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Abstract: This paper deals with the lack of positive realness of identified models that may be
encountered in many stochastic subspace identification procedures. Lack of positive realness
is an often neglected, but important problem. Subspace identification algorithms fail to
return a valid linear model if the so-called covariance model, which is obtained from an
intermediate realization step in the subspace identification algorithm, is not positive real. The
main contribution of this paper is to introduce a regularization approach to impose positive
realness on the covariance model. It is shown that positive realness can be imposed by adding
a regularization term to a least squares cost function appearing in the subspace identification
procedure.
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1. INTRODUCTION

In this paper, we will consider stable systems and
models of the form:	�
�� ���� 	�
�����
����
 �� 	�
�����
�� (1)

with���! �#"�$"&%(' �*)+ ��)+-,�.   0/211 )43 %65 " +87:9 � (2)

where
�-;�< =

denotes the expected value operator
and 5 " + the Kronecker delta. It is assumed that���( �#"�$"�% 	 ) 
 .  9 , >�? 7A@ . The elements of the

vector ��
CB:DFE are given observations at the discrete
time index @ of the G outputs of the system. The vector	�
HBIDKJ is the unknown state vector at time @ . The

L
I. Goethals is a Research Assistant with the Fund for Scientific

Research-Flanders (FWO-Vlaanderen).M
T. Van Gestel is a Postdoctoral Researcher with the FWO-

Vlaanderen.N
J. Suykens is a Postdoctoral Researcher with the FWO-

Vlaanderen.O
P. Van Dooren is Professor at the Catholic University of Louvain.P
B. De Moor is a full professor with the KULeuven.

unobserved process and measurement noise �8
-BQD J
and ��
RBSDFE are assumed to be white, zero mean,
Gaussian with covariance matrices as given in (2).
The system matrices � � � and the covariance matrices/ � 1 � and 3 have appropriate dimensions.

Stochastic subspace identification methods are ide-
ally suited to identify models of the form (1). Typ-
ically, in a first step the measured output sequence�UT��V� � �XWXWXWY�V��Z*[ � is stored in block Hankel matrices
containing a user defined number of block rows \ , and
a certain number of columns ] , so that ^ `_ \ �]badc , see (Van Overschee and De Moor, 1993)(Van
Overschee and De Moor, 1996) for an extensive sur-
vey of this procedure. Kalman filter state sequencesefbg B:D Jih�j and

efbg � � B:D Jih�j of the system and an
estimate of the system order

ek are then obtained by
using geometric operations of subspaces spanned by
the column and row vectors of these Hankel matrices.

In a second step, a so called covariance modell e� � em � e� � en(o , is estimated, where
em

is an estimate for
the covariance matrix between states and observationsm  �(p 	�
�� � � )
6q and

en srtvu� is an estimate fortvu� , with wyx  �(p ��
�� x � )
6q �Fz 7{9 the output



covariance matrices.
e� and

e� are estimates for the
matrices � and � in (1), which are obtained as the
solution to a least squares problem:l e� � e� o  arg min � � ��� � l � � � o � (3)

with

� � l � � � o  ���� ����  efbg � �� g�� g % a  �� % < efbg ���� ���� �� � (4)

where � g�� g  ' � g � g � � WXWXW � g � j [ � , W (5)

Using the definitions for
m

and w x above, one can
derive thatwyx I� � x [ � m � w [ x  w )x � z 7 c W (6)

Hence, the output covariances can be considered as
Markov parameters of a deterministic linear time in-
variant system with system matrices

l � � m � � � n(o .
From the estimated model

l e� � em � e� � en(o , In a last step,
a model is constructed in forward innovation form:e	�
�� �� e� e	�
�� e	�
 
����
  e� e	�
�� 
 
�� (7)

from which estimates of the error covariances of the
system can be derived. The forward innovation model
is obtained by first calculating the forward state co-
variance matrix

e�  �(p e	�
 e	 ) 
yq of the covariance
model through the solution of the forward algebraic
Riccati equation:e�  e� e� e� ) � l em a e� e� e� ) o <l ew T a e� e� e� ) o [ � l em a e� e� e� ) o )Q� (8)

with the forward Kalman filter gain
e	  l em ae� e� e� ) o l ew T a e� e� e� ) o [ � . The resulting model matri-

ces of the stochastic system are
l e� � e	 � e� �� E o and the

covariance matrix
�!p 
 
 
 ) 
#q is given by

e3  ew T ae� e� e� ) .

