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In this paper, we describe some recent developments in the use of projection meth-
ods to produce reduced-order models for linear time-invariant dynamic systems.
Previous related efforts in model reduction problems from various applications are
also discussed. An overview is given of the theory governing the definition of
the family of Rational Krylov methods, the practical heuristics involved and the
important future research directions.

1 Introduction

A surprisingly large variety of physical phenomena is modeled with linear,
time-invariant (LTI) dynamic systems. The advantages of this approach in-
clude the relative ease by which both the initial model development and the
eventual mathematical treatment can be achieved. Models can frequently be
acquired through discretizations such as the common finite difference and finite
element approaches. A range of techniques from the backward Euler method to
multistep methods exists for solving the ordinary differential equations (ODE)
that describe the system. Stable, well-understood numerical linear algebra
algorithms, e.g., a reduction to Schur form by orthogonal transformations,
dominate the low-level mathematical operations. When combined in various
fashions, techniques such as the above enable the robust analysis, control or
simulation of a large class of physical applications.

However, there is a pressing need for novel approaches for treating LTI
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dynamic systems, particularly with respect to the linear algebra algorithms.
Many physical models are becoming more complex due to either increased sys-
tem size or an increased desire for detail. Discretizations of three-dimensional
behavior are becoming common. Sources for such applications include the mod-
eling of off-chip (and increasingly on-chip) interconnects in high-speed circuit
designs, and modeling of the North American power grid arising from planning
problems in an increasingly deregulated power industry. Although such mod-
els tend to accurately describe the behavior of the underlying physical system,
their complexity leads to high analysis and simulation costs with traditional
numerical techniques. Methods which exploit structure in the models such
as sparsity are critical. This has resulted in a surge in interest in iterative
methods for solving large sparse linear systems and large sparse eigenvalue
problems. Such techniques are key computational kernels in most simulation
algorithms for large dynamic systems.

In some cases, however, there is a need to go even further. Despite the use
of efficient computational kernels, the model may still require an unacceptable
amount of time to evaluate. It is then necessary to create a second model that
is significantly lower in complexity while preserving important aspects of the
original system. This is the model reduction problem for linear time-invariant
dynamic systems.

It is assumed that the original system is described by the generalized state-

space equations
{ it) = Az(t) + bull) )
(1) = T a(t) + du(t).

The vector z(t) € RY*! is the vector of state variables. For simplicity, it is
assumed that the system is single-input single-output (SISO) so that the input
u(t) and output y(t) are scalar functions of time. Extensions to multiple-input
multiple-output (MIMO) systems exist but will not be treated here. Finally,
and as is the case for nearly all large-scale problems, it is assumed that the
system matrix A € R™Y*Y and descriptor matrix E € RV*" are large and
sparse or structured.
A reduced-order approximation to (1) takes the corresponding form

{Em(i

Ag(t) + bu(t)
g(t) = e a(t

> 2

el'z(t) + du(t). 2)
The dimension of the reduced-order model is designated as M. The output
9(t) approximates the true output y(t). However, in general, no simple relation
exists between Z(t) and the state vector x(t). For instance, the tenth element
of Z(t) does not need to be directly related to the tenth element of x(¢).
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It is also possible to represent the linear dynamic systems via the transfer
function of the system that results from a Laplace transform. The transfer
function of the original system is h(s) = ¢’ (sE — A)~'b, where s represents
complex frequency. Without a loss of generality, the feed-through term d of the
original model can be assumed to be zero (see later). Laplace transform of the
input u(s) to the Laplace transform of the output y(s). The transfer function
of the reduced-order model can be defined analogously : h(s) = ¢T(sE—A)~1b.

Several measures of the accuracy of the reduced-order model are possible.
Formally, there tends to be an interest in the difference between the actual and
low-order outputs, y(t) — y(¢), given some set of inputs u(t). This difference
can be characterized via a system norm. The popular H, error norm, for
example, measures, in the time domain, the worst ratio of output error energy
to input energy. Equivalently, but in the frequency domain, it represents the
largest magnitude of the frequency-response error.

