A QR-LIKE SVD ALGORITHM FOR A PRODUCT/QUOTIENT
OF SEVERAL MATRICES

GENE GOLUB

Computer Science Department
Stanford University

Stanford, CA USA

golub@scem. stanford. edu

KNUT SOLNA

Computer Science Department
Stanford University

Stanford, CA USA

solna@scem. stanford.edu

PAUL VAN DOOREN

Cesame

Université Catholique de Louvain
Louvain-la-Neuve

Belgium
vandooren@anma.ucl.ac.be

ABSTRACT. In this paper we derive a new algorithm for constructing uni-
tary decomposition of a sequence of matrices in product or quotient form.
The unitary decomposition requires only unitary left and right transforma-
tions on the individual matrices and amounts to computing the generalized
singular value decomposition of the sequence. The proposed algorithm is
related to the classical Golub-Kahan procedure for computing the singular
value decomposition of a single matrix in that it constructs a bidiagonal
form of the sequence as an intermediate result. When applied to two ma-
trices this new method is an alternative way of computing the quotient and
product SVD and is more economical than current methods.

KEYWORDS. Numerical methods, generalized singular values, products of
matrices, quotients of matrices.

Introduction

The two basic unitary decompositions of a matrix A yielding some spectral
information are the Schur form A = UTU* — where U is unitary and T is
upper triangular — and the singular value decomposition A = UXV* — where
U and V are unitary and ¥ is diagonal — (for the latter A does not need
to be square). It is interesting to notice that both these forms are com-
puted by a QR-like iteration [4]. The SVD algorithm of Golub-Kahan [3]
is indeed an implicit @ R-algorithm applied to the Hermitian matrix A*A.
When looking at unitary decompositions involving two matrices, say A and
B, a similar implicit algorithm was given in [6] and is known as the QZ-
algorithm. It computes A = QT,72" and B = QT,7Z" where) and Z are
unitary and T, and T, are upper triangular. This algorithm is in fact the
() R-algorithm again performed implicitly on the quotient B='A. The cor-
responding decomposition is therefore also known as the generalized Schur
form.

This is not the case, though, when considering the generalized singular
value decomposition of two matrices, appearing as a quotient B™'A or a
product BA. In this case the currently used algorithm is not of QR type
but of a Jacobi type. The reason for this choice is that Jacobi methods
extend to products and quotient without too much problems. The bad news
is that the Jacobi algorithm typically has a (moderately) higher complexity
than the QR algorithm. Yet, so far, nobody proposed an implicit) R-like
method for the SVD of a product or quotient of two matrices.

In this paper we show that, in fact, such an implicit algorithm is easy
to derive and that it even extends straightforwardly to sequences of prod-
ucts/quotients of several matrices. Moreover, the complexity will be shown
to be lower than for the corresponding Jacobi like methods.

1 Implicit singular value decomposition

Consider the problem of computing the singular value decomposition of a
matrix A that is an expression of the following type :

A=A - AR AT (1)

where s; = 41, i.e. a sequence of products of quotients of matrices. For
simplicity we assume that the A; matrices are square nxn and invertible, but
as was pointed out in [2], this does not affect the generality of what follows.
While it is clear that one has to perform left and right transformations on
A to get U*AV = X, these transformations will only affect A and A;.
Yet, one can insert an expression Q;Q); = I, in between every pair A;{% A}
in (1). If we also define Qx = U and Qo = V, we arrive at the following
expression :

U AV = (QuAEQrr) - e - (Q3A2Q1) - (QFAT Qo). (2)

With the degrees of freedom present in these K + 1 unitary transformations
@; at hand, one can now choose each expression Q7 A;'Q;_; to be upper
triangular. Notice that the expression QFA;"Q;_y = T;* with T; upper
triangular can be rewritten as :

Q?AiQi—l = Ti for S; = 1 5 Q?_lAiQi = Ti for S; = —1. (3)