It is important to note here, that the forward innovation
model can only be obtained if the forward algebraic
Riccati equation (8) has a positive definite solution. It
can be shown that this is the case if and only if the infi-
nite sequence

; ewyx =��x�� T with
ewyx  e� e� x [ � em � z��9 , and

ew T  �j � g�� g � )g�� g , is a “valid” covariance se-
quence with positive definite Toeplitz matrix (Dahlén
et al., 1998; Faurre et al., 1978). This is equivalent
with the model

l e� � em � e� � en(o , with
en � en )  ew T , be-

ing positive real. Hence, if the positive realness prop-
erty is not satisfied, no meaningful stochastic model
will be obtained. This problem may appear in practi-
cal applications. The covariance model, for example,
is built on a finite number of observed covariances.
Even if these were exact (]���� ), the realization
algorithm does not ensure that the infinite covari-
ance sequence

; ewyx = �x�� T  e� e� x [ � em , derived from
the finite sequence

;��wyx = � g [ �x�� T , is positive. Hence the
choice of \ has a direct influence on the possible oc-
curence of positivity problems (Oono, 1981; Lindquist
and Picci, 1996). Secondly, for ] finite, the observed

covariances are subject to statistical errors that may
increase the probability for positive realness problems
to occur. Finally the ability of

l e� � em � e� � en(o to model
the observed covariance sequence is clearly dependent
on the choice of the model order

ek . The influence of
the parameters \ , ] and

ek will be illustrated in section
3. For a further theoretical description, the reader is
referred to (Lindquist and Picci, 1996).

In this paper we propose a solution to impose positive
realness on a formerly identifed stochastic model by
adding a regularization term that involves the system
matrices

e� and
e� , and we analyse its performance and

compare it with already existing techniques.

2. IMPOSING POSITIVE REALNESS BY USING
REGULARIZATION

2.1 Main idea

The estimation problem that we consider is the fol-
lowing: given matrices

efbg � � � � g�� g and
efbg

and given

the estimates
em

and
ew T , estimate the model matricese� � e� such that the resulting model

e� � em � e� � ew T is pos-
itive real. To impose positive realness, we will add a
regularization term to the cost function � � l � � � o from
(3):l����� � ���� o  arg min � � ��� � l � � � o � � � � l � � � o � (9)

with

� � l � � � o  Tr

!  �� %#"  �� % )%$ � (10)

where � 7I9 is a positive real scalar and " a positive
definite matrix of appropriate dimensions that satisfies" a em ew [ �T em ) � 9 . A similar regularization term
Tr & � " � )�' , involving only the system matrix � was
described in (Van Gestel et al., 2001), and was shown
to impose stability on a model. We will show that
by adding the output matrix � to the regularization
term, the model can not only be made stable, but also
positive real, provided the regularization coefficient �
is chosen sufficiently large.

By the choice of the regularization term � � l � � � o , the
optimal solution of the minimization problem is found
as

 �������� %   efbg � �� g�� g % < ef )g <%( efbg ef )g � � "*) [ � (11)

  e� e� % efbg ef )g ( efbg ef )g � � "*) [ � W (12)

From the optimality of the least squares estimate (11),
it follows that for � � ��� � 7:9 :
� � l+����-, � ����-, o � � � � � l+����-, � ����-, o7 � � l+����/. � ����/. o � � � � � l+����/. � ����/. o � (13)



� � l+����/. � ����/. o � � � � � l+����/. � ����/. o7 � � l+����-, � ����-, o � � � � � l+����-, � ����-, o � (14)

where (14) can be rewritten as:

� � l+����/. � ����/. o � � � � � l+����/. � ����/. o� l�� � o � � l+����/. � ����/. o7 � � l�����-, � ����-, o � � � � � l+����-, � ����-, o� l�� � o � � l+����-, � ����-, o � (15)

where
� �  � � a � � . Combining (13) and (15) it is

easily seen that the regularization term � � l+���� � ���� o is
a non-increasing function of � .
2.2 Choosing the regularization parameter

2.2.1. An upper-bound
The following lemma, (Goethals et al., 2002), states
that positive realness can always be imposed, by using
the regularization term introduced in (9), provided the
regularization coefficient � is chosen sufficiently large.

