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Abstract

The nonsymmetric Lanczos method has recently re-
ceived attention as a model reduction technique
for large-scale systems. Unfortunately, the Lanczos
method may generate an unstable partial realization
for a given stable system. To remedy this situation,
inexpensive implicit restarts are developed to stabi-
lize a Lanczos generated model.

1. Introduction

This paper employs a modified Lanczos method to
acquire a stable reduced order model for a stable,
SISO system described by the state space equations

z = Az+bu (1)
y = cz+du. 2)

It is important to note that the A € R"*™ matrix will
always be large and sparse in the following. System
matrices of this type arise, for example, out of finite-
difference discretizations of various plants including
chemical processes and physical structures.

Standard model reduction techniques are ill-suited for
large, sparse problems due to the sheer size of A. For
example, many of the “optimal” reduction strategies
(balanced realization [10], etc.) require knowledge of
the solutions to the Lyapunov equations

AG. + G AT + 0T 0 (3)
ATGo + GaA. + CTC = 0. (4)
Conventional computational techniques for solving

(3) or (4) entail O(n®) operations [1], an unaccept-
able cost when n is large.
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As an alternative, this paper will employ the oblique
projector m; = ViWT to yield a k** order model

3 (WEAVR)z + (WTb)u = Az + bu

g (V)& + du = é + du

for the original system in (1) and (2). The matrices
Vi € ®°*% and W, € R"** are biorthogonal, i.e.
WZIVi = I. Moreover, V; and W; are related to
Krylov spaces, Ky, in that

COLSP(Vi) - = Ki(4,v1) (8)
= span{vy, Avy,..., AF"1n}
COLSP(Wy) = Ki(AT,wy). (6)

The utility of the Krylov projector comes from the
fact that both Vi and Wj can be generated with only
inner-products and matrix-vector multiplications. By
taking advantage of the fact that the A is sparse, one
can compute the projector relatively cheaply. But
regardless of how quickly w3 can be computed, one
is certainly also interested in the correspondence be-
tween the original and reduced order systems. A ma-
jor insight into this relationship comes from [7,15].

Theorem 1 Let the reduced order system (/i,i), ¢) be
a restriction of the system (A, b, c) by the projector m
where Vi, and Wy are defined as in (5) and (6). If the
starting vectors, vy and w;, are parallel to b and T
respectively, then the first 2k Markov parameters of
the original and reduced-order systems are identical.

Restating Theorem 1, the reduced order model is
a Padé approximation (partial realization) which
matches the first 2k moments (cA*~1b,1 < i < 2k)
of the original system.

Model reduction via Padé approximation (moment
matching) has a long history in the literature [11,17].
Thus the observations of [15] are certainly of inter-
est. But the concept of using oblique projectors for



Padé approximation can be taken one step further
by forming Vi and W via a nonsymmetric Lanczos
method [9]. The Lanczos algorithm (fully reorthog-
onalized) simultaneously computes the projector, ry,
and a tridiagonal A with only O(k?n) operations.
Lanczos model reduction is discussed in a multitude
of recent papers including [2,8,13,14].

Model reduction via a Krylov projector is certainly
cheaper, O(k?n), than the “optimal” reduction tech-
niques, O(n3), as n >> k. However, three significant
difficulties are associated with utilizing the projector,
m: singularities in the Padé table (serious Lanczos
breakdowns), large steady-state response error due to
matching only Markov parameters, and the potential
of unstable models for stable systems [4]. At least
in the SISO case, the first problem can be avoided
by incorporating look-ahead into the Lanczos method
[6]. And to overcome the second difficulty, many of
the above references propose moment matching about
multiple frequencies. This paper will not dwell on
these first two difficulties (although the second is-
sue especially is in need of further work); rather it
will concentrate on the stability of the reduced-order
model. Note that we are not the first to do so. In
[13,15], the stability of the reduced-order model is in-
sured by incorporating an inverted grammian, G;!,
into the projector. However, solving (3) and inverting
G. are O(n®) operations. The unacceptable cost of
this fix overshadows the efficiency of Lanczos-based
model reduction.