From the construction of a normal) R decompostion, it is clear that, while
making the matrix A upper triangular, this “freezes” only one matrix @;
per matrix A;. The remaining unitary matrix leaves enough freedom to
finally diagonalize the matriz A as well. Since meanwhile we computed the
singular values of (1), it is clear that such a result can only be obtained by
an iterative procedure. On the other hand, one intermediate form that is
used in the Golub-Kahan SVD algorithm [3] is the bidiagonalization of A
and this can be obtained in a finite recurrence. We show in the next section
that the matrices @; in (2) can be constructed in a finite number of steps
in order to obtain a bidiagonal Q% AQ, in (2). In carrying out this task one
should try to do as much as possible implicitly. Moreover, one would like the
total complexity of the algorithm to be comparable to — or less than — the
cost of K singular value decompositions. This means that the complexity
should be O(Kn?) for the whole process.

2 Implicit bidiagonalization

We now derive such an implicit reduction to bidiagonal form. Below H(, j)
denotes the group of Householder transformations having (i, j) as the range
of rows/columns they operate on. Similarly G(i,7+ 1) denotes the group
of Givens transformations operating on rows/columns ¢ and ¢ + 1. We first
consider the case where all s; = 1. We thus only have a product of matrices

A; and in order to illustrate the procedure we show its evolution operating
on a product of 3 matrices only, i.e. AzA4,A4,. Below is a sequence of
“snapshots” of the evolution of the bidiagonal reduction. Each snapshot

indicates the pattern of zeros (’0’) and nonzeros (’z’) in the three matrices.

First perform a Householder transformation Q(ll) € H(1,n) on the rows

of A, and the columns of A,. Choose Q(ll) to annihilate all but one element
in the first column of A; :

T r r xr T T r r xr T r r xr T T
T r r xr T T r r xr T 0 r xr T T
T r r xr T T r r xr T 0 r xr T T
T r r xr T T r r xr T 0 r xr T T
T r r xr T T r r xr T 0 r xr T T

Then perform a Householder transformation Q(Zl) € H(1,n) on the rows of

A, and the columns of A;. Choose Q(Ql) to annihilate all but one element in
the first column of A, :

r r r x T r r xr x T r r r r T
r ¥ r T =z 0 z » x» =x 0 z » x =
r ¥ r T =z 0 z » x» =x 0 z » x =
r ¥ r T =z 0 z » x» =x 0 z » x =
r ¥ r T =z 0 z » x» =x 0 z » x =

Then perform a Householder transformation le) € H(1,n) on the rows of
As. Choose le) to annihilate all but one element in the first column of Aj :

r r r x T r r r x T r r r r T
0 z » x» =x 0 z » x» =x 0 z » x =x
0 z » x» =x 0 z » x» =x 0 z » x =x
0 z » x» =x 0 z » x» =x 0 z » x =x
0 z » x» =x 0 z » x» =x 0 z » x =x

Notice that this third transformation yields the same form also for the
product of the three matrices :

r r v T =T r r v x =T r r r T T r r r T T
0 » » = «x 0 » » = =x 0 z » z =x 0 z » =z =x
0 » » = «x 0 » » = =x 0 z » z =x = 0 z » =z =x
0 » » = «x 0 » » = =x 0 z » z =x 0 z » =z =x
0 » » = «x 0 » » = =x 0 z » z =x 0 z » =z =x

At this stage we are interested in the first row of this product (indicated
in boldface above). This row can be constructed as the product of the first

4

row of Az with the matrices to the right of it, and this requires only O(K n?)
flops. Once this row is constructed we can find a Householder transformation
(" € #(2,n) operating on the last (n — 1) elements which annihilates all

but two elements :
A3(1,9 4400 =2 = 0 0 0], (4)

This transformation is the applied to A; only and this completes the first
stage of the bidiagonalization since