Lemma 1. Let
em
,
ew T be given. Let "  /��C/ ) � �9 , " a em ew [ �T em ) � 9 , and define

e�  fbg f )g ,� T  e� " [ � e� a e� ' e� ) e� ) ,  " emem ) ew T %  
e� e� % e� . Then

there exists a � � such that the system
���� , em ,

���� , ew T ,
with

���� and
���� as in (11), is positive real for � 7 � � ,

with � �  max
g�� ���	��
��� g

, and
�

the set of generalized
eigenvalues of the following eigenvalue problem:� �� �  9 rJ a  rJ� T _ e� % � a   rJ 9 rJ9 rJ " %�� W (16)

Hence, provided the conditions of Lemma 1 are met,
a positive real model is always obtained for � 7 � � ,
and in particular �  � � , with ��� as in Lemma 1. Fur-
thermore, since any positive real model is necessarily
stable, which follows immediately from the upper left
part of the Schur complement of the Algebraic Riccati
equation � mm ) n � n ) % a  � � � ) � � � )� � � ) � � � ) % 7 9 � (17)

stability is automatically guaranteed. However, � � can
be a too conservative estimate. In general it seems
reasonable to keep the amount of regularization as low
as possible. Hence, one should search for the smallest
possible ��� � � for which a positive real model is
found.

2.2.2. A lower bound
A lower bound ��� for � can be found from a the-
orem presented in (Van Gestel et al., 2001) that
states that all eigenvalues of � � can be made to
lie within a closed disc with a given radius � , pro-
vided � 7 ��� ����! g�� "!�#��
�%$ g , where

$ 

� �  9 a � T � � % � a   99 � � %�� is the set of eigenval-

ues of a Generalized Eigenvalue problem with
� ��a&� "(' � " ,

� �� a&� "(' e� a)� e� ' " , and
� T e� e� ' e� e� a&� e� ' � e� . Furthermore ��� is shown to be the

smallest regularization coefficient with this property.
Hence, as shown in figure 1, a minimal � imposing
positive realness will always satisfy ���*� �+� � � .

c*

stability guaranteed positive realness guaranteed

optimal amount of regularization

unstable

cs

0
c

Fig. 1. Finding the optimal amount of regularization

When the realization
l�����#, � em � ����#, � ew T o is not yet pos-

itive real, i.e., 1- l/. o � 1 )- l/. [ �Yo10 9 for a certain.  
 j � , we can find a � 7 ��� imposing positive re-
alness, for instance by applying a bisection algorithm
on the interval ���2� �+� � � .
Some alternative techniques have been reported in the
literature in order to impose positive realness on a co-
variance model (Van Overschee and De Moor, 1996;
Vaccaro and Vukina, 1993; Peternell, 1995; Marı́ et
al., 2000), many of whom are related to regularization
principles. Apart from changing

e� and
e� , regulariza-

tion could also be applied to
em
,
ew T , or a combination

of both. A common problem for many of these alter-
natives is that they cannot be used if the covariance
model is unstable. Apart from the technique proposed
in this paper, which will be abbreviated as REG r� � r�
and of whom performance results will be given in the
following sections, we will also discuss the perfor-
mance of the following techniques:3 SDP: In (Marı́ et al., 2000) a new identification

scheme based was proposed, based on existing
stochastic subspace methods and Semi Definite
Programming (SDP). A stable

�� is obtained by
solving:

min 4� � r576 l e� a �� o e� 6 �
s.t.

e� � 9e� a �� e� �� ) � 9 W (18)

Positive realness is thereafter imposed by solv-
ing a similar SDP-problem involving vectors of
stacked covariance sequences. The performance
of the SDP-technique was evaluated using soft-
ware written by the authors and published on
their website.3 RES: In (Van Overschee and De Moor, 1996) the
residuals 8�9 and 8�: of the least squares problem efbg � �� g�� g %   �� % efbg �  8�98�: % (19)

are used to get estimates for / , 1 and 3 that are
guaranteed to be positive: /211 )43 %  ���! 8�98�: %!' 8 )9 8 ): , . W (20)



The algorithm leads to biased estimates, unless\ � � , and is only applicable to stable models.3 REG rtvu : Regularization on
ew T , as proposed in

(Peternell, 1995). From 1- l/. o  en � e� l/.  J ae� o [ � em and
ew T  en � en ) it is easily seen that1 - l/. o � 1 )- l/. [ �Yo can always be made positive

provided
ew T is chosen large enough. The method

only works for stable models.3 REG r� : In (Vaccaro and Vukina, 1993) one starts
from REG rtvu to make the spectrum positive and

solve the Riccati equation (8) for
e�
. The new

ew T ,
which will be denoted as

�w T and
e�

are used to
obtain an adjusted

em
, denoted as

�m
, after whichew T is again set to its initial value.e�  e� e� e� )!� l em a e� e� e� ) o <l �w T a e� e� e� ) o [ � l em a e� e� e� ) o ) e� e� e� )!� l �m a e� e� e� ) o <l ew T a e� e� e� ) o [ � l �m a e� e� e� ) o ) (21)

The model
l e� � �m � e� � en(o can be shown to be pos-

itive real. The technique works on stable models
only.

