andy. Equality is reached when these vectors aredual to each other, which is the
case for|ξi | .= |λ|−i/q . Furthermore, it can be shown that the above lower bound is
actually reached for�3, although it is constrained to be block diagonal. To that aim,
let us construct a particular perturbation for�3 which establishes equality. Letu and
v be two vectors of unitp-norm such thatP−1(λ) u = ‖P−1(λ)‖pv and letvd be the
dual ofv. Hence|v∗d v| = 1 with ‖v∗d‖p = 1. The matrix entriesδP3, defined by

�3 : δPi = −
(‖d3(λ)P

−1(λ)‖p
)−1

uv∗d
( |λ|2

λ

)i
, (39)

yield equality in its lower bound and also satisfyδP (λ) = −(‖P(λ)−1‖p)−1uv∗d so
thatδP (λ)P−1(λ)u = −u and(P (λ)+ δP (λ))v = 0.

Analogously, one can verify that the “optimal” destabilizing perturbation�1 is
given by
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�1 : δPi = −
(‖d1(λ)

pP (λ)−1‖p
)−1

uv∗d
( |λ|p

λ

)i
. � (40)

This is now used in the following characterization of the stability radius of poly-
nomial matrices.

Theorem 14. The smallest perturbation of a polynomial matrixP(λ) causing a zero
of P(λ)+ �P(λ) to reach the boundary∂Cg of the stability regionCg is given by

rC(P,Cg;�i ) = inf
�i ,λ∈Cg

{‖�i‖p : det(P (λ)+-P(λ)) = 0
}

= inf
λ∈∂Cg

‖di(λ)P (λ)−1‖−1
p

=
{

sup
λ∈∂Cg

‖di(λ)P (λ)−1‖p
}−1

, (41)

wheredi(λ) for �i , i = 1, 3, are defined as in Theorem13.

Remark 15.
1. The result of Theorem 13 can be generalized to matrices of the formx ⊗M, in

the sense that

inf
�

{‖�‖p : det(I + �(x ⊗M)) = 0
}

= ‖x‖−1
p ‖M‖−1

p , or,

= ‖x‖−1
1 ‖M‖−1

p , for block diagonal perturbations. (42)

The proof follows closely the line of the proof of Theorem 13.
2. Theorem 14 is an extension of Corollary 2.4 in [16] to thenon-moniccase. For the

sake of simplicity, we only consideredunstructuredstability radii. If the overall
perturbation matrix (as�i) can be represented in block row form, then Theo-
rem 14 can be easily extended to the structured case as well, see [8, Lemma
2.5].

5. Real stability radii

The main purpose of this section is to derive a computable formula forrR(P,Cg;
�1). In the second part of the section, we determine the minimum norm perturbations
which are actually attaining the corresponding stability radii.
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5.1. Closed formulas

First, we give appropriate state space realizations for the rational matrix function
M1(λ) defined in (24). IntroduceE := Ikn ⊕ 0n,

A1 :=


0n In

.. .
. . .
0n In

−P0 . . . −Pk−1 −Pk

 ∈ R(k+1)n×(k+1)n

B1 :=


0n
0n
...

In

 ∈ R(k+1)n×n.

(43)

Straightforward computations show that

M1(λ) =


I

λI
...

λkI

P−1(λ) = (λE − A1)
−1B1. (44)

In accordance with definition (3) and relation (6), the formula (44) shows that the
real stability radii problems of polynomial matrices are equivalent to realstructured
stability radii problems of “companion” pencils, like(E,A1). Furthermore, the real-
ization (44) enables us to express the real and imaginary parts ofM1(λ) in terms of
initial data. Let

λ := λx + jλy and M1(λ) := M1,x + jM1,y .

HereM1,x,M1,y are real matrices of the same dimension asM1. Then one has

M1,x =Re
[
(λE − A1)

−1]B1

= [(λxE − A1)+ λ2
yE(λxE − A1)

−1E
]−1

B1 (45)

M1,y = Im
[
(λE − A1)

−1]B1

=−λy(λxE − A1)
−1[(λxE − A1)+ λ2

yE(λxE − A1)
−1E

]−1
B1

An explicit formula forµR(M1(λ)) is given below.

Lemma 16. LetM1,x andM1,y be given by(46). Then

µR(M1(λ)) = inf
γ∈(0,1] σ2

([
M1,x −γM1,y

γ−1M1,y M1,x

])
(46)
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in the Euclidean norm case, and

µR(M1(λ)) =
[

min
(u,v) /=(0,0) δ(M1,xu−M1,yv,M1,xv +M1,yu ; u, v)

]−1

(47)

for arbitrary pairs of norms.