Wragl =

SO O O O 8
8 8 8B 8 8
8 8 8 8 ©
8 8 8B 8 O
8 8 8B 8 O

Now perform a Householder transformation Q(lz) € H(2,n) on the rows

of A, and the columns of A,. Choose Q(lz) to annihilate all but two elements
in the second column of A,

r r r x T r r r x T r r r r T
0 z » x» x 0 z » x» x 0 z » x» =z
0 z » x» x 0 z » x» x 0 0 » » =z
0 z » x» x 0 z » x» x 0 0 » » =z
0 z » x» x 0 z » x» x 0 0 » » =z

Then perform a Householder transformation Q(Zz) € H(2,n) on the rows of

A, and the columns of A;. Choose Q(Zz) to annihilate all but two elements
in the second column of A, :

r r xr T T r r r x T r r r r T
0 z » x» x 0 z » x» x 0 z » x» =z
0 z » x» x 0 0 » x» =x 0 0 » » =z
0 z » x» x 0 0 » x» =x 0 0 » » =z
0 z » x» x 0 0 » x» =x 0 0 » » =z

Then perform a Householder transformation ng) € H(2,n) on the rows of
As and choose it to annihilate all but two elements in the second column of

A3:

r r ¥ T T r r r T T r ¥ r T T
0 » » x «x 0 » » x «x 0 » » x x
0 0 » » =x 0 0 » » «x 0 0 » = «x
0 0 » » =x 0 0 » » «x 0 0 » = «x
0 0 » » =x 0 0 » » «x 0 0 » = «x

For the product we know that :

r r x T T r r T T T r r T T T z =z 0 0 O
0 » » x x 0 » » =z x 0 » » =z x 0 » » =z x
0 0 » » «x 0 0 » =z «x 0 0 » =z «x = 0 0 » =z «x
0 0 » » «x 0 0 » =z x 0 0 » =z «x 0 0 » =z «x
0 0 » » «x 0 0 » =z x 0 0 » =z «x 0 0 » =z «x

At this stage we are interested in the second row of this product (indi-
cated in boldface above). This row can be constructed as the product of
the second row of Az with the matrices to the right of it, and this again re-
quires only O(K (n—1)?) flops. Once constructed we can find a Householder
transformation Q" € #(3,n) operating on the last (n — 2) elements which
annihilates all but two elements :

143(27 :)AQAl (()2) = [0z 2 0 0 :| . (5)

This transformation is then applied to A; only, completing the second step
of the bidiagonalization of A :

QR QR Ay Qg =

o O O O 8
S O O 8 8
8 B B 8 O
8 8B 8B O ©
8 8 8 O O

It is now clear from the context how to proceed further with this algo-
rithm to obtain after n — 1 stages :

r r T T T r r r T T r r T T T z =z 0 0 O
0 » » x «x 0 » » =z x 0 » » =z x 0 » 0 O
0 0 » = «x 0 0 » =z «x 0 0 » =z «x = 0 0 =z O
0 0 0 » «=x 0 0 0 =z «x 0 0 0 =z «x 0 0 0 =z «x
0 0 0 0 = 0 0 0 0 = 0 0 0 0 =x 0 0 0 0 =

Notice that we never construct the whole product A = A3A4,A4,, but
rather compute one of its rows when needed for constructing the transfor-
mations Q((f). The only matrices that are kept in memory and updated are
the A; matrices and possibly Qg and Qg if we require the singular vectors
of A afterwards.

The complexity of this bidiagonalization step is easy to evaluate. Each
matrix A; gets pre and post multiplied with essentially » Householder trans-
formations of decreasing range. For updating all A; we therefore need

5Kn?/3 flops, and for updating Qx and @, we need 2n?® flops. For con-
structing the required row vectors of A we need (K — 1)n®/3 flops. Overall
we thus need 2K n? flops for the construction of the triangular 7; and 2n?
for the outer transformations Qx and Q. Essentially this is 2n® flops per
updated matrix.

