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Abstract

In this paper we analyze the convergence properties of
an iterative algorithm based on cubic interpolation which
was originally proposed for the calculation of the real sta-
bility radius [5]. When applied to the calculation of com-
plex stability radii of generalized eigenvalue problems and
of the Hoo-norm of an arbitrary rational transfer func-
tion, this new algorithm has global linear convergence
and ultimate quartic convergence. It therefore compares
favorably with earlier algorithms, analyzed e.g. in [1].

1 Introduction

The complex stability radius r¢ of a stable matrix A with
respect to a stability region T is the norm of the smallest
perturbation A needed to “destabilize” A + A causing
at least one eigenvalue of A + A to leave the region T :

re = inf{[|Al]: IA(A + A) € T.},

where T'; 1s the complement of T'. The two regions that
are typically considered for T' are the open left half plane
and the open unit disc, which are both open and con-
nected sets of the complex plane. By continuity of eigen-
values of perturbed matrices, the eigenvalue “leaving” T
must actually lie on its boundary 9T". This boundary (the
Jw axis or the unit circle &) can then be parameterized
by a real variable w. A simple argument now shows the
equality

al

rg! = sup [|(AM] — A) (1)
Aear

for any subordinate norm [6]. For low rank perturba-
tions and several other types of generalized eigenvalue
problems (pencils and polynomial matrices), it was also
shown in [6] that the corresponding complex stability ra-
dius can be reduced to computing sup,cor|[|G(A)|| for
an appropriate rational transfer function G(A). If one
chooses the 2-norm, then this is nothing but the .-
norm of the transfer function G(\) :

0y, = Sup Umax{G(f(w))}7
WwER

(2)

where f(w) is the parametrization of JT in terms of
w € R, and omax{M} is the largest singular value of
the matrix M. The computation of (2) can be performed
iteratively using a test for the existence of real zeros w;
of the matrix function

GUf(@)G(f(w)" = a3l (3)

Tt turns out that w; is a real zero of (3) iff ¢, is a sin-
gular value of G(f(w;)), which then leads to a test for
a bisection algorithm to find the maximum of the scalar
function o(w) = omax{G(f(w)) [3]. Later on, the points
w; were also used to improve the convergence, which fi-
nally lead to algorithms with ultimate quadratic conver-
gence [4], [2], [1]. Each of these methods uses an eigen-
value problem (with Hamiltonian or symplectic struc-
ture) to compute the zeros of (3). Tn the most general
form these are derived for a generalized state-space model

G(\) = C(AE — A)"'B+ D and are given by :

A—jwE BB* BD*
- D;'[ ¢ DB*].
0 A* + JwE* Cc* °
A—evE BB~ BD*
- D;'[ C DB*
0 AT — BT e ’

where D,, = DD* — ¢2]. Notice that the jw pencil is
Hamiltonian and that the ¢’ pencil 1s symplectic.

2 New results

More recently Sreedhar, Tits and Van Dooren [5] intro-
duced a more efficient algorithm by taking benefit of the
fact that the above eigenvalue problems not only give the
intersection points of the function o(w) with a particu-
lar “level” o, but also the derivative of the function in
these points, which is obtained at little extra cost from
the generalized eigenvectors of the corresponding pencil.
In a first phase, the set of subintervals of the real axis
among which the optimum w, necessarily belongs, is com-
puted by the algorithm for a given ¢,. These subintervals
are determined by computing the real zeros of (3) corre-
sponding to this value of ¢,. In the second phase, o, is
increased to the largest value obtained from considering



the successive midpoints of the above subintervals. This
two phase process can then be iterated up to convergence
an therefore delivers the supremum o, in a finite num-
ber of steps within any required degree of accuracy. The
new algorithm presented in this paper can be viewed as a
refinement, where the derivatives of the real eigenvalues
at the endpoints of the subintervals are not simply used
for their proper determination but also to speed up the
convergence. For each subinterval, the point of interest
is no longer its midpoint but the point corresponding to
the maximum of the cubic polynomial interpolating the
endpoints of the considered interval together with their
derivatives. Let us explain all this in detail.