A second measure of the accuracy of the approximation is to assess which
properties of the original model are retained in the reduced-order one. Those
properties of interest are said to be invariant, that is, they are independent with
respect to a similarity transform. By retaining certain original properties of the
system in the reduced-order model, one hopes that the resulting approximation
error is small. Of course, this error depends on the selection and pertinence of
the retained invariant properties.

A common choice for these invariant properties are the so-called modal
properties of the system. [1, 2, 3] The modal properties are based on the sys-
tem’s poles (eigenvalues) A, and residues p,, which both arise in a partial
fraction expansion of the frequency response, Hence, a reduced-order model
that matches (or approximately matches) specific modal components of the
original model retains certain time-dependent features of the original system
in its response. Potentially, iterative eigenvalue techniques can be used to find
these specific components so that this modal retention approach is feasible for
large-scale problems. Unfortunately, it can be difficult to identify a priori which
modes are the truly dominant modal components of the original system. [4]

Alternative invariant properties that may be retained in model reduction
are the Hankel singular values. Hankel singular values are related to the con-
trollability and observability properties of a system. [5] Constructing a reduced-
order model to retain the largest Hankel singular values is known as balanced
truncation.

The invariant properties of interest in this survey are the coefficients of
some power series expansion of h(s). The solution techniques proposed deter-
mine a reduced-order model that accurately matches the leading coefficients y;
arising in a chosen power series. In general, one can produce a reduced-order
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model that interpolates the frequency response and its derivatives (the mo-
ments of the series) at multiple points. These K possible interpolation points
{oM 0@ . o)} are differentiated by their superscripts. The first 2.J; mo-
ments are matched at (1), the next 2J, moments are matched at o?, etc.,
where J; + Jo + ...+ Jx = M. A model meeting these constraints is denoted
a multipoint Padé approximation or a rational interpolant. [6, 7] By varying
the location and number of interpolation points utilized with the underlying
problem in mind, one can construct accurate reduced-order models in a variety
of situations.

2 History

There are in fact several different avenues of implementation for moment
matching-based model reduction algorithms. One is the explicit moment-
matching approach that has been used extensively in circuit simulation. For
large sparse systems, however, approaches based on projections and precondi-
tioning result in a set of algorithms with superior numerical stability and the
opportunity for iterative implementations in terms of basic efficient computa-
tional kernels for sparse matrices.

The methods forming the foundation for this work are relatively old. The
history of Padé approximation, for example, spans more than one hundred
years [8]; and the Lanczos algorithm, an important Krylov space projection-
based iteration, is nearing its fiftieth anniversary. [9] Yet, as the tremendous
amount of recent literature demonstrates, the understanding and application
of these concepts is certainly not a closed topic.

A large number of the moment-matching methods, particularly the early
ones, form a reduced-order model from an explicit knowledge of the desired
moments of the original system (see, e.g., [10]). It is typically a two-step
process. First, 2M selected moments p; of the original system are explic-
itly computed. In the second step, the reduced-order frequency response
h(s) = (drm—1sM71 4+ ...+ o) /(sM + har—1sMT1 + ..+ 4p) is forced to cor-
respond to the selected moments. That is, the numerator parameters (ﬁ and
denominator parameters 1& are chosen so that the moments of the reduced-
order system fi; equal those of the original system p; for j = 1,2,...,2M.
This parameter selection requires the solution of a linear systems of equations
involving Hankel matrices for all of the standard approaches such as partial
realization, Padé and shifted Padé. For the rational interpolation problem,
equations involving the more general Loewner matrix must be solved. [6] In
all cases, it is important to note that the system matrices and vectors only
enter the modeling problem through the moments. For large dynamic sys-
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tems, A and E contribute to the calculation of the moments through sparse
matrix-vector multiplies and sparse linear system solves.

