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Abstract

An important class of generalized eigenvalue probletws= ABx is those in whichA
andB are Hermitian and some real linear combination of them is definite. For the quadratic
eigenvalue problem (QER}2A + AB + C)x = 0 with HermitianA, B andC and positive
definite A, particular interest focuses on problems in whigfi Bx)2 — 4(x* Ax)(x*Cx) is
one-signed for all non-zere—for the positive sign these problems are called hyperbolic and
for the negative sign elliptic. The important class of overdamped problems arising in mechan-
ics is a sub-class of the hyperbolic problems. For each of these classes of generalized and
quadratic eigenvalue problems we show how to check that a putative member has the required
properties and we derive the distance to the nearest problem outside the class. For definite pairs
(A, B) the distance is the Crawford number, and we derive bisection and level set algorithms
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both for testing its positivity and for computing it. Testing hyperbolicity of a QEP is shown

to reduce to testing a related pair for definiteness. The distance to the nearest non-hyperbolic
or non-ellipticn x n QEP is shown to be the solution of a global minimization problem with

n — 1 degrees of freedom. Numerical results are given to illustrate the theory and algorithms.
© 2002 Published by Elsevier Science Inc.
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1. Introduction

Eigenvalue problemdx = Ax with HermitianA have many desirable properties
and are amenable to a variety of special algorithms. Here we consider what can
be regarded as the closest analogues of this class of problems for the generalized
eigenvalue problem and the quadratic eigenvalue problem (QEP): definite general-
ized eigenvalue problems and hyperbolic QEPs. A property in common to all these
problems is that the eigenvalues are real. We also consider elliptic QEPs, which have
eigenvalues that are all non-real.

We have two aims: to determine, for a given generalized or quadratic eigenvalue
problem, whether the property of interest holds, and, if it does, to compute the dis-
tance to the nearest problem without that property. The first problem is non-trivial
because definiteness, hyperbolicity and ellipticity are all defined by optimization
problems over the unit ball. The second problem is analogous to stability radii com-
putations in control theory, whereby it is determined by how much a problem can be
perturbed without it losing its defining property.

The definite generalized eigenvalue problem is treated in Section 2. We show that
the distance from a definite problem to the nearest non-definite one is given by the
Crawford number—the number whose positivity is used to define definiteness. We
show how to compute the Crawford number using a bisection algorithm. Although
each iteration of this algorithm is expensive, only a few iterations may be required
to detect definiteness and an interval guaranteeing to contain the Crawford number
is produced. We also derive a more efficient and rapidly converging level set algo-
rithm that, in particular, tests for definiteness at the cost of solving just one quadratic
eigenvalue problem.

In Section 3 we give definitions and characterizations of hyperbolic QEPs (includ-
ing the subclass of overdamped QEPs) and elliptic QEPs. We show that testing for
hyperbolicity can be reduced to testing for definiteness of an associated generalized
eigenvalue problem. We also show that the distances to the nearest non-hyperbolic or
non-elliptic QEP can both be expressed in terms of a global minimization problem
over the unit ball.
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Numerical examples are given in both sections to illustrate the theory and algo-
rithms.

2. Definite pair

Two Hermitian matrices\, B € C"*" form a definite pair if

v(A, B) == rgcn V(z*Az)2 + (zBz)2 > 0. (2.1)

lizlp=1

The quantityy (A, B) is known as the Crawford number. A sufficient condition for
definiteness is that one éfandB is definite, but it is the definiteness of a suitable
linear combination ofA andB that characterizes definiteness of the pair, as shown
by the following result [19], [20, Theorem 6.1.18]. We denotery, andimax the
smallest and largest eigenvalues, respectively, of a Hermitian matrix.

Theorem 2.1. Let(A, B) be a definite Hermitian pairand foré € R let

Agp = Acosh + B sind,

By = —Asind + B cosh. (22)

Then there is & € [0, 2r) such thatBy is positive definite and
v(A, B) = Amin(By)-

Definite pairs have the desirable properties that they are simultaneously diagon-
alizable and, in the associated eigenprobldm,= 1 Bx, the eigenvalues are real.
The practical importance of definite pairs stems from their appearance in physical
problems, particularly vibration problems in engineering; in practice the maisx
usually positive definite.