Two different situations need to be considered near the
optimum. In the first situation, the endpoints of the
subinterval of interest correspond to the same singular
value o(w), which for values of w sufficiently close to w,
admits a Taylor expansion of the form

(W) =0 — D(w —w)? 4+ Blw — w)? + Flw — w.)?

+0(w — wa)® + O((w — w.)®). (4)

This pattern of singular values near o, most frequently
met in actual calculations, will be referred to as the
generic case. It arises either when the optimal singular
value is simple :
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or when it is multiple with predominance of one of them :
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In the second situation, the endpoints of the optimal
subinterval turn out to be defined by two distinct singular
values. In such cases however, there clearly exists a value

of o above which the two endpoints will correspond to
the two same well defined singular values, say o1(w) and

oo (w).
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By continuity, these two singular values can be approx-
imated as above in the neighborhood of w, by the expan-
sions

o1(w) =0 — D(w — w*)z + Bi(w— w*)?’ + Py (w— w*)4
+G 1 (w = we)’ 4+ O((w —w.)?)

oa(w) = 0 — D(w — w*)z + Ea(w — w*)?’ + Fo(w — ws)
+Ga(w — w*)s + O((w — w*)6).

-

Note that one has necessarily D = D = Ds in view of
the assumed singular value interlacing property.

It appears that these two patterns of evolution of the
singular values near the supremum o, can be discussed
within the same theoretical approach. Indeed, the first
situation can be viewed as a particular case of the sec-
ond when F; = Fy, I\ = Fy, G1 = Go, etc. For the
sake of simplicity, we shall also assume, without loss of
generality, that w, = 0. Let us then call § = o, — &
the positive difference between the supremum and the
current value of ¢ and denote by a@ < 0 and # > 0 the
endpoints of the subinterval; therefore, one has by defini-
tion oy (a) = 02(f) = 0. With vy = doy(a) /dw > 0 and
( =doy(f)/dw < 0, let us consider the cubic polynomial
interpolation problem defined as follows: find the poly-
nomial P(w) of degree 3 and satisfying the constraints
P(a) = P(B) = =4, P'(a) = 4 and P'(B) = ¢. Clearly,
the resulting polynomial has a maximum at some point,
say w = w’, belonging to the interval (a,3). The pro-
posed algorithm consists in selecting w = w’ (instead of
the interval midpoint) as the next point of computation
of the singular values, which in turn yields the updated
o—level, say opew, and, hence, the next positive differ-
ence dpey = Ox — Opeyw- 1t turns out that the convergence
order induced by this algorithmic refinement is 4 in the
generic case and 3 otherwise.

To prove this result, let us first consider the solution of
the cubic interpolating polynomial P(w), which is verified
by direct observation to have the expression

Plw) =(

B —a

+(

SoPls-2

W —

a—p

)+ (w—a)

25199 =P "
P8 (=2 5=0) + (@ = AL

(6)



Setting 1 = (a + B)/2, ¢ = (B—a)/2, = = (w — ) e, we

introduce a normalized version Q(z) of the interpolating
polynomial P(w) defined by Q(z) = P(ez — p), i.e.
Q(z)=—6+e(22 =D [y(z =1+ (2 +1)]/4.

(7)
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The point w’ (equivalently z’) where P(w) (equivalently
Q(z)) reaches its maximum is then found to be given by

(.d/ — a;ﬁ+ﬁ;a2/ (8)
PN OIS B IV LR T CR T
3(y+¢Q)

since one must have Q’(z’) = 0 together with @”(z") < 0.
With o(w) = o1(w) forw < 0 and o(w) = oa(w) for w > 0
and therefore, 0,e0 = ¢’ whence dpew = s — Cpew, We
are left with the problem of expanding d,c,, as a function
of § to evaluate the convergence order of the proposed
algorithm. To that aim, let us start from expressions (5)
and their derivatives, which imply, in particular,
- = —C'oz2—|—Eloz?’—|—Floz4—|—Gloz‘r’—|—(’)(oz6)7
—5=—CF+E P+ F '+ Ga f° + 0(8),
and
y=-2Ca+3Fa’+4F o +5Ga* +0(a”), (10)
(=-20B+3E, 2 +4F 3 +5G2 8 +0O(8).