As an alternative, we propose handling the stability
issue by modifying the choice for the projector. If the
results with the projector, 7y, are unstable, a related
projector, 7 = Vi W[, is selected which corresponds
to the new starting vectors,

v = (,7(A—[JPI)...(A-—[111)'01 (7)
w = C,,—,(AT—upI)...(AT—mI)wx. (8)

The parameters, y;, provide the freedom for modify-
ing the projector. In §3, a new and inexpensive tech-
nique, implicitly restarting the Lanczos algorithm, is
developed for directly generating this modified pro-
jector, T, from m;. An example of this technique
is provided in §4 which demonstrates the potential
of altering the projector. The paper concludes with
some final remarks in §5 and §6.

2. The Standard Lanczos Method

Before exploring restarts, a brief review of the stan-
dard nonsymmetric Lanczos algorithm will be pro-
vided. For a more detailed discussion of the algo-
rithm, the reader is referred to [5].
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Given the starting vectors v; and w;, the Lanczos

algorithm produces the matrices Vi = [v1, ..., v) and
Wy, = [wy, ..., wy] satisfying the recursive identities

AVy = ViTi+Beprviprey (9)

ATWk = W),T;,r + ‘Yk+1wk+1c{. (10)

The vector e is the k*® standard basis vector and
Ty is a truncated reduction of A that is tridiago-
nal. Generally, the elements 8; and +; are chosen
so that V,?_‘,_]»Wk_,.l = I. When this biorthogonality
condition holds, multiplying (9) on the left by wr
yields the relationship W AV, = T;. It will also be
convenient in the following to denote the residuals
Br+1Vk+1 and Yg4+1Wk41 as the vectors rg and gi, re-
spectively. The relationships 7 € Kr41(A,v1) and
@ € Ki31(AT, w1) come from (9) and (10).

With the Lanczos method defined, it is a simple mat-
ter to connect it to model reduction via a Krylov
projector. The initial vectors should be chosen as
v = b/f and wy = T /7 so that mp corresponds
to the Krylov spaces X(A4,b) and K(A7,cT) respec-
tively. Then A = WTAV = Ti, b = WTb = e, 31,
é = cV; = ey, is the desired partial realization.

3. Implicitly Restarted Lanczos

The degree of success achieved in applying a Lanczos-
type method is dependent upon the choice of starting
vectors, v; and w;. In some cases, such as the model
reduction problem, one can make an educated ini-
tial guess for these starting vectors (v; = b/B: and
wy =¢T /71). But the stable plant, unstable reduced
model issue demonstrates that what may appear as
a good choice for the starting vectors can yield dis-
astrous results. To overcome the results of a poor
starting vector, one could repeatedly and explicitly
recompute Krylov spaces with a modified pair of ini-
tial vectors. For lack of better data, one should use in-
formation from past results to refine these new start-
ing vectors. Yet such an approach becomes compu-
tationally expensive when several such restarts are
required. Each restart costs O(k?n) flops.

In this section, an implicit approach (an analogue to
implicitly restarted Arnoldi [12]) is developed for gen-
erating the modified projector corresponding to the
starting vectors in (7,8). It will be shown that given
Vi and W;, one can generate Vi and Wj more effi-
ciently with implicit restarts. Also, experiments indi-
cate a higher precision in #; for the implicit method.

As a simple step between the standard Lanczos
method and the new factorization corresponding to
(7,8), we will first derive a technique for implicitly ob-



taining a Vi and W}, which correspond to the starting
vectors ¥, = p,(A — pI)vy and @1 = py (AT — pl)w;.
For the time being, the parameter, y, is assumed to
be real.

The first step in performing an implicit restart is ob-
taining the two LR-decompositions Ly R, = (T} —pI)
and Ly Ry, = (L7 Ty L, — pI)T where in each case
L is unit lower-triangular and R is upper-triangular.
Due to the band preserving properties of the LR-
decomposition [16], L and R are bidiagonal. With
these LR-decompositions defined, (9) and (10) can
be updated to

AL LT = WL L7T(LTL; T L,L7T)
+reel L, LT (11)

ATWiL7TL, = WiLl7TL,(L;'LTTIL;TL,)
+qrer L7T Ly,. (12)

If one defines Vi = Vi L, L3T, Wi = Wi L;TL,, and
Te = LTL7 T L, L3, then (11) and (12) become

AV], = f/;j’k+rke{L,,L;T (13)
ATW, = WiTT + el L7TL,. (14)

To see the relationship between the new and old start-
ing vectors (i.e., v; and w; versus #; and i), rewrite
(9) as

(A—pD)Vi = Vi(Ti — pl) + reef
= ViLyR, +rief. (15)

Multiplying (15) on the right by e; = L;Te; gives
the relation

(A—pD)Viey = ViLyerp;! = VL, LT exp;?

where p;! = e Rye;. A similar derivation may be
applied to (10) to yield that the two new starting
vectors are in fact ¥ = p,(4 — plvy and @ =
puw(AT — uI)w; where p3! = el Rye;.