An alternative interpretation of in (2.1) is

y(A, B) = min{lw| : w € F(A +1B)}, (2.3)
where the field of values of a generale C"*" is defined by
F(G)={z*Gz:z€C", |zl =1}.

Thus(A, B) is a definite pair if and only ifF (A + iB) does not contain the origin,
andy (A, B) is the distance from the origin to the nearest poinFi + i B).

Two questions are of interest: “How can we test whether a given Hermitian pair
(A, B) is definite?”, and “How far is a definite pair from being non-definite?” We
consider the second question first, since the answers to the two questions are closely
related.

We define the distance from a Hermitian pédr, B) to the nearest non-definite
pair by
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d(A, B) =min{|I[AA AB]l2: z*(A+ AA +i(B + AB))z =0,
somez # 0}. (2.4)

Here, and throughout, perturbations of Hermitian matrices are assumed to be He-
rmitian. A feasible perturbation in the definition dfis AA andA B such thafA +

AA, B + AB] has rank less tham and the minimum of[AA, AB]||2 over all such
perturbations is

n <[2]) > d(A, B), (2.5)

whereo, denotes thaith largest singular value. However, this upper bound can be
arbitrarily weak: for

0 -1

we havey (A, B) = 0 but the upper bound in (2.5) {g1 + 2.

In [3] a computable formula is obtained for the 2-norm distance from an arbitrary
Hermitian pair to the nearest definite pair with a given valug dflaking use of the
ideas from [3] we can readily solve the converse problem (2.4).

A:[1 0] and B = uA

Theorem 2.2. For HermitianA, B € C"*"*, d(A, B) = y (A, B).

Proof. We assume thatA, B) is a definite pair, otherwise the result is trivial. Sup-
posez*(A + AA +i(B + AB))z = 0 for somezwith ||z||2 = 1. Then

y(A, B) <|Z"(A+iB)z]

=|z"(AA+iAB)z|
=|[z*AAz Zz*ABZz]|2

_ X X cost

_mgax [z AAz 2z ABZ] [Sine} ,

_ * 7 C0st

_mgax Z"[AA AB] |:zsin9] ,

<I[AA  AB]|2. (2.6)

Thusd(A, B) > y(A, B). Suppose, first, that the nearest point to the origin in the
convex setF(A +iB) is y(A, B) on the real axis. Then a perturbation Aoof

—y (A, B)I shifts F(A + iB) left to touch the origin. This perturbation gives equal-

ity throughout (2.6) and so is optimal. In the general case we can rotate the field of
values, as in (2.7) below, to reduce to the previous case.

To summarize, computing(A, B) is equivalent to computing (A, B), where-
as testing whethefA, B) is a definite pair requires only determining whether
y(A, B) > 0.
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2.1. Existing methods for testing definiteness

Crawford and Moon [4,5] present a bisection-like algorithm for computidg a
such thatBy in (2.2) is positive definite or determining that such does not exist.

At each step the algorithm performs a Cholesky factorization to test the definiteness
of By for the current estimate @f. The algorithm takes a finite number of steps that

in the worst case is @), and therefore @) flops can be required. This algorithm
does not computg (A, B).

Another way to test definiteness is to apply therthogonal Jacobi algorithm of
Veselic [24], which breaks down when applied to an indefinite pair. However, this
algorithm uses hyperbolic transformations so is potentially unstable.

Theorem 2.1 shows that the problem of checking definiteness can be expressed
as that of checking feasibility (for some reabndg) of the linear matrix inequality
(LMI)

aA+ BB >0,

where the inequality denotes positive definiteness of the left-hand side. Various in-
terior point methods are available for the solution of convex optimization problems
with LMI constraints [23]. However, none of them is likely to be as efficient for this
problem as Algorithm 2.4.

Finally, we note that an algorithm given by Doyle [6, Appendix] and Fan [9,
Algorithm 2.2] for finding the vector of minimum 2-norm in the convex hull of a set
of vectors can be used to compgtéA, B), in view of (2.3). However, this algorithm
appears to be only linearly convergent and does not brackét B), so it is less
attractive than Algorithms 2.3 and 2.4.