If we now have some of the s; = —1 we can not use Householder transfor-
mations anymore. Indeed in order to construct the rows of A when needed,
the matrices A7 have to be triangularized first, say with a QR factoriza-
tion. The QR factorization is performed in an initial step. From there
on the same procedure is followed, but using Givens rotations instead of
Householder transformations. The use of Givens rotations allow us to up-
date the triangularized matrices A;' while keeping them upper triangular.
Fach time a Givens rotation detroys this triangular form, another Givens
rotation is applied to the other side of that matrix in order to restore its
triangular form. The same technique is e.g. used in keeping the B matrix
upper triangular in the Q7 algorithm applied to B~'A. The bookkeeping
of this algorithm is a little more involved and so are the operation counts,
which is why we do not develop this here. One shows that when there are
inverses involved, the complexity of the bidiagonalization step amounts to
less than 4n> flops per updated matrix.

3 Computing the singular values

The use of Householder and Givens transformations for all operations in
the bidiagonalization step guarantees that the obtained matrices T; in fact
correspond to slightly perturbed data as follows :

T = Q?(Ai + 5142')622'—17 s =1, Tj = Q;_1(Aj + 514]’)@]’7 S; = -1,
(6)

where
16l < ecallAill 1QiQ: = Ill < edn, (7)

with ¢ the machine precision and ¢,, d,, moderate constants depending on
the problem size n. This is obvious since each element transformed to zero
can indeed be put equal to zero without affecting the € bound (see [7], [4]).

Things are different with the elements of A since they are not stored in
the computer. How does one proceed further to compute the generalized
singular values of A 7 Once the triangular matrices 7T; are obtained, it is

easy and cheap to reconstruct the bidiagonal :

@1 €2 013 ... O1,
42 €3 :
Sk, . S2 $1 — . .
T -...- 152 T/ =B = .. Op_on | (8)
e'ﬂ
L qn |

The diagonal elements ¢; are indeed just a product of the corresponding
diagonal elements of the 7T; matrices, possibly inverted :

P — SK - - 52 - 51
G =g, oo tay ol

and the off diagonal elements e; can be computed from the corresponding
2 x 2 diagonal blocks (with index ¢ — 1 and 7) of the T; matrices. It is
clear that the ¢; can be computed in a backward stable way since all errors
can be superposed on the diagonal elements ¢;, , of the matrices 7;. For
the errors performed when computing the e; one needs a more detailed
analysis. We show below that the backward errors can be superposed on
the off-diagonal elements ¢;, , . of T;, without creating any conflicts with
previously constructed backward errors, and we derive bounds for these
backward errors. From the vector recurrence

e tj,_l,,_l tj,_l,, o e
lq]::[O by, .] lq] 9)

we easily derive the following algorithm used for computing ¢; and e; for
1=1,...,n.

1,1

qg:=1; e:=0;
for j=1: K
ifs;=1thene:=ext;_,,_ +qxt;_ 5 q=qxt; ;
else g:=q/t; s e:=(e—qxt;_,)/tj_, . ;

end
i ‘= q; € ‘=€
Notice that for ¢ = 1 the same recurrence holds without the expressions

involving e since e; does not exist. From these recurrences it is clear that
the calculation of ¢; involves 1 flop per step j and hence a total of K rounding
errors which can be superposed on the diagonal elements ¢;, , :

¢ = JUTE - t0)

JUTE, -0) with T, =t (14 5), la;] <e 10)

For the calculation of e; there are 3 flops per step 7 and hence a total of
3K roundings which have to be superposed on the ¢;,_ . elements. Fortu-
nately, e; is a sum of K terms which contain each a different elements ¢;,_ .
as a factor. We illustrate this for K =4 and s; = 1 and we highlighted the

relevant elements :

e = fl(téll_l,l~t3l,,~t2m~t1m
S 7 VNP S 2R AT
+t4z—1,;—1 .t3l_1,l_1 't2z_1,l -tl,,,
7 VU 7 SN 7 S 'tlz—l,z)

(11)