Explicit methods were utilized to construct Padé approximants in the area
of control in the early 1970s. [11] Extensions of these techniques to multiple
interpolation points followed . [12, 13, 14] Of more recent interest, circa 1990,
is a class of explicit moment-matching methods known as asymptotic wave-
form evaluation (AWE) . [15, 16] Although the AWE methods themselves vary
little in basic concept from the earlier control implementations, the AWE tech-
niques are applied to interconnect model reduction in the area of circuits. The
methods received attention for their ability to reduce RC interconnect mod-
els involving tens of thousands of variables. A multipoint version of AWE,
complex frequency hopping (CFH), is available as well. [16]

Unfortunately, all of these explicit moment-matching methods are known
to exhibit numerical instabilities, particularly as the dimension of the reduced-
order model M grows. The source of these difficulties was pointed out in [17]
and in the independent work of [18]. The reader is referred to those papers
and to [19] for a detailed discussion. The difficulties center around numeri-
cal problems when constructing the Hankel matrices involved and, even when
accurate matrices are available, the ill-conditioning of the associated linear
systems. Both [17] and [18] point out that moment-matching via the Lanczos
method (and more generally (bi)orthogonalized Krylov-based projection) is a
preferred numerical implementation.

In projection methods, the M-th order reduced system is produced by ap-
plying two rectangular matrices Z and V to the matrices and vectors spec-
ifying the n-th order original system: A = ZTAvV, E = ZTEV, b =
ZTh, ¢ = VT¢, d = d. The last equality explains also why d and d
can be chosen equal to zero without affecting the error between both mod-
els. The matrices are often taken to define projections onto Krylov spaces,
K;(G,g) = span{g,Gg,G?g,...,Gi7 g} for specific choices of G and g. The
first significant mathematical connection between the Lanczos algorithm, a
Krylov-based technique, and model reduction occurred in the early 1980s. It
was shown that partial realizations could be generated through the Lanczos
algorithm. [20] Adaptations of Krylov subspaces were proposed in 1987 to
generate Padé approximations and shifted Padé approximations . citevilske87
Beyond the mathematical connections, the Lanczos method was utilized for
model reduction in many application areas. The first of these areas chronolog-
ically was apparently structural dynamics. Even prior to the knowledge of the
moment-matching connections, the Lanczos method was utilized in structural
dynamics for model reduction based on eigenvalue analysis. [21, 22, 23] Later
work in the field utilized the Lanczos method for Padé approximation including
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MIMO systems. [24, 25, 26] The next wave of application work took place in the
control literature . [27, 28, 29] A large amount of existing work was repeated,
although new results did appear in the areas of error analysis and stability
retention. [30, 31] Very recently, Lanczos-based model reduction has become a
popular topic in the area of high-speed circuits. Existing Lanczos algorithms
were applied to the standard [17, 18], MIMO [32] and symmetric problems. [33]
New algorithms were proposed for stability retention. [34, 35] However, through
all of these application areas, the approaches remained closely tied to the clas-
sical Lanczos algorithm. These approaches did not emphasize or exploit the
fundamental structure in projection techniques for rational interpolation. A
true multipoint rational Lanczos procedure was derived in [36] using a similar
motivation, i.e., starting from the Lanczos procedure and modifying it to pro-
duce a reduced system that matched multiple moments at multiple frequency
values.

3 General Projection Formulation

A large amount of the credit for connecting Krylov projection with Pade ap-
proximation belongs to Villemagne and Skelton. [37] However, recently in [19]
and [38] the relationships between Krylov subspaces, the iterative algorithms
for constructing these subspaces, and model reduction via rational interpola-
tion has been explored in great detail. The results clearly demonstrate that
the Lanczos-type methods are certainly not the only choice for iteratively con-
structing the rational interpolant. The family of Rational Krylov methods for
model reduction contains many members and subsume previous approaches in
the literature. The choice for a particular implementation is most often based
on tradeoff between the desired level of numerical accuracy and the available
computing resources. The remainder of this paper summarizes some of the
important aspects of these recent developments in projection-based model re-
duction.