Proof. The proof of relations (46) and (47) is a direct consequence of Theorem 3
and Proposition 6, applied toM1(λ). �

By combining now Lemmas 8 and 16 we obtain the main result of the paper.

Theorem 17. The real stability radius(19) of the polynomial matrixP(λ) with
respect to the perturbation matrix�1 is given by

rR(P,Cg;�1) =
[

sup
λ∈∂Cg

inf
γ∈(0,1] σ2

([
M1,x −γM1,y

γ−1M1,y M1,x

])]−1

(48)

for Euclidean norms and

rR(P,Cg;�1) = inf
λ∈∂Cg

(u,v) /=(0,0)
δ
(
M1,xu−M1,yv,M1,xv +M1,yv; u, v

)
(49)

for arbitrary pairs of norms.

Some additional comments are given below.

Remark 18.
1. The state-space realization (43) is not unique. One can consider realizations that

are more convenient to a specific purpose. In this respect, alternative state-space
realizations wherêE is non-singular are used when computing the Hurwitz sta-
bility radius (see (78)).

2. Formulas (46) show thatM1,x , M1,y depend explicitly on the real and imaginary
parts ofλ, i.e. λx andλy , respectively. When considering Hurwitz or Schur sta-
bility, M1,x andM1,y will depend on a single real parameter, such asω: ω = λy
for Hurwitz stability or ejω = λx + jλy for Schur stability.

3. Although they have at this moment only some theoretical relevance, equalities
(47) and (49) might prove to be useful whenp-Hölder norms are considered, pro-
vided that an efficient computation ofµR in (47) is available.

As already mentioned, we can derive for the third case lower and upper bounds in
terms ofrR(P ;Cg;�1). The result is a direct consequence of Corollary 11 forp = 2
andK = R.
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Lemma 19. The following inequalities hold:
(k + 1)−1/2rR(P ;Cg;�1) � rR(P ;Cg;�3) � rR(P ;Cg;�1). (50)

Special attention will be paid (whenp = 2) to the particular structure ofM1(λ).
This structure will be fully exploited in the light of Theorem 3, in order to reduce
the complexity of the minimization overγ when calculatingrR and to obtain simpler
expressions for the smallest “destabilizing” perturbations.

According to formula (11) define

N1(λ, γ ) := NM1(λ)(γ ) =
[

M1,x −γM1,y

γ−1M1,y M1,x

]
. (51)

If

λiP−1(λ) := Xi(λ)+ jYi(λ), Xi, Yi ∈ Rn×n, i = 0:k,

then

M1,x =


X0
X1
...

Xk

 , M1,y =


Y0
Y1
...

Yk

 .

Let λ = λx + jλy = ρ(cosθ + j sinθ) = ρejθ , ρ > 0, θ ∈ [0, 2�). Associate toλ
the matrix

� :=
[
λx −λy
λy λx

]
= ρ

[
cosθ − sinθ
sinθ cosθ

]
and let

Dγ :=
[
γ 0
0 1

]
,

�γ := Nλ(γ ) = Dγ�D−1
γ =

[
λx −γ λy

γ−1λy λx

]
= ρ

[
cosθ −γ sinθ

γ−1 sinθ cosθ

]
.

From the definition ofXi, Yi and since(�⊗ In)
i = �i ⊗ In one gets[

Xi −Yi
Yi Xi

]
= (�i ⊗ In)

[
X0 −Y0
Y0 X0

]
=
[
X0 −Y0
Y0 X0

]
(�i ⊗ In).

As (Dγ ⊗ In)
−1 = D−1

γ ⊗ In the above equalities imply that[
Xi −γ Yi

γ−1Yi Xi

]
= (�i

γ ⊗ In)

[
X0 −γ Y0

γ−1Y0 X0

]
=
[

X0 −γ Y0

γ−1Y0 X0

]
(�i

γ ⊗ In). (52)
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We have used the identity(A⊗ B)(C ⊗D) = (AC)⊗ (BD).
Consider the permutationπ ∈S2k+2 defined byπ(1 : 2k + 2) = (1 : 2 : 2k + 1,

2 : 2 : 2k + 2) and introduce now the orthogonal matrix

� := [eπ(1)eπ(2) · · · eπ(2k+2)
] ∈ R(2k+2)×(2k+2),

whereei ∈ R(2k+2) denotes theith column of the identity matrixI2k+2. Let

N0(λ, γ ) := NP−1(λ) =
[

X0 −γ Y0

γ−1Y0 X0

]
∈ R2n×2n and

A1(λ, γ ) :=


I2
�γ

...