2.2. Bisection and level set methods
We now examine how to evaluat€ A, B) for an arbitrary Hermitian paifA, B).
Write C = A + iB and note that
Fe'’cy=e""F(), (2.7)

that is, the field of values of & C is that of C rotated clockwise through radians
about the origin. Moreover, it is easy to see that each point (e C) satisfies

Iamin(€?C +€7C*) < Re(z) < amax(e™C +€7C).

This leads to the formulae (essentially [3, Theorem 2.1]), for a Hermitiar{ paiB),

y(A, B) = — min( min Amax(A cos® + B sing), O)

0<0<2n

= max( max Amin(A cosd + B sing), 0) , (2.8)

0<0<2n
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where the outer min and max account for the case wheré'QC), so that(A, B) is

not a definite pair. Computing(A, B) is therefore a one-dimensional global optimi-
zation problem. Optimization techniques that are based on function minimization or
on a simple grid search (as used in [3]) produce at best a local minimum. By taking
advantage of the structure of the problem we will derive methods that guarantee to
capture the global minimum. It was pointed out by a referee that (2.8) can also be
reformulated as a convex optimization problem involving matrices of andeut

this alternative has not yet been compared with the methods proposed in this paper.

Rewriting (2.8), our aim is to compute

w(A, By =maX{f(z) : |z| =1},
where
f(@) = min(M(2)), M(z) = (z71C +2C%)/2,

and whereM (z) is Hermitian forz on the unit circle. For suchthe functionf is a
continuous function of and so it achieves every value between its minimum and
its maximum. We can assume without loss of generality @& non-singular, as
otherwise O= F (A +iB) and(A, B) is not a definite pair.

For a givené we ask whethef achieves the levej, that is, whethek is the
smallest eigenvalue af/(z) for somez on the unit circle. For any non-zemthe
following equivalence is clear:

detM(z) — &) =0 <= det(Q(z)) := detC — 2621 + 72C*) = 0. (2.9)

The quadrati® has 2: eigenvalues ;. We compute the;, and for each one on the

unit circle (if there are any) we computgin(M (z;)). If Amin(M(z;)) = & for some

j then we know thatf (z) = & is achieved, and otherwise it is not. This provides
the basis for a bisection algorithm for maximizifiganalogous to that of Byers [2]

for computing the distance to the nearest unstable matrix. On each iteration of the
following algorithm f(z) = a < w(A, B) < b, for somez on the unit circle.

Algorithm 2.3. Given HermitiarA andB with A + i B non-singular, a brackét, »]
for w(A, B) with a = f(z) for some|z| = 1, and a tolerance tol, this algorithm
refines the bracket to an interval of width at most tol containiig, B).

while b — a > tol
E=(@+b)/2
Compute the eigenvalues of Q(z).
If Amin(M (z;)) = & for some eigenvalug; of Q on the unit circle
a=§
else
b=§
if b <O, returnwitha =b=0,end %y(A,B)=0
end
end
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Note that instead of bisecting using the arithmetic mean of the intgauyal],
whena > 0 we could use the geometric meafub (suitably modified whera is
very small), which is preferable {fv(A, B)| is much smaller than the initial value
of h.

Algorithm 2.3 needs an initial intervdk, b] that bracketso(A, B), with a =
f(z) for some|z| = 1. From (2.5) and Theorem 2.2 we can take

b= ([g]) (2.10)

and
. {max(ao, 0) if (A, B) is known to be definite,

ag otherwise, (2.11)

where (by sampling at = +1, +i),
ao = max{)»min(A), —Amax(A), Amin(B), —)\max(B)}~

For the test$z ;| = 1 andimin(M (z;)) = & a tolerance is needed of size less than tol
but greater than the error in the computed eigenvalue (which is roughly the condition
number of the eigenvalue multiplied by the machine precision, if a stable solver is
used).

The algorithm terminates as soon as it generates a negasivece that guarantees
w(A, B) < 0and hence that(A, B) = 0, thatis, the pair is not definite. If our aim is
to test whethetA, B) is definite but not to computg(A, B) then we can terminate
Algorithm 2.3 as soon as the lower bouads positive.