Therefore, it appears from inverting both expressions (9)
that o and £ take, up to the order 62, the values
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which, in turn, allows one via (10) to evaluate v and ¢
up to the order four in the variable §'/2. By inserting
the latter expansions in (8), one finds, after tedious but
elementary algebraic operations, that the dominant terms
in 2/ and w’ are given by

g Fi+ Es (51/24— ll(Eg— E%)—F 12D (Fy — F1) s
4 D3/2 32 D3
+0(8%/?)
19(E§—E%)—|—20D(F2—F1) 379 9
W' = ST D7/ 517 +0(8%).
Finally, as one has ;¢ = — Duw'? + (’)((.«)’3)7 one estab-

lishes that d,,.,, can be written as

2 2 _ 2
G = 19(F5 — E7)+20 D (Fo — Fy) (53—|—(’)(64)
32 D3
(12)

and this proves the claimed property: the convergence
order of the proposed algorithm is three in general (o1 #
03), four in the generic case (01 = o3). Note incidentally
that the same property holds true near the optimum for
the successive interval lengths since one has f — a =
2(6/ D)% 4 O(9) in view of (11).

As aresult, it appears that the proposed algorithm sig-
nificantly outperforms the two other existing procedures
proposed in the literature for the same purpose. This is
clear for the bisection method since its convergence 1s lin-
ear, as well as for the midpoint method that has quadratic
convergence since 1t corresponds to the expansion

a+ B FEi+4 P
2 4D?

5+ 0337, (13)
Let us also point out that our cubic interpolation algo-
rithm does not entail any additional complexity with re-
spect to the midpoint method since its only difference lies
in the selection of the iteration point: w’ instead of the
interval midpoint.

Finally, let us mention that the cubic interpolation
method not only exhibits local accelerated convergence
but also can be shown to converge globally. To see this,
let us first consider the case of a single interval («, §). As
the reduced interval of interest in the next iteration will
have necessarily w’ as one of its endpoints and since one
derives from (8) the inequality

- 2| Pl t TR
2

- 61(y+ <)l

B —a
6 bl

<

the length of this updated interval will be equal at most
to 2/3 of that of the previous interval. Next, let us recall
that in the case of a collection of subintervals, the next
o-level results from selecting the largest singular value
achieved at the successive w’ points relative to each of
these subintervals. Moreover, as the subinterval length



decreases with the o-level, it turns out that each up-
dated subinterval length is reduced by a factor 2/3 at
least. Consequently, the global convergence of the pro-
posed algorithm is guaranteed.

The above theoretical results are well illustrated in the
next figure where the midpoint method on the one hand
and the cubic interpolation method on the other hand are
applied to the same numerical example. In this figure,
the successive o-levels are depicted in dash and dash-
dotted lines for the midpoint and the cubic interpolation
methods respectively.
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Tteration | o-level (midp.) | Intervals (midp.)
1 0.5224 [0,1.1991]
2 0.7980 [0.1867,0.5995]
[0.7097,1.0153]
3 1.7669 [0.7472,0.8625]
4 5.3027 [0.7762,0.8048]
5 8.3691 [0.7884,0.7905]
6 8.4043 [0.78942,0.78943]
Tteration | o-level (cubic) | Intervals (cubic)
1 0.5224 [0,1.1991]
2 6.5148 [0.7804,0.7994]
3 8.4043 [0.78942,0.78943]
4 8.4043 Convergence

The convergence acceleration due to the cubic inter-
polation method is clearly observed on this example. In
fact, the convergence is so fast that its precise order (4
in the present case) is practically undetectable from the
few successive numerical iterations.

3 Conclusion

We presented in this paper an improved algorithm for
computing H,-norms and stability radii. It is based on
cubic interpolation, has a convergence that is far superior

to earlier algorithms and requires very little additional
work per iteration step.
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