�k
γ

 ∈ R2(k+1)×2.

(53)

Then

(�⊗ In) N1(λ, γ ) = (A1(λ, γ )⊗ In) N0(λ, γ )

as (52) shows. Since� is orthogonal we deduce that for everyγ ∈ (0, 1],
σ2(N1(λ, γ )) = σ2((A1(λ, γ )⊗ In)N0(λ, γ )). (54)

SinceAT
1A1 is positive definite, one can find areal spectral factorL1 for A1, that is,

AT
1A1 = LT

1L1. For instance, a Cholesky factor can be always obtained, but it has no
rational expression in terms ofγ andλ. Thus relation (54) reads

σ2(N1(λ, γ )) = σ2((L1(λ, γ )⊗ In)N0(λ, γ )), (55)

whereL1(λ, γ ) ∈ R2×2 is a Cholesky factor ofAT
1(λ, γ ) A1(λ, γ ).

The following result is a direct consequence of Lemma 8 and Theorem 3, com-
bined with relation (55).

Theorem 20. The real stability radius(19) of the polynomial matrixP(λ) with
respect to the perturbation structure�1 is given by

rR(P ;Cg;�1) =
[

sup
λ∈∂Cg

inf
γ∈(0,1] σ2

(
(L1(λ, γ )⊗ In)NP−1(λ)(γ )

)]−1

. (56)

5.2. Minimum norm perturbations

Subsequently we shall derive simpler expressions for the minimum norm pertur-
bation�1 attainingµR(M1(λ)) for givenλ for which detP(λ) /= 0.

Let�1 be the minimum norm “destabilizing” perturbation that attainsµR(M1(λ)).
Let [

ux
uy

]
and

[
vx
vy

]
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be a pair of left and right singular vectors of the matrixN1(λ, γ ) corresponding to
the “optimal”σ2. Then one has (see (11))[

M1,x −γM1,y

γ−1M1,y M1,x

] [
vx
vy

]
= σ2

[
ux
uy

]
. (57)

By exploiting the structure ofM1,x andM1,y one infers from (57) that for every
i ∈ 1:k,

[
Xi −γ Yi

γ−1Yi Xi

] [
vx
vy

]
= σ2

[
ux,i
uy,i

]
=



ux,0
...

ux,k
uy,0
...

uy,k


(58)

and by replacing now relation (52) into (58) we obtain

(�i
γ ⊗ In)

[
X0 −γ Y0

γ−1Y0 X0

] [
vx
vy

]
= σ2

[
ux,i
uy,i

]
.

Writing now (58) fori = 0, one deduces from above that

(�i
γ ⊗ In)

[
ux,0
uy,0

]
=
[
ux,i
uy,i

]
, (59)

or, in a more compact form, for everyi ∈ 0:k,[
ux,0 uy,0

] [ λix γ−1λiy
−γ λiy λix

]
= [ux,i uy,i

] ⇐⇒ �i
γ U

T
0 = UT

i . (60)

HereUi := [ux,i uy,i] ∈ Rn×2 andλix := ρi cos iθ, λiy := ρi sin iθ , i = 0:k.
Since�1 is the minimum norm “destabilizing” perturbation that attainsµR(M1

(λ)), formula (13) reads

�1= −σ−1
2

[
vx vy

] ([uT
x

uT
y

] [
ux uy

])−1[
uT
x

uT
y

]
=: [�1,0 �1,1 . . . �1,k

]
. (61)

By combining now (61) with (60) one can write

�1= −σ−1
2

[
vx vy

] ([uT
x

uT
y

] [
ux uy

])−1 [
UT

0 UT
1 . . . UT

k

]

= −σ−1
2 (V †)T

[
I2 �γ . . . �k

γ

]

UT

0
UT

0
...

UT
0

 . (62)
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Here

(V †)T := [vx vy
] ([vT

x

vT
y

] [
vx vy

])−1

= [vx vy
] ([uT

x

uT
y

] [
ux uy

])−1

as Remark 5 states. Relation (62) also shows that for everyi ∈ 0:k,

�1,i = −σ−1
2 (V †)T�i

γ U
T
0 . (63)

Essentially relying on formula (63) the following result holds.