Whenw (A, B) is zero or tiny many iterations may be required to verify definite-
ness or non-definiteness, as the@A, B) must be computed accurately enough to
determine its sign. This limitation will affect any numerical method. In particular,
if y(A, B) is of the order of the unit roundoff times some normwise measure of
(A, B) then we cannot expect to determine definiteness in floating point arithme-
tic, since Theorem 2.2 implies that backward errors due to roundoff can change the
definiteness of the pair.

Algorithm 2.3 guarantees to produce an interval in whigi, B) lies, but each
iteration is expensive as it requires the solution of a quadratic eigenvalue problem
and up to 2 Hermitian eigenproblems.

A more efficient algorithm can be obtained by applying the level set algorithm of
[18], which was derived for stability radii computations. The idea is to consider all
the eigenvalues of the Hermitian matrix

Acosd + Bsing — &1 = 3(eCc+€&7c*) —¢1,
where the levek is a parameter. Since this matrix is analytic in the real variable
0, the eigenvalues are piecewise analytic functiong8,dbsing analyticity only at

6 corresponding to a multiple eigenvalue [13]. Moreover, the unit modulus zeros of
det(M (z) — £1) determine the “zero crossings” of these functions, since

det(Acosd + Bsing —&1) =0 < det(M(z) — &) =0, z=¢".
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By (2.9), these are also the unit modulus eigenvalues of the quadratic polynomial
0(z) = C — 2&z1 + z2C*. For such an eigenvalug = €% of Qwe have, recalling
the notation (2.2),

0(zj) = 2zj(Ag;, — &1),
and hence any eigenvector@fcorresponding to the eigenvalugis an eigenvector
of Ag; — &1 corresponding to the eigenvalue 0. It follows from standard results (see,
e.g., [13]) that for a simple zero eigenvaluedf, — &7 with normalized eigenvector
v, the derivative of the eigenvalue is given by

%M(Ae —&Dlp; = U*%(Ae —&D)g;v = v*By,v. (2.12)
More generally, for an eigenvector space of dimendi@panned by an x k or-
thonormal matrixV, the eigenvalues of the x k matrix V*By, V are the deriva-
tives of thek eigenvalue crossings @éf. The sign of the derivatives determines if an
eigenvalue increases or decreases at each particular zero crossing, with a zero deriva-
tive signalling a multiple eigenvalue. Now sget= 0. If all n eigenvalues ofA cost +
B sin@ become positive at a particular angléhen they all become negativetatt «,
since

Acog0 £+ n) + Bsin(® +n) = —(A cosh + B sinb). (2.13)

It follows that a definite pair must have, for sorieat leastn strictly increasing
crossings ind — w, #) and at least strictly decreasing crossingslil, 6 + ). Since
there are at mosti2zeros in any intervald — «t, 6 + n), a definite pair must have
exactly nconsecutive strictly increasing zero crossings followecdlgonsecutive
strictly decreasing zero crossings[th— w, 6 + m). This is clearly also a sufficient
condition for a definite pair, since consecutive strictly increasing zero crossings in
an interval[® — m, 8) ensure that all eigenvalues dfcost + B sind are positive.
The procedure for testing definiteness is thus very simple.

Algorithm 2.4. Given a Hermitian paitA, B) with A + i B non-singular this algo-
rithm determines whether or not the pair is definite.

Compute the eigenvalues 6f(z) (with & = 0).
If there are 2 eigenvalues of unit modulus
Compute the derivatives in (2.12) (with= 0).
If there aren consecutive strictly increasing ancconsecutive
strictly decreasing zero crossings
The pair is definite; return
end
end
The pair is not definite.

This algorithm enables us to test for definiteness by solving just one quadratic
eigenvalue problem.
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Eigenvalues of Acos6+Bsin6
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Fig. 1. Eigenvalues of a & 5 matrix A cosf + B sinf as a function ob € [—, n].

Fig. 1 illustrates the algorithm. The matricksindB are random, 5 5, real and
symmetric. The 10 unit modulus eigenvaluespare marked with circles and the
sign of the derivative is marked under each zero crossing. The pattern of the signs
proves definiteness. The interval containing the maximum of the smallest eigen-
value is[1.9187, 2.1851] and the eigenvalues of cosd + B sing at the midpoint
are marked with diamonds. These are all positive, which confirms the definiteness of
the pair.