3. EMPIRICAL EVALUATION AND
SIMULATION RESULTS

A known system was used to create output samples
from Gaussian, zero mean, unit variance, white noise
sequences. For each output sequence the stochastic
subspace approach described in section 1 was used
in combination with techniques to impose positive
realness where necessary. The following system was
used for the simulation:

� l/. o  l/. a 9 W ��� 
�� � j o l/. a 9 W ��� 
��F�	� � j ol/. a 9 W � 
 � �
� � j o l/. a 9 W � 
 � j o (22)< l/. a 9 W ��� 
�� T � � j o l/.� 9 W � ol/. a 9 W � 
 �F�	� � j o l/. a 9 W � 
 T � � j o (23)

The results of the simulations are reported in Table
1. The table contains the results of 4 different experi-
ments, each with a different choice of the parametersek (order of the model), \ (number of block-rows),
and ^ (number of observations). For each experiment,
1000 noise-sequences were generated with the desired
length ^ , and an equal number of covariance models
were produced. The number of covariance models that
needed corrections for stability and/or positive real-
ness are reported. As unstable models are always non
positive real, the latter number will always be greater
than the former. Below this information, the perfor-
mance of each technique on these non positive real
models is given. The performance on all non-positive
real, but stable models is given at the left hand side.
The results for the unstable models are given at the

right hand side. The performance measures � � � � � � � �
used in the tables are norms of the differences between
the transfer functions of the simulated and the identi-
fied stochastic models:

� " �� � � l/. o a e� l/. o � � " (24)

with ?  c � _ � � and
e� l 	 o is the identified model.

Note that results for the techniques REG r� , REG rtvu ,
and RES on unstable models are sometimes available
in the tables, even though it was stated earlier in this
paper that these techniques do not work for unstable
models. The reason is that for these techniques the
regularization procedure described in (Van Gestel et
al., 2001) was used to impose stability on the covari-
ance model prior to imposing positive realness. This to
avoid ending up in a hard-failure mode during the ex-
periments, and to maintain the possibility to compare
the performance of all the techniques, even on unsta-
ble models. In some cases however, the experiments
did return invalid results for some of the entries in the
table (denoted by ’-’), for instance if the total number
of unstable models is zero. In this case, averaging over
these models was impossible.

Performance of the techniques
Two techniques, RES and REG r� � r� clearly outperform
the others. For some experiments the former results in
slightly better estimates, however problems with this
method might occur as the system order is increased.
To visualize this, in Figure 2 the estimated spectral
densities for the fourth experiment (

ek  c 9 , \  c�� ,^ �� 9�9 ) averaged over all 1000 runs (including
the ones which did not need correction) are given,
together with the spectral density of the original model
and a � ��� error region. Note the spikes in the av-
erage spectral density and its confidence bounds in
many techniques, indicating bad performance on at
least some of the c 9�9�9 sequences used for the exper-
iment. Note also that in principle, without adaptation,
the RES technique only works for stable models, a
condition which is seldomly satisfied for non positive
real models.

Influence of \ , ek and ^
It is interesting to have a look into the influence of the
parameters

ek , \ and ^ on the occurrence of positive
realness problems. In Table 1, decreasing \ from 16 to
12 clearly resulted in a much higher number of non
positive real models. It is well known that when the
modeling order

ek increases, the probability to obtain
unstable models increases considerably (see also (Van
Gestel et al., 2001)). This can also be observed in
the table. Finally, it is observed that for the example
described in this paper the influence of ^ on the oc-
currence of positivity problems is relatively low com-
pared to that of

ek and \ .