Theorem 21. For everyλ ∈ C which is not a root of P and for everyi ∈ 0:k, we
have

�1,i = −σ−1
2,opt(N1) (V

†)T �i
γopt

UT
0 . (64)

Furthermore,

δP (λ) = −σ−1
2,opt(N1) (V

†)T

[
k∑

i=0

λi�i
γopt

]
UT

0 . (65)

6. Computational aspects

The aim of this section is to show how the real and complex stability radii can
be computed efficiently in some important situations. In the Euclidean norm case
(p = 2), the algorithm proposed in this paper is based on a crucial result, connecting
the singular values of a rational transfer function matrix and the imaginary or unitary
eigenvalues of a corresponding Hamiltonian or symplectic pencil.

A common representation of a general rational matrixG ∈ Cp×m(λ) is

G(λ) = C(λE − A)−1B +D,

whereA,E ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n andD ∈ Cp×m. So as to consider an
arbitrary rational matrix together with one of its realizations, let us use the notation

G(λ)
∼=
[
λE − A −B

C D

]
.

Note the sign convention used above;G(λ) is in fact the Schur complement ofλE −
A. Let us begin with the continuous-time case.

Proposition 22. LetG(s) = C(sE − A)−1B +D and letξ > 0 be such thatDξ :=
D∗D − ξ2I is non-singular. If (sE − A) is a regular pencil and has no generalized
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eigenvalues on the imaginary axis, then, for all ω ∈ R, ξ is a singular value ofG(jω)
if and only if jω is a generalized eigenvalue of the Hamiltonian pencil

sL(ξ,G)−H(ξ,G)

= s

[
E 0
0 E∗

]
−
[

A− BD−1
ξ D∗C −BD−1

ξ B∗

ξ2C∗(DD∗ − ξ2I )−1C −A∗ + C∗DD−1
ξ B∗

]

=
[
sE − A 0
C∗C sE∗ + A∗

]
−
[ −B
C∗D

]
(D∗D − ξ2I )−1 [D∗C B∗

]
.

Proof. Let ξ > 0 andω ∈ R. Let us prove that

det
(
G∗(jω)G(jω)− ξ2I

) = 0

⇐⇒ det
(
jωL(ξ,G)−H(ξ,G)

) = 0, (66)

whereG∗(s) := G
T
(−s) = B∗(−sE∗ − A∗)−1C∗ +D∗. To that aim, let us first

note the relation

G∗(jω)G(jω)− ξ2I = D∗D − ξ2I +D∗C(jωE − A)−1B

+ B∗(−jωE∗ − A∗)−1C∗D
+ B∗(−jωE∗ − A∗)−1C∗C(jωE − A)−1B

∼=
jωE − A 0 −B

C∗C jωE∗ + A∗ C∗D
D∗C B∗ D∗D − ξ2I


=:S.

As the Schur complement of the upper left corner inS is recognized in
G∗(jω)G(jω)− ξ2I , one has

det
(
G∗(jω)G(jω)− ξ2I

)
det

([
jωE − A 0
C∗C jωE∗ + A∗

])
= detS. (67)

Furthermore, considering the Schur complement ofDξ = D∗D − ξ2I inS yields
the relation

detS= detDξ det

([
jωE − A 0
C∗C jωE∗ + A∗

]
−
[ −B
C∗D

]
D−1
ξ

[
D∗C B∗

])
= detDξ det(jωL−H). (68)

By combining now (67) and (68), it follows that

det(G∗(jω)G(jω)− ξ2I ) det(jωE − A) det(jωE∗ + A∗)
= detDξ det(jωL−H). (69)
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Since det(jωE − A) /= 0, det(jωE∗ + A∗) /= 0 for everyω ∈ R, and asDξ is non-
singular, it appears that (66) holds and this completes the proof.�

The discrete-time counterpart of Proposition 22 is stated below without proof. In
this case, one can apply the same argument as above.

Proposition 23. LetG(z) = C(zE − A)−1B +D and letξ > 0 be such thatDξ :=
D∗D − ξ2I is non-singular. If the pencil(zE − A) is regular and has no general-
ized eigenvalues on the unit circle, then, for everyω ∈ R, ξ is a singular value of
G(ejω) if and only ifejω is a generalized eigenvalue of the symplectic pencil

zG(ξ,G)−F(ξ,G)

= z

[
E BD−1

ξ B∗

0 A∗ − C∗DD−1
ξ B∗

]
−
[

A− BD−1
ξ D∗C 0

ξ2C∗(DD∗ − ξ2I )−1C E∗
]

=
[
zE − A 0
C∗C zA∗ − E∗

]
−
[ −B
C∗D

]
(D∗D − ξ2I )−1 [D∗C zB∗

]
.