The basic relationship between the Krylov spaces and moment matching
is summarized in the following theorem proven in [19].
Theorem 3.1 If

K
U Ka, ((A=0M )7 (A= GE), (A= e WE) ™) Ceolsp{V} (3)
k=1

and
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k
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where i, are arbitrary complex scalars, then the moments of (1) and (2) satisfy

. 'k71
) =~ {(a- a('“)E)’lE}J (A—o™E) b (5)
. ~ AV Je—1 . ~ ~
=~ {(A- a('“)E)_lE}J (A— o™ E)~1 (6)
— ﬂﬁcjk) (7)
for jrk=1,2,....Jp, + Jo, and k=1,2,.. . K. o

Assuming the non-singularity of the pencils (A — ¢(®) E) at these points,
Theorem 3.1 guarantees that the desired rational interpolant is acquired. Any
pair of projection bases satisfying (3) and (4) is sufficient to achieve the de-
sired rational interpolant. Restrictions on V or Z, such as biorthogonality
or orthogonality, are purely implementation specific choices. Various methods
can be developed that create bases for the desired spaces. The cases where
singularities are encountered in certain pencils can be handled by techniques
described in [19].

The Rational Krylov Family of model reduction methods can be sum-
marized using the RK algorithm presented in Table 1. Setting the parame-
ters and selecting a particular point selection mechanism yields various mem-
bers of the family. We point out here that V = Vjy = [v1,...,vn] and
Z =Zy = |1, .., 2u] are constructed column by column by this algorithm.
The parameters vd,, By v, B%, and vectors ¥y, Zm, §m, W, determine the
different versions of the algorithm and are explained below.

Table 1: Rational Krylov Algorithm (General Version)

Initialize: ¢; = (7{)~1b and w1 = (BY) " ¢;
Form=1to M,
(S1.1) Input: o,,, the interpolation point for m!” iteration;
) Om = (A= 0nE) gy, 11 and Zp = (A — 0 B) " Twy,, 11;
) ’yfnvm = Uy — Vin—10p, and /Brznzm =Zm — Zm-12Zm;
S1.4)  Gms1 = Bv,, and @,,41 = E1 2,,;
) Vg1 @mt1 = Gmt1 — Qmms1
and /671;)1+1wm+1 = Wmt+1 — Win®Wm41;

Three simplifying assumptions are made in going from Theorem 3.1 to the
RK algorithm. First, the column spaces of V' and Z are constructed to equal
(=) rather than contain (2) the union of Krylov subspaces on the left sides of
(3) and (4). This assumption does not prevent rational interpolation; it is the
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Krylov subspaces which contain the desired moment information. Second, it is
assumed that the dimensions of the dual Krylov subspaces are consistent, i.e.,
Jo, = Je, = Ji for all k. These choices allow the matching of the maximum
number of possible moments for a given model size M. Third, due to the shift
invariant properties of Krylov spaces A — (;E has been replaced by E, i.e.,
(x = oo. The RK algorithm also uses the vectors ¢,, and w,, in addition to
Uy and z,,. The associated matrices () and W are related in direct fashions
with V and Z via (S1.4). By initially incorporating all four matrices (rather
than only V and Z) into the RK algorithm, more options become apparent.

Steps (S1.2) through (S1.5) of the RK algorithm generate the new columns
of the projection matrices. Steps (S1.2) and (S1.4) introduces new information
into the column spaces of V and Z, and @) and W respectively. The actual
bases used to represent these columns spaces are determined in (S1.3) and
(S1.5). The updates in these two steps correspond to the classical Gram-
Schmidt procedure.

The choices for the vectors G, Um, Wy, and Z,, in these updates determine
what type of biorthogonality or orthogonality is produced among @, V, W
and Z. Three options have been investigated in [19] and subsume most of the
ideas in the literature. If no orthogonality conditions are placed on V and Z
and @ and W are removed by setting ¢, = W,, = U, = Zm, = 0, the Rational
Power Krylov method results. This is essentially multiple shifted inverse power
methods run simultaneously. The Dual Rational Arnoldi method results from
requiring V and Z to be orthogonal, i.e., O, = V.I_ 0y, 2 = ZL_1 2, and
scaling to unit vectors along with @, = @,, = 0. The Rational Lanczos method
results from requiring V and W to be biorthogonal, i.e., 0, = WL |5,
Wy, = V,I' @, and wl v, = 1. This also results in an essentially sparse
reduced order pencil (tridiagonal, banded or nearly so depending on the point
selection process). The scalar subscript p, that appears in (S1.2) locates
the most recent iteration prior to the m?* iteration that employed the same
interpolation point. It is shown in [19] that this can, in fact, be altered to other
positions to, somewhat unexpectedly, improve the robustness of the algorithm
in the presence of numerical loss of (bi)orthogonality.