Clearly we are nearing the desired result; new starting
vectors have been obtained which fit the desired form.
Unfortunately, (13) and (14) are not valid Lanczos
identities. Define I, and I, to be elements of the
products L,L;T and L;TL, respectively. Then in
(13) and (14), the residuals are multiplied by

FLL;T = (o,o,...0,1,(,'=»"-1),1,(,’°_"°>) or
FL;TLy = (0,0,...0,1041,1P)

rather than just e . However, one can obtain a valid
Lanczos factorization by simply truncating off a por-
tion of (13) and (14). Rewrite (13) as

Ti-1

L : Yeex-1
AVy = (Vi-1, Bk, %) Bret_, ax
I(kvk"l)eT I(kvk)
v k-1 v
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and (14) as
3 ; T;,F_l | Brex—
AWy = (Wi-1, Bk, gx) i€t -1 ]
l(b'k-l)eT l(kvk)
w k1 w

Equating the first ¥ — 1 columns of these two expres-
sions yields the new Lanczos identities

AVir = Vi Teo1+ Fr-1€f_4
ATWiy = WiiTE, + Grref_,.

(16)
(17)
The new starting vectors are still defined as above
while the new residual vectors are

fror = Bt + 10y
Gr1 = g+ F Vg,

One can also show that Vk_l, Wk_l, Fr—1, and §r-1
meet the biorthogonality condition. It is further
claimed that one can only insure 1“’{_1@,_1 # 0 be-
cause both LR-decompositions are included in the
above development. For example, if only L, was in-
corporated into the above expressions, u’s would ex-
ist (mainly the eigenvalues of T;) for which the new
residual vectors would be orthogonal.

From the above work, an extension to the general case
is straightforward. One is now interested in a series
of LR-decompositions. Define

LyR,, = (I;;_IT;,Z..—_._II — wil)
Lu.Ro, = (L5LATILLLLTT - wl)
where _
Lioy=LT L7}

Wie1 " Vi-g

- LZ:;L;;I-
Note that in practice, one should determine L,,; and
Ly, via an implicit LR approach (see §5). Pairs of

complex conjugate shifts would be handled via double
LR shifts [16].

Corresponding to p implicit restarts are the new iden-
tities

AVk_p =

AT Wk_,)

. = T
Vi—pTi—p + Fr—p€i_p
T = T

Wk—pT‘l:cr—p + Qk—pCk—p

where Ty, Vi_p and Wi_, are the appropriate
submatrices of T} = LPT,,L; 1L % = VkL; 1 and

Wi = Wi LT. The new residuals are
Tr—p ,ék-p+117k—p+1 + isk’k—p)rk
Geop = Ti-pr1Br—py1+I5"Pg  (18)

where the Is are elements of L, = Ly, ---L,, and
L, = Ly, -+ - Ly,. Most importantly, the starting
vectors do indeed satisfy (7) and (8). Note that only p
additional standard Lanczos iterations are required to
obtain an order-k Lanczos factorization correspond-
ing to 7y and ;.



4. Example: The Portable CD Player

The Compact Disc player is a well-known mechanism
for reproducing sound from a disc. At the heart of
the CD player is an optical unit (consisting of a laser
diode, lenses, and photodectors) which is mounted
on the end of a radial arm [3]. In particular, we will
be interested in the relationship between the voltage
applied to the magnetic lens actuator and the result-
ing lens position. Traditionally, the behavior of the
lens position is represented by a third-order set of
equations. However, controllers designed from these
simple, low-order systems experience difficulties when
employed in newer, portable CD players [3].

To obtain a higher-order controller for the CD player,
a better model of its behavior is required. Via finite
element approximation, various portions of the CD
player were modeled and combined to yield a system
of equations of order n = 120. It is unfortunate that
the size of A is relatively small. But, this example
is very adequate in demonstrating both the severity
of the unstable partial realization problem and the
power of implicit restarts in solving this problem.