6.1. The complex case

The complex stability radius can be computed efficiently in caseG(λ) =
d(λ)P (λ)−1 is rational inλ for λ ∈ ∂Cg. This is obviously true for the unit circle
since thed(λ) functions are constant:

d1(λ) = (k + 1)1/p, d3(λ) = (k + 1).

For the jω axis, one can substitute ford3(λ) the following polynomials of the same
amplitude:

d(λ) =
k∑

i=0

(−jλ)i for ω � 0

(70)

d(λ) =
k∑

i=0

(jλ)i for ω � 0,

so that two different rational functions have to be considered depending on whether
ω is assumed to take positive or negative values. Ford1(λ), one can only make this
substitution for the special casesp = 1, 2,∞. Forp = 2, one finds

|d1(jω)|2 = (1+ ω2+ · · · + ω2k) = |d(jω)|2,
whered(λ) is the (stable) spectral factor of 1+ ω2+ · · · + ω2k, equal to

d(λ) =
k∏

i=1

(
λ+ sin

i�

k + 1
− j cos

i�

k + 1

)
. (71)
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For the casep = 1, d1(λ) reduces tod(λ) as given by (70), while forp = ∞,
d1(λ) simplifies into max{1, |ω|k}, whence has the same amplitude as the rational
functions

d(λ) = 1 forω � 1, d(λ) = jωk for ω > 1.

Note that in each of these cases, the constructed polynomiald(λ) has degreek or
less, i.e.d(λ) =∑k

i=1 diλ
i . The transfer function matrixd(λ)P (λ)−1 admits then

a generalized state space realization of the formC(λE − A1)
−1B1 =: G(λ) where

C = [d0In d1In · · · dkIn] and withE, A1, B1 given by (43).
For the 2-norm, the corresponding complex stability radius reduces to theH∞-

norm of the transfer functionG(λ):

σ∗ = sup
ω∈R

σ1 (G(f (ω))) , (72)

wheref (ω) is the parameterization of∂Cg in terms ofω ∈ R, andσ1(M) is the
largest singular value of the matrixM. This calculation can be carried out iteratively
by a repeated computation of the real zerosωi of the matrix function

G∗(f (ω)) G(f (ω))− σ 2
o I, (73)

based on Proposition 22 or 23. These apply to the generalized state-space model
G(λ) = C(λE − A1)

−1B1 yielding the following Hamiltonian and symplectic pen-
cils: [

jωE − A1 −σ−2
o B1B

∗
1

C∗C jωE∗ + A∗1

]
and

[
ejωE − A1 −ejωσ−2

o B1B
∗
1

C∗C ejωA∗1 − E∗
]
, (74)

respectively.
This procedure yields efficient algorithms to find the maximum of the scalar func-

tion σ(ω) = σ1(G(f (ω))) [1,5,10], in term of recursive eigenvalue computation of
the associated Hamiltonian or symplectic pencil.

Forp = 1,∞ one still has a rational matrix to deal with, but the largest singular
value calculation degenerates into the largest sum of absolute values of a column or
row of G(λ). This is a scalar piecewise rational function, which can be maximized
using symbolic manipulation programs: each “piece” is rational and the “branching
points” are the zeros of some polynomial.

In the special case of scalar polynomials, obviously‖P(λ)−1‖p = |p(λ)−1|. If
moreover,p = 1, 2,∞, thend(λ) can also be chosen polynomial, so that one has
to find the maximum of the absolute value of a scalar rational functionG(λ) =
d(λ)/p(λ) on ∂Cg. The zeros ofd ′(λ)p(λ)− p′(λ)d(λ) are then the extrema of
this function and it suffices to look for the largest of these 2(k − 1) values. This can
be obtained in O(k2) flops using polynomial root finding algorithms. Note that other
approaches have been proposed in the literature for complex and real stability radii
of scalar polynomials [11,13].
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6.2. The real case

The real stability radius can be computed efficiently for Hurwitz and Schur
polynomial matrices in the Euclidean norm case, by updating the algorithm
proposed by Sreedhar et al. in [18] to deal with generalized state-space models,
like M1(λ) appearing in (44). In order to compute the real stability radius in the
continuous-time and discrete-time cases, one evaluates (48) forCg = C− and for
Cg = D, respectively. As it is shown in [18],rR is computed iteratively. For the
sake of completeness we shall present the basic ideas behind the development
in [18], by specifying, when necessary, the changes related to our specific
situation.