Experiments comparing these methods can be found in [19]. In general,
Dual Rational Arnoldi is the most robust numerically and Rational Krylov
Power is the least robust. The Rational Lanczos algorithm tends to make a
reasonable compromise between complexity per iteration and stability. Prob-
lems such as loss of biorthogonality and breakdown that are widely discussed
in other contexts in the literature are also problems here. However, the use
of multiple points makes breakdown avoidable in most useful circumstances
and convergence, while slowed, is not destroyed by loss of biorthogonality. In
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fact, with care and tuning, the Rational Lanczos algorithm can often be made
the most efficient approach despite the increased iterations due to the reduced
complexity of each iteration. When parallelism is introduced the preference
begins to move back in the direction of methods more akin to the Rational
Krylov Power algorithm. Leading evidence seems to indicate that hybrid ap-
proaches with characteristics between the Rational Krylov Power and Rational
Lanczos algorithms are the most promising.

4 Efficiency Issues

The description above does not specify certain key heuristics that must be
developed in order to make the production of the reduced-order model effi-
cient. These are: error estimation, interpolation point selection/placement,
and efficient approximate sparse system solving.

The first and most important is the characterization of the error e(s) =
h(s) — h(s). This is necessary to control the termination of the process so as
to keep the reduced-order model degree as low as possible. A simple approach
for estimating the frequency-response error, e(s) = h(s) — h(s), between the
original and reduced-order models is to compute the difference between two
reduced-order models, é(s) = h(s) — hepr(s). The transfer function of by, (s)
corresponds to some second and completely different low-order approximation
of the original system. Both of these approximations can be generated by any
(and not necessarily the same) Krylov-based projection algorithm. Hence, é(s)
is a suitable and achievable error estimate for any of the previously discussed
modeling techniques. The two low-order approximations used in €(s) should
contrast in their approximations of the original system because this difference
estimates the modeling error. That is, two points of view of the original system
are sought, which are designed to be complementary. The use of drastically
different viewpoints typically suggests that fl(s) and fleTT(S) agree consistently
only at those frequencies where both approximations are accurate.

The generation of two distinct reduced-order models requires the construc-
tion of two different projection pairs of dimension M, the previously seen V, Z
and the second pair Vg, Zerr. The flexibility in forming these two pairs of
projection matrices resides in the choice of interpolation points. In [19] the
use of two sets of interleaved interpolation points is investigated. In addition
to the cost of producing a second model, various possibilities and associated
costs exist for evaluating é(s). A practical alternative approach to computing
€ is to simply evaluate it at multiple carefully selected points. In practice,
approximately 8m well-placed points in the fashion of the frequency-response
algorithms of [39] give reasonable results for our purposes. The cost can be
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further reduced by performing some dense state space transformations on the
(assumed small) reduced-order models before evaluation.

The error estimate can often be improved through a simple modification
of that above. Recall that we are ultimately interested in the acceptable, low-
order model represented by h(s). The second low-order function h,,,(s) serves
only to estimate the true frequency response h(s). A better approximation for
h(s) can be found by combining the information in the two sets of projection
matrices V, Z and Viy,, Zepr to obtain a 2M'" order model, hy(s). Unlike
fle”«(s), ﬁu(s) includes the original V' and Z directions and, thus, tends to at
least converge wherever h does. This does however increase the cost of each
iteration and care should be taken to insure that the improvement warrants
the extra expense.