A very valid concern is the total number of Lanczos
realizations (T, WTb, ¢Vi, 1 < k < 120) which are
actually unstable. If there are only a few values of
k for which 7}, is unstable, then incorporating im-
plicit restarts into the standard Lanczos method is
unnecessary work. But Figure 1 demonstrates that
T: stable is the exception, not the rule, for this ex-
ample. In general, one cannot count on stumbling
upon stability at the appropriate recursion step k.

However, employing implicit restarts with appropri-
ate choices for the parameters, p;, (see §5) quickly
stabilizes the reduced-order model. The number of

restarts needed to obtain a stable T' given various
Ti’s is indicated in Table 1.

Table 1: Restarts Needed to Stabilize an Order-k Model

k=20 k=30| k=40 | k=50 | k=60

Restarts 5 0 2 3 1

It is also important to note that in this example, im-
plicit restarts do not have a detrimental effect on
the accuracy of the final, stabilized model (and, in
fact, they are extremely beneficial when the origi-
nal model is unstable). For example, Figure 2 dis-
plays the impulse responses for both an initially sta-
ble Lanczos model (Ty7) and a restarted (stabilized)
Lanczos model (Tso). Even with a modified projector,
7z, the restarted model’s response is closer to that of
the actual system.
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60
of Standard Lanczos

Figure 1: The number of unstable eigenvalues in Tk,
where % is the number of Lanczos iterations.

Amplitude

Original System
Restarted Model, k=50
Krylov Model, k=47

) 0.02 0.04 0.06 0.08 0.1

Figure 2: Impulse responses for CD player models.

5. Implementation Remarks

Until now, several important implementation details
have been glossed over. This section will quickly ad-
dress some of these issues.

Paramount in arriving at a stabilizing projector from
an initial projector is proper selection of the param-
eters (shifts), p:. Although there ig certainly an end-
less number of possibilities for the shifts, the follow-
ing theorem (an analogue to one in [12]) indicates a
practical policy for choosing the restart parameters.

Theorem 2 Let {01,...,6:}U{m,...,p} be a dis-
Jjoint partition of the spectrum of Ti4, and define T}



to be the the tridiagonal matriz resulting from p im-
plicit restarts with shifts py through py,. The eigen-
values of Ty are {61,...,0%}.

Restarting with exactly p eigenvalues of T4, as the
shifts “tosses out” these p eigenvalues from Tj. For
our application, given that T} is unstable, one needs
to proceed until a T34, is determined with less than
p unstable poles. Then via implicit restarts and The-
orem 2, one can remove the unstable poles to yield
a stable Tr44, 0 < ¢ < p. Note that the condition
“find Ty4p with less than p unstable poles” is much
less restrictive than finding a stable Ty .

Although the ultimate goal in choosing the shifts, u;,
is to obtain a stable realization, there is also a more
basic concern, the sensitivity of LR-decompositions.
Because the LR-decomposition of T, exists only if
its k + p — 1 leading principal minors are nonzero,
a shift cannot be an eigenvalue of any of these k +
p — 1 minors of Ti4p. But the existence of L is not
sufficient. L must be kept well-scaled to maintain the
biorthogonality of V and W. In general, selecting the
shifts to be the unstable eigenvalues of T4, seems
to generate well-scaled L’s. However, one should be
aware that a slight perturbation on a shift may be
required in some cases.

In practice, these L R-decompositions should be per-
formed implicitly [16]. That is, a series of elementary
transformations should be used to chase a bulge down
the tridiagonal of T}. For the single-shift case, gen-
erating T¢—1 in this manner costs only O(k?) flops
while Vi_y and Wi_; can each be generated with
O(kn) flops. An additional O(kn) flops is needed
for the single Lanczos iteration (full reorthogonaliza-
tion) yielding Ti. Note that an explicit restart (with
full reorthogonalization), on the other hand, requires
O(k%n) operations.

6. Concluding Remarks

In this paper, a novel technique based on implicit
Lanczos restarts was developed for stabilizing a par-
tial realization of a large-scale system. Numerical ex-
periments, such as the CD player in §4, indicate that
this method is a promising, efficient remedy for the
stability problem in Padé approximation.

However, future work is necessary. A more defini-
tive relationship between restarts and the resulting
model must be established. The ability of restarts to
improve the accuracy of the Lanczos model beyond
stability will be explored. Additionally, the issues of
singularities in the Padé table and moment matching
about multiple frequencies must be readdressed.
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