The algorithm is based on the connection between the singular values of a transfer
function matrix and the imaginary (or unitary) eigenvalues of a related Hamiltonian
(or symplectic) pencil. Such a relationship has been described by Propositions 22
and 23, respectively.

6.2.1. Hurwitz stability radius
Assume that�(P ) ⊂ Cg = C−. In this case, the boundary of the stability region

is the imaginary axis. Then takeλ = jω in (48) and rewrite it in accordance with (51)
as

r−1
R (P,C−;�1) = sup

ω∈R

µR(M1(jω)) = sup
ω∈R

inf
γ∈(0,1] σ2 (N1(jω, γ )) . (75)

Our first goal is to find somerational matrix function G̃1(γ,M1(jω)), which is
unitarily equivalent toN1(jω, γ ). Then one can apply Proposition 22 in order
to determine the singular values ofN1(jω, γ ). To this aim introduce for any
γ ∈ (0, 1],

G̃1(γ,M1(jω)) :=
[
I 0
0 jI

]
N1(jω, γ )

[
I 0
0 −jI

]
. (76)

It follows from (76) thatG̃1 andN1 are unitarily equivalent, hence they share the
same singular values and we can limit our attention toG̃1(γ,M1(jω)). Further (see
relations (7) and (8) in [18])

G̃1(γ,M1(jω)) = 1

2

[
I γ I

γ−1I −I
] [

M1(jω) 0
0 M1(jω)

] [
I γ I

γ−1I −I
]
. (77)

HereM1(jω) stands for the complex conjugate ofM1(jω). SinceM1 is a real ra-
tional matrix function ins it follows thatM1(jω) = M1(−jω) is a rational matrix
function in jω as well. HencẽG1(γ,M1(jω)) is rational in jω. Below we derive
appropriate state-space realizations forG̃1, in order to apply Proposition 22. For,
consider the alternative state-space realizationM1(s) = Ĉ1(sÊ − Â1)

−1B̂1+ D̂1,
where
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Ê := In ⊕ Pk, Â1 :=


0n In

. ..
. . .
0n In

−P0 . . . −Pk−2 −Pk−1

 ∈ Rkn×kn,

B̂1 :=


0n
0n
...

In

 ∈ Rkn×n, Ĉ1 :=
[
Ikn

Q̂1

]
∈ R(k+1)n×kn,

D̂1 :=


0n
0n
...

P−1
k

 ∈ R(k+1)n×n,

(78)

and Q̂1 := [−P−1
k P0 − P−1

k P1 . . . − P−1
k Pk−1] ∈ Rn×kn. Comparing (78) with

(43), one notices thatsÊ − Â1 has all its eigenvalues inC−, while sE − A1 has at
leastn infinite eigenvalues. In order for̃G1 to verify the assumptions of Proposi-
tion 22 we consider here for technical reasons the alternative realization (78), even
though the expressions (43) are simpler. Elementary algebraic manipulations show
now that

G̃1(γ,M1(jω)) = C̃1,γ (jωẼ − Ã1)
−1B̃1,γ + D̃1, (79)

i.e. G̃1(γ,M1(jω)) is rational in jω. Here

Ã1 =
[
Â1 0
0 −Â1

]
, Ẽ =

[
Ê 0
0 Ê

]
, D̃1 =

[
D̂1 0
0 D̂1

]
B̃1,γ = 1√

2

[
B̂1 γ B̂1

−γ−1B̂1 B̂1

]
, C̃1,γ = 1√

2

[
Ĉ1 γ Ĉ1

γ−1Ĉ1 −Ĉ1

]
.

(80)

The following result is in fact a reformulation of Proposition 22 updated forG̃1
(γ,M1(jω)) given by (79) and (80).

Theorem 24. Let γ ∈ (0, 1] and ξ > 0 be given such that̃DT
1 D̃1− ξ2I is non-

singular. Then, for everyω ∈ R, ξ is a singular value of̃G1(γ,M1(jω)) if and only
if jω is a generalized eigenvalue of the Hamiltonian pencilsL(ξ, G̃1(γ,M1))−
H(ξ, G̃1(γ,M1)).

Due to Theorem 24 and relation (76), the computation of the singular values of
N1(jω, γ ) in (75) reduces now to the computation of the generalized eigenvalues of
the Hamiltonian pencilsL(ξ, G̃1(γ,M1))−H(ξ, G̃1(γ,M1)).
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6.2.2. Schur stability radius
The stability region is in this case the open unit disc, that is,�(P ) ⊂ Cg = D.