The same idea can be used to compute the Crawford number,B). Use Algo-
rithm 2.4 to test definiteness of the pair. If definiteness is confirmed then an interval
of 6 is known throughout which.min(A cosf + B sind) > 0; compute the eigen-
values at its midpoinmig. The value& = Amin(A C0SOmig + B SiNBmig) > 0 is then
a lower bound for the Crawford number that can be used for the next “level”. If
Amin(A c0sf + B sing) is not multiple at its maximum value then this scheme can
be shown to be quadratically convergent [11]. Moreover, variants are proposed in
[11] that generically have a higher order of convergence by exploiting the computed
derivatives at the zero crossings.

While the bisection algorithm is less efficient and slower to converge than the
level set algorithm it does have one advantage: it produces a bracket4orB)
that shrinks to zero, whereas the level set algorithm produces only a monotonically
increasing lower bound.

We give a numerical example, with= 10 and

A=(li —jD (Fiedler matrix)
B =UTU, U unitupper triangular with (2.14)
uij=-1 j>i (Moler matrix).
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Fig. 2. F(A + iB), with Athe Fiedler matrix an@® the Moler matrix.

The pair(A, B) is obviously definite, and applying Algorithm 2.3 with tel 104

we obtain after 15 iterations an interval that enables us to concludé€ thaiB) =

y (A, B) = 0.1868 to 4 significant figures. The initial interval from (2.10) and (2.11)
is [a, b] = [8.583x 1076, 2.314). Sinceug in (2.11) is positive, the algorithm deter-
mines immediately that (A, B) > 0. Fig. 2 plotsF (A + iB), with the eigenvalues
of A + iB marked as crosses. SinBés positive definite, the field of values lies in the
upper half-plane. The smallest eigenvalu®ds 8.6 x 10-°, so while a perturbation
of order 10°® causes to lose definiteness, a perturbation of order 1@ A andB

is necessary to cause the pair to lose definiteness.

When we apply Algorithm 2.4 to this example we again detect that the matrix pair
is positive definite; see Fig. 3. The smallest eigenvalue 0bsy + B siné at the
midpoint of the relevant interval is D367, which is a lower bound for the Crawford
number.

3. Hyperbolic and dliptic systems

Now we turn our attention to the quadratic eigenvalue problem (QEP) [22]
OMx=(MPA+AB+C)x=0, A,B,CeC™. (3.1)
An important class of QEPs is defined as follows [15].
Definition 3.1. The QEP (3.1) is hyperbolic i\ is Hermitian positive definiteB
andC are Hermitian, and

(x*Bx)% > 4(x*Ax)(x*Cx) for all non-zerax € C". (3.2)



N.J. Higham et al. / Linear Algebra and its Applications 351-352 (2002) 455-474 465

50

a0t

301

Eigenvalues of Acos6+Bsin®

Fig. 3. Eigenvalues aofl cosd + B sind with A the Fiedler matrix an@ the Moler matrix.

For any eigenpaifx, A), on premultiplication of (3.1) by* we obtain the scalar
quadratic equation®x* Ax + Ax*Bx + x*Cx = 0, with solutions

—x*Bx + /(x*Bx)2 — 4(x* Ax)(x*Cx)
2x*Ax ’

at least one of which is an eigenvalue. It follows that for a hyperbolic QEPrall 2
eigenvalues are real. A hyperbolic QEP has further properties [7,8], [14, Section
7.6]: there is a gap between thdargest eigenvalues (the primary eigenvalues) and
the n smallest eigenvalues (the secondary eigenvalues), and themdiaearly in-
dependent eigenvectors associated with the primary eigenvalues and likewise for the
secondary eigenvalues (in other words, all the eigenvalues are semi-simple).

We note that certain types of gyroscopic systems are equivalent to hyperbolic
systems; see the example in Section 3.3.2.

A more specialized class of QEPs is those that are overdamped.

A=

(3.3)

Definition 3.2. The QEP (3.1) is overdamped if it is hyperbolic wBhHermitian
positive definite and Hermitian positive semidefinite.