If X, and X, are defined to be the solutions of the dual reduced-order,
shifted systems of equations

S =b ®

the transfer function of the reduced system can be written h(s) = x7 27 (sE —
A)Vxp. By rewriting the original transfer function in a similar way one sees
that the two differ only in that the reduced model approximates x, = (sE —
A)7'band x. = (sE — A)~T¢ with V&, and Z%.. These approximations VX,
and Zx, satisfy the Petrov-Galerkin conditions for any chosen V and Z.

In fact, in [19] it is shown that the difference between the frequency re-

sponses of the original and reduced-order systems is rl (A — sE)~'r,, where

ry(s) =b— (sE— A)Vxy
rc c— (sE— A)TZx,.

Note that monitoring ry and/or r. does not directly lead to an estimate for the
modeling error. Acquiring the modeling error requires an inverse of (sE — A)
which is not possessed. Rather, one must concentrate on the trends in the
residual behavior as s and m vary. Attempting to gauge these trends demands
the evaluation of r, and/or r. at numerous values of s. Fortuitously, the resid-
ual expressions of many of the RK family implementations can be simplified
by exploiting the structure of the matrices involved. These simplifications and
experiments comparing the two approaches can be found in [19]. The two ap-
proaches are often complementary and a robust code would probably need to
use a combination.

The error estimation cost can also be amortized by addressing the sec-
ond important heuristic needed for efficient model reduction: point selection
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and placement. At each step of the algorithm it is necessary to choose the
interpolation point at which the next moment will be added. This choice has
two purposes: avoiding unnecessary work and improving the accuracy of the
reduced model. Forcing a certain number of moments at all of the points
{oW @) )} typically yields a model that can be reduced further and
that required extra work, i.e., unnecessary linear system solves due to the fact
that the grid of points was made too fine. In addition to the selection of points
from a predetermined grid, there is also the issue of point placement for ex-
tending the grid or refining it when it is found to be too coarse. Accompanying
this is the need to determine where the points should be located in the complex
plane. Intuitively, using purely imaginary ¢(¥ makes sense since the model is
approximating the frequency response of the system. Imaginary points only
give local information and therefore the initial grid on the imaginary axis must
be placed so as to include at least one point in all areas of significant activity.
Unfortunately, these areas are not always known a priori. For dynamically
stable systems, however, taking positive real (Y can also yield useful informa-
tion (and reduce the need for complex arithmetic). The reduced order model
generated using real points tends to track large scale behavior of the frequency
response and therefore can be used to identify regions of activity that need to
be probed using imaginary o(¥. A strategy that combines real and imaginary
point along with the error estimation strategies above is discussed in [19].

Common to all RK methods that match moments is the solution of lin-
ear systems with coefficient matrix ®,, = (A — o*m)E)~! where ofm) ¢
{oW ... 0} ie., it is the interpolation point chosen from the set of K
possible points for use on the m—th iteration. When direct sparse methods
are used ®,, must be factored only when the o(¥ in step m is being used
for the first time. Subsequent solves with the same shift are simply applica-
tions of forward and backward substitution. However, for many large scale
problems direct methods are not cost effective and an approximate solution
must be found. Forms of the RK algorithms that use approximate solutions
scan be developed based on a general form similar to that in Table 1 but with
the matrix (A — (,E) and its transpose from Theorem 3.1 kept in the bases
definitions.

The approximate form of the algorithm allows the choice of ®,, and (.
The operator ®,, approximates the action of (4 — o*~)E)~1 on a vector.
Numerous possibilities exist for finding a preconditioner that approximates
(A — ok») B)~1, Alternatively, and more generally, one can think of ®,, as
an operation that takes in the vectors gy, +1, wp,,+1 and outputs the vectors
Um, Zm. Hence, ®,, can represent an iterative system solver that computes
approximate solutions to the equations. However, in this case, ®,,, is no longer

11



associated with a fixed matrix P that is associated with an interpolation point
o®). This is due to the fact that a single interpolation point ¢(®) may be used
in more than one step of the iteration with different right-hand side vectors
and therefore there would be more than one approximation to (4 — o(®) E)~1.
If the methods are always iterated to near working precision then this can be
treated as roundoff and covered by the appropriate error bounds. If, however,
to reduce the time required the iterations are stopped early then the theory
must be generalized. As can be seen from the experiments in [40] and [19], in
practice it is not an important distinction.