4. CONCLUSIONS

Stochastic subspace methods for the identification of
linear time-invariant systems are known to be asymp-
totically unbiased. However, for a finite amount of
data, and depending on the choice of some used de-
fined variables as the modeling order and the number
of covariance lags used in the identification proce-
dure, the procedure might break down due to positive
realness problems. In this paper a regularization ap-
proach was proposed to impose positive realness on
a formerly identified covariance model. It was shown
that, if an adequate amount of regularization is used, a
positive real model can always be obtained. The sim-
ulation results clearly indicate that this new approach
yields better models than other existing techniques.
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Opérateurs rationnels positifs, application à
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Fig. 2. Averaged Spectral density over 1000 runs for the simulation example (
� l/. o

)
with

ek  c 9 , \  c�� , ^  � 9�9 (dashed line) with � ��� error region (dotted line).
The solid line is the spectral density of the original model used for simulation.
The numerical results are summarized in Table 1

.

Table 1. Performance for various techniques on the simulation exam-
ple (

� l/. o
). Results for REG r� , REG rtvu , RES on unstable models are

emphasized to stress the fact that they cannot be obtained without
making the model stable first

�������	�
� L	� ���� P��� Not positive real 528/1000 Unstable 0/ 1000
Stable models Unstable models

REG ���� �� REG �� REG �� u RES SDP REG ���� �� REG �� REG �� u RES SDP

Mean � ����� 1.6 2.05 2.24 1.46 9.54 - - - - -
Var � ����� 0.324 0.666 0.624 0.239 504 - - - - -
Mean � � , � 0.571 0.695 0.771 0.549 1.93 - - - - -
Var � � , � 0.0181 0.0573 0.0566 0.0146 3.41 - - - - -
Mean � � . � 1.35 1.76 1.82 1.32 3.47 - - - - -
Var � � . � 0.0813 0.459 0.31 0.0673 3.38 - - - - -

�������	�
� L M ���� P��� Not positive real 794/1000 Unstable 4/ 1000
Stable models Unstable models

REG ���� �� REG �� REG �� u RES SDP REG ���� �� REG �� REG �� u RES SDP

Mean � ����� 1.55 2.19 2.42 1.48 3.59 2.48 3.82 4.67 10.1 8.01
Var � ����� 0.253 0.684 0.665 0.518 37.2 0.0523 0.388 0.00468 15.1 68.4
Mean � � , � 0.577 0.75 0.846 0.549 1.12 1 - - 1.19 1.62
Var � � , � 0.0171 0.0662 0.0716 0.0159 0.274 0.00826 - - 0.035 0.8
Mean � � . � 1.37 1.87 2.02 1.29 2.54 2.47 2.93 4.56 2.59 3.16
Var � � . � 0.0881 0.475 0.426 0.0662 0.843 0.0872 0.222 0.000303 0.115 1

�������	�
� L	� ��� � L	����� Not positive real 544/1000 Unstable 1/ 1000
Stable models Unstable models

REG ���� �� REG �� REG �� u RES SDP REG ���� �� REG �� REG �� u RES SDP

Mean � ����� 1.15 1.58 1.75 1.05 8 1.46 1.63 4.68 1.48 41.9
Var � ����� 0.157 0.495 0.445 0.0977 1.84e+03 253 - - - -
Mean � � , � 0.413 0.533 0.602 0.418 1.48 0.55 - - 0.607 8.05
Var � � , � 0.00939 0.0456 0.0407 0.00594 4.41 - - - - -
Mean � � . � 0.972 1.5 1.41 1.03 2.74 1.44 1.54 4.54 1.63 10.3
Var � � . � 0.0431 0.716 0.208 0.0275 2.43 11.6 - - - -

��� L	� �	�
� L	� ����� P��� Not positive real 727/1000 Unstable 182/ 1000
Stable models Unstable models

REG �� � �� REG �� REG �� u RES SDP REG �� � �� REG �� REG �� u RES SDP

Mean � ����� 1.7 2.45 2.63 2.19 18.3 2.48 4.34 4.93 4.46 15.1
Var � ����� 0.488 1.57 1.04 6.02 4e+03 2.31 5.69 0.293 16 3.76e+03
Mean � � , � 0.579 0.784 0.889 0.591 2.46 0.696 - - 0.723 2.06
Var � � , � 0.0172 0.0907 0.117 0.0294 8.59 0.0298 - - 0.0623 9.65
Mean � � . � 1.36 1.98 2.12 1.35 4.08 1.65 2.9 4.53 1.6 3.47
Var � � . � 0.0709 0.643 0.76 0.0655 6.7 0.174 0.698 0.00353 0.168 6.82