Consequently, the boundary i.e. the unit circle is parametrized byλ = ejω. Then one
infers from (48) and (51) that

r−1
R (P,D;�1) = sup

ω∈[0,2�)
µR(M1(e

jω))

= sup
ω∈[0,2�)

inf
γ∈(0,1] σ2

(
N1(e

jω, γ )
)
. (81)

Clearly, relations (76) and (77) hold forM1(ejω) as well. ButM1(ejω) = M1(e−jω)

is a rational matrix function in ejω, hencẽG1(γ,M1(ejω)) is rational in ejω. Straight-
forward computations show that

G̃1(γ,M1(e
jω)) = Č1,γ (e

jωĚ1− Ǎ1)
−1B̌1,γ , (82)

where

Ǎ1 =
[−A1 0

0 E

]
, Ě1 =

[−E 0
0 A1

]
,

B̌1,γ = 1√
2

[ −B1 −γB1

−γ−1B1 B1

]
, Č1,γ = 1√

2

[
I γejωI

γ−1I −ejωI

]
. (83)

The analogue discrete-time result to Theorem 24 is stated as follows.

Theorem 25. Let γ ∈ (0, 1] and ξ > 0 be given. Then, for everyω ∈ R, ξ is a
singular value of̃G1(γ,M1(ejω)) if and only ifejω is a generalized eigenvalue of the
symplectic pencilzG(ξ, G̃1(γ,M1))−F(ξ, G̃1(γ,M1)).

The proof follows immediately by applying Proposition 23 tõG1(γ,M1(ejω)) in
(82) and (83).

6.2.3. Key ideas
Theorems 24 and 25 reduce the computation of the singular values ofN1(λ, γ )

at a given frequencyλ = jω or λ = ejω to the computation of the generalized eigen-
values of a corresponding Hamiltonian or symplectic pencil.

Denote byf (ω) either jω or ejω. Define

µ̂(ω) :=µR(M1(f (ω))) = inf
γ∈(0,1] σ2

(
G̃1(γ,M1(f (ω)))

)
= inf

γ∈(0,1] σ2 (N1(f (ω), γ )) = σ2
(
G̃1(γ

∗
ω,M1(f (ω)))

)
.

The goal of the algorithm is to maximizêµ(ω) overω ∈ R since

µ̂∗ := sup
ω∈R

µ̂(ω) = r−1
R (P ;Cg;�1),

as relation (48) shows.
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Assume that such a unique maximizer exists and let

ω∗ := arg max
ω∈R

µ̂(ω).

Suppose that at each iterationk = 0, 1, . . . ξk−1 is the best known lower bound tôµ∗
so far and letωk be the current trial frequency. Suppose further thatω∗ is known to
lie in a certain “maximizing” open set�k. At each iteration, one has to perform two
basic steps (see Figs. 1 and 2).

First compute the optimalγ at the current frequencyωk

γ ∗k = arg inf
γ∈(0,1] σ2

(
N1(f (ωk), γ )

)
.

Despite the higher dimension ofM1 this only involves at each step the SVD of a
2n× 2n matrix, as relation (54) shows. Moreover, by denotingλk = f (ωk) one has
that

σ2
(
(L1(λk, γ )⊗ In)NP−1(λk)

(γ )
) = σ−1

n−1

(
NP(λk)(γ )(L1(λk, γ )

−1⊗ In)
)
.

Hence the computation of the real and imaginary parts ofP−1(λk) is replaced by a
simple inversion of a 2 by 2 upper or lower triangular matrixL1(λk, γ ). Thus

γ ∗k = arg inf
γ∈(0,1] σ

−1
n−1

(
NP(λk)(γ ) (L1(λk, γ )

−1⊗ In)
)
. (84)

The secondstep consists in finding an improved lower bound toµ̂∗, as well as
the next “maximizing” set�k+1 and within a new trial frequency pointωk+1. If
µ̂(ωk) > ξk−1, takeξk = µ̂(ωk) = σ2(G̃1(γ

∗
k ,M1(f (ωk)))) as the new estimate of

µ∗, otherwise keep the old estimate, that is,ξk = ξk−1. Locate now the “level-set” of
frequencies, say�′k+1, defined as

�′k+1 =
{
ω ∈ R : σ2

(
N1(f (ω), γ

∗
k )
) = σ2

(
G̃1(γ

∗
k ,M1(f (ω)))

)
> ξk

}
.

Fig. 1.
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Fig. 2.