If (and only if) ®,, is chosen so that moment matching results then the
choice of (;;, in the RK algorithm does not contribute to the specification of the
V and Z column spaces and (j, can be replaced in Theorem 3.1 by a variable s
and removed from the algorithm, i.e., (,, = co. When P, = (4 — okm) B)~1
it is possible to tune (,, to improve the results. For example, (,;,, = oo can
still be used, or more commonly, the setting ¢, = o*=) is used. This can
be motivated by subspace and/or eigenvalue mapping considerations. [19] The
choice of (,,, can lead to significant, but often unpredictable differences in the
convergence of the reduced-order model. In [19] it is seen that the (,, = o(k=)
case performs well when the model reduction preconditioner, ®,, is poorer
(fewer iterative method steps used), but is unacceptable when the ®,,, is more
accurate. This is similar to behavior observed in the eigenvalue literature.
The opposite behavior occurs when (,, is oo, i.e., (A — (,, F) is replaced with
E. In practice, (, can be tuned between oo and o*=) by using available
information on the preconditioner quality and/or the convergence behavior
of previous solves. Various choices for (,,, appear in related approaches to
problems in the eigenvalue literature. [41, 42] Alternatively, more sophisticated
approaches for implementing the approximate solvers can be used to reduce
significantly the importance of (,,. [19] This was done by noting the fact that
at step m a reduced order model of size m — 1 and its projectors V,,—; and
Zm—1 are available. The projectors can be used to define an initial guess at
the solution of the system that ultimately provides a vector that extends the
column spaces to V,,, and Z,, when appropriate. As a side note, it is claimed
that the derivation above provides an alternative path for obtaining Davidson’s
method for the eigenvalue problem.

When P, ~ (A —o*=)E)~! the V and Z generated by any version of
the approximate RK algorithm no longer form bases for the unions of Krylov
subspaces required for rational interpolation. However, the residuals of the
reduced order model still satisfies the Petrov-Galerkin conditions, Z1ry(s) = 0
and W7r.(s) = 0 for all values of s. As long as reasonable approximations V%
and Zx. to x; and x, are acquired, a good reduced-order model is achievable.
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It is interesting to note that even the exactly preconditioned V' and Z do not
necessarily lead to optimal approximations to x; and x. at all s.

In addition to loss of moment-matching the relationships between V', Z, W,
and @ are also affected. The Rational Lanczos is the most dependent on these
relationships holding in order to guarantee the sparsity of the reduced-order
model. There are two ways to respond to this problem. The first is to ignore it
and simply use the reduced-order model that is implicitly produced by the RK
iteration. The second is to ignore the implicitly produced model and retain
the projectors V and Z and apply them explicitly at the end of the iteration
to produce the reduced order model. The second does have distinct accuracy
advantages but destroys the efficiency of the Rational Lanczos iteration. In [19]
and [43] it is shown that the approximate version of the Rational Lanczos that
uses the implicit approach can still produce acceptable reduced order models
if the systems are solved on each iteration to the level of the accuracy desired
in the frequency response, i.e., errors introduced by approximations are not
damped by later iterations of the Rational Lanczos algorithm. The implicit
approach allows looser tolerance on solving the systems but at the cost of a
larger reduced model order.

5 Generalizations

Generalizations of the basic RK algorithms and theory to the MIMO case have
been derived. [19] Work remains, however, on the efficient implementation
of such methods. For some applications, the linear systems are dependent
on two parameters, e.g., frequency and azimuth. A transfer function can be
derived and used to create a reduced order model. Recent work has developed
analogs of Theorem 3.1 for such problems. [44] Finally, some applications yield
transfer functions that involve linear systems whose matrix elements are not
linear functions of frequency as assumed above. Addressing these problems
often requires exploitation of structure arising out of the particular application.
Such an approach has recently been investigated for use in analyzing frequency
selective surfaces. [45]
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