The 3K rounding errors can thus easily be superposed on these different
elements ¢;,_, ,, 7 =1,..., K. But since we have already superposed errors
on the all diagonal elements ¢;, , we have to add these perturbations here as
well to make everything consistent. For s; =1 we thus have :

ei = la, s, ool by, F
2V 7 SR N ST ST
: (12)
iél—lJ—l.iél—lJ—l.Zzl—lJ.Zlhl_F
ta, y ., -t3 Loty 2

i—1,i—1 i—1,1

where (K — 1) additional rounding are induced for each factor. Therefore
we have t;,_ =t; . (14+m;), |mi; <4(K—1)¢/(1—4(K —1)¢). When
some of the s; = —1 the above expression is still similar : the ¢;, , then
appear as inverses, some + signs change to — signs and an additional factor
1/t;,_, . t;., appears in the j-th term if s; = —1. The obtained bound is
then |n; ;| < 4(K 4+ 1)¢/(1 — 4(K + 1)¢). In the worst case the errors yield
a backward perturbation [|§7}|| which is thus bounded by 5K¢||T}|| and
hence much smaller than the errors §A; incurred in the triangularization

process. The perturbation effect of computing the elements ¢; and e; is
thus negligible to that of the triangularization. We thus showed that the
computed bidiagonal corresponds ezactly to the bidiagonal of the product
of slightly perturbed triangular matrices 7, who in turn satisfy the bounds
(6,7). Unfortunately, nothing of the kind can be quaranteed for the elements

0; ; in (8), who are supposed to be zero in exact arithmetic. The best bound
we can obtain from the construction of the rows (4,5) is that :

lo; ;| < ecn||Tr(iyi:n)|| - [|Tk-1(i:n,i:n)||-...-||T1(i:n,i:n),

which is a much weaker bound than asking the off diagonal elements of A
to be € smaller that the ones on the bidiagonal. This would be the case e.g.
if instead we had :

lo; ;| < ecy||Tk(i,i:n)Tk_1(i:n,i:n) ... Ti(i:n,i:n)|| = ecpeiqpq.

Yet, this is the kind of result one would hope for if some singular values of A
are small and still have to be computed to a high relative accuracy. These
two bounds can in fact be very different when significant cancellations occur
between the individual matrices, e.g. if

Al << [TAR - - - - (A2 - (1A

One could observe that the bidiagonalization procedure is in fact a Lanczos
procedure [3]. Therefore there is a tendency to find first the dominant direc-
tions of the expression A7F -...- A]" and hence also those directions where
there is less cancellations between the different factors. We will see in the
examples below that such a phenomenon indeed occurs which is a plausible
explanation for the good accuracy obtained fromnm this decomposition. In
practice it is ofcourse always possible to evaluate bounds for the elements
|o; ;| and thereby yield estimates of the accuracy of the computed singular
values.

One way to test the performance of this algorithm in cases with very
small singular values is to generate powers of a symmetric matrix A =
SK. The singular values will be the powers of the absolute values of the
eigenvalues of 9 :

a;(A) = |\ (9)]F,

and hence will have a large dynamic range. The same should be true for
the bidiagonal of A and the size of the o, ; will then become critical for
the accuracy of the singular values when computed from the bidiagonal
elements ¢;, e;. We ran several tests with matrices S of which we know the
exact eigenvalues and observed a very high relative accuracy even for the
smallest singular values. The only explanation we can give for this is that
as the bidiagonalization proceeds, it progressively finds the largest singular

10

values first and creates submatrices that are of smaller norm. These then
do not really have cancellation between them, but instead the decreasing
size of the bidiagonal elements is the result of decreasing elements in each
transformed matrix A;. In other words, a grading is created in each of the
transformed matrices. We believe this could be explained by the fact that
the bidiagonalization is a Lanczos procedure and that such grading is often
observed there when the matrix has a large dynamic range of eigenvalues.
The consequence of all this is that the singular values of such sequences
can be computed (or better, “estimated”) at high relative accuracy from
the bidiagonal only ! Notice that the bidiagonalization requires 2K n? flops

but that the subsequent SVD of the bidiagonal is essentially free since it is
O(n?).