By Theorem 24 (or Theorem 25), the pure imaginary (or unitary) eigenvalues of
the Hamiltonian (or symplectic) pencilsL(ξk, G̃1(γ

∗
k ,M1))−H(ξk, G̃1(γ

∗
k ,M1))

(or zG(ξk, G̃1(γ
∗
k ,M1))−F(ξk, G̃1(γ

∗
k ,M1))) are exactly thoseω for which some

singular value of̃G1(γ
∗
k ,M1(f (ω))) equalsξk. The endpoints of the frequency in-

tervals whereσ2(G̃1(γ
∗
k ,M1(f (ω)))) equals or exceedsξk must be among these and

can be identified using derivative information of the imaginary (or unitary) general-
ized eigenvalues.

Let (A,E) ∈ {(H,L), (F,G)}. If λl is thelth generalized eigenvalue, assumed
simple, ofA− λE, then

�λl
�ξ

(ξk) =
u∗l
(

�A
�ξ (ξk)− λl

�E
�ξ (ξk)

)
vl

u∗l Evl
. (85)

Here vl and ul are a pair of right and left eigenvectors associated toλl and are
automatically obtained when computing the generalized eigenvalues of the pencil
A− λE.

By using formula (85) one can deduce that

s̃l = �ξ
�ω

(ω̃l) =
(
−j

�λl
�ξ

(ξk)

)−1

for λl = jω̃l (86)

and

šl = �ξ
�ω

(ω̌l) =
(
−je−jω̌l �λl

�ξ
(ξk)

)−1

for λl = ejω̌l . (87)

By using equalities (86) and (87) in conjunction with (85), one can actually prove
that s̃l and šl are bothreal. The trick of the proof is the relation betweenul andvl .
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Because of the Hamiltonian and symplectic structure of the considered pencils, one
can show, respectively, that

ũl =
[

0 I

−I 0

]
ṽl and ǔl =

[
0 I

ejωI 0

]
v̌l .

The sign ofs̃l (or šl) at different crossing points̃ωl (or ω̌l) can now be used to
determine theσ2-intervals of interest. For complete details see [15,18].

Since any frequency pointω not in �′k+1 satisfies

µ̂(ω) � σ2
(
G̃1(γ

∗
k ,M1(f (ω)))

)
� ξk,

the global maximizerω∗ cannot lie outside�′k+1, if �′k+1 /= ∅. Thus, by setting
�k+1 = �′k+1 ∩ �k, we can bracketω∗ at every iteration. Several possibilities to
chooseωk+1 in �k+1 are proposed in [15,18]. For instance, setωk+1 equal to the
mid-point of the largest interval contained in�k+1.

Algorithm.
Input:P0, P1, . . . , Pk. Toleranceτ > 0.
Output:rR(P ;Cg;�1), ω∗ = arg maxω∈R µ̂(ω).
Initialization:k = 0, pickω0, ξ0 = µR(M1(f (ω0))), �0 = (0,∞).
1. Computeγ ∗k , ξk.
2. Compute�k+1 = �′k+1 ∩ �k.
3. Computeωk+1.
4. k←− k + 1. If an appropriate stopping criterion (in terms ofτ ) is satisfied STOP.

Otherwise GOTO 1.

Step 1 involves a golden section search overγ . At each iteration one has to com-
pute a SVD of ann× n matrix (see (84)). Ifr is the number of steps required by
the search overγ , then the complexity of Step 1 is O(n3r). For instance, in order to
obtain a four-digit accuracy onγopt, one needs aboutr = 20 iterations on the golden
section search. The complexity of Step 2 is that of a Hamiltonian or symplectic
eigenvalue problem of dimension 2nk (see (80)) or 2n(k + 1) (see (83)), that is,
O((2nk)3) or O((2n(k + 1))3).

Numerical tests suggest that the rate of convergence is quadratic; conditions under
which this can be proved are under investigation.

7. Conclusions

In this paper, an efficient computational scheme to compute the real (unstructured)
stability radius of non-monic polynomial matrices has been presented. We adapt-
ed the numerical algorithm proposed in [18] to deal with generalized state-space
realizations. This enables us to consider both non-monic polynomials and polyno-
mial matrices. The proposed approach can be extended immediately to deal with
structured stability radius computation as well.
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Several problems are clearly left open. A first important goal would consist in ex-
tending the result of Theorem 3 to arbitraryp-norms. Secondly, one should improve
the optimization scheme overγ as it shows up in relation (12).

Obtaining closed formulae for the real stability radius in the�3 case is known
to be a difficult problem in theµ literature. Nevertheless it is hoped that an appro-
priate design of efficient optimization schemes could be of significant help in that
respect.
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