4 Singular vectors and iterative refinement

If one wants the singular vectors as well as the singular values at a guaranteed
accuracy, one can start from the bidiagonal B as follows. First compute the
bidiagonal :

B=Q,AQo =T -...-T5*- T,

and then the SVD of B :
B=UXV",

where we choose the diagonal elements of ¥ to be ordered in decreasing
order. We then proceed by propagating the transformation U (or V) and
updating each T; so that they remain upper triangular. Since the neglected
elements o, ; were small, the new form :

Qi AQo =T - ... T . T

will be upper triangular, and nearly diagonal. This is the ideal situation
to apply one sweep of Kogbetliantz’s algorithm. Since this algorithm is
qudratically convergent when the diagonal is ordered [5], one sweep should
be enough to obtain e-small off diagonal elements.

The complexity of this procedure is as follows. If we use only Givens
transformations we can keep all matrices upper triangular by a subsequent
Givens correction. Such a pair takes 4n flops per matrix and we need to
propagate n?/2 of those. That means 2n® per matrix. The cost of one
Kogbetliantz sweep is exactly the same since we propagate the same amount

11

of Givens rotations. We arrive thus at the following total count for our
algorithm :

2Kn? for triangularizing A; — T;

21 for constructing Qx and Q,

8n? for computing U and V

2K n® for updating T; — 7;

2K n? for one last Kogbetliantz sweep.
The total amount of flops after the bidiagonalization is thus comparable to
2 Kogbetliantz sweeps, whereas the Jacobi like methods typically require
5 to 10 of those sweeps ! Moreover, this method allows to select a few
singular values and only compute the corresponding singular vectors. The
matrices Qx and Qg can e.g. be stored in factored form and inverse iteration
can be performed on B to find its selected singular vector pairs, and then
transformed back to pairs of A using Qx and Q).

5 Concluding remarks

The algorithm presented in this paper nicely complements the unitary de-
compositions for sequences of matrices defined for the generalized QR [2]
and Schur decompositions [1]. These decompositions find applications in
sequences of matrices defined from discretizations of ordinary differential
equations occurring e.g. in two point boundary value problems [8] or con-
trol problems [1]. We expect they will lead to powerful tools for analyzing
as well as solving problems in these application areas.

Acknowledgements

G. Golub was partially supported by the National Science Foundation under
Grants DMS-9105192 and DMS-9403899. K. Solna was partially supported
by the Norwegian Council for Research. P. Van Dooren was partially sup-
ported by the National Science Foundation under Grant CCR-9209349.

References

[1] A. Bojanczyk, G. Golub and P. Van Dooren, The periodic Schur form.
Algorithms and Applications, Proceedings SPIE Conference, pp. 31-42,
San Diego, July 1992.

12

[2] B. De Moor and P. Van Dooren, Generalizations of the singular value
and QR decomposition, STAM Matr. Anal. & Applic. 13, pp 993-1014,
1992.

[3] G. Golub and V. Kahan, Calculating the singular values and pseudo-
inverse of a matrix. STAM Numer. Anal. 2, pp 205-224, 1965.

[4] G. Golub and C. Van Loan, Matriz Computations 2nd edition, The
Johns Hopkins University Press, Baltimore, Maryland, 1989.

[5] J.P. Charlier and P. Van Dooren, On Kogbetliantz’s SVD algorithm in
the presence of clusters. Linear Algebra & Applications 95, pp 135-160,
1987.

[6] C.Moler and G. Stewart, An algorithm for the generalized matrix eigen-
value problem, STAM Numer. Anal. 10, pp 241-256, 1973.

[7] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon press,
Oxford, 1965.

[8] R. Mattheij and S. Wright, Parallel stable compactification for ODE
with parameters and multipoint conditions, Int. Rept. Argonne Nat.
Lab., TL, 1994.

13