Itis immediate from (3.3) that for overdamped problems the eigenvalues are non-
positive. These problems are essentially shifted hyperbolic problems. To see why,
consider the identity

A2A+MB+20A)+ C + 0B+ 0%A
= MA+AB+C=00).

QA +0)



466 N.J. Higham et al. / Linear Algebra and its Applications 351-352 (2002) 455-474

It is easy to see that (3.2) holds f@rif and only if it holds for 0. Moreover, ifQ
is hyperbolic then) is overdamped for a large enough stiftsinceA is positive
definite, and conversely any overdamped QEP can be shifted to make it non-over-
damped but still hyperbolic.

Another important class of QEPs is those for which (3.2) holds with the inequality
reversed.

Definition 3.3. The QEP (3.1) is elliptic iA is Hermitian positive definiteB andC
are Hermitian, and

(x*Bx)? < 4(x*Ax)(x*Cx) for all non-zerax e C". (3.4)

Elliptic QEPs clearly have non-real eigenvalues, and, necessaril/,positive
definite.

3.1. Testing for hyperbolicity and ellipticity

The first question of interest is how to test whether a given QEP is hyperbolic
or elliptic. We need the following results from [15,16], which are generalizations of
properties that are obvious far= 1.

Theorem 3.4. A QEP with A B and C Hermitian and A positive definite is hyper-
bolic if and only if O () is negative definite for some € R.

Theorem 3.5. Ellipticity of a QEP with A B and C Hermitian and A positive definite
is equivalent to either of the conditians

1. Q(w) is positive definite for allk € R,

2. (x*Bx)? < 4(x*Ax)(x*Cx) for all eigenvectors x of the QEP

Theorem 3.5 shows that to test for ellipticity is straightforward: compute the
eigenvectors and check whether the discriminant condition is satisfied for all of
them.

Testing for hyperbolicity is more complicated. Theorem 3.4 shows that it would
suffice to solve the one-dimensional global optimization problem,migk( O (1)).

We show that testing for hyperbolicity can be reduced to testing for definiteness of a
Hermitian pencil of twice the dimension, which can be done using Algorithm 2.3 or
Algorithm 2.4. The following result is a slight generalization of one of Vésgl4,
Theorem A5] and is essentially contained in [1].

Theorem 3.6. A QEP with A B and C Hermitian and A positive definite is hyper-
bolic if and only if the pairA1, B;) is definite where

—c 0 B A
S i e
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Proof. Recall from Theorem 2.1 th@#i1, B1) is definite if and only ife A1 + 8B1
is positive definite for some and . Clearly,a = 0 can be ruled out, sincB; is
indefinite. Fora # 0 we have

aA1+ BB1= [—afﬂ—AﬂB _O[IBAA:|

I —EN[-ac—pp-a o][ 1 0
o 0 wd||-E1 1]

Sowa A + BB is congruent to
adiag( — (u?A + 1B + C), A),

where u = B/«. The result now follows from Theorem 3.4, singeis positive
definite. O

Also of interest are sufficient conditions for hyperbolicity and ellipticity that may
be verifiable using knowledge of the QEP. The following result provides some con-
ditions based on extremal eigenvalues of the coefficient matrices (condition (3.6) is
givenin [1, Theorem 3]). Heremin andomax denote the smallest and largest singular
values.

Theorem 3.7. A QEP with A Hermitian positive definite and B and C Hermitian is
hyperbolic if either of the following inequalities holds

omin(B)? > 4hmax(A)Amax(C), (3.5)
min |2 (A71B)|?2 > 4imax(A10). (3.6)

A QEP with A B and C Hermitian and A and C positive definite is elliptic if either
of the following inequalities holds

omax(B)? < Ahmin(A) Amin(C), 3.7)
max|; (A"1B)?| < 4rmin(A~10). (3.8)

Proof. Condition (3.5) is immediate from the variational characterization of eigen-
values of Hermitian matrices. Sinéeis positive definite it has a unique Hermitian
positive definite square root1/2, and by settingr = A~%/2y condition (3.2) is
transformed to

(YA Y2BATY29)2 > A(y*y)(y*A™Y2CAY2y) forall y # 0.

Again applying the variational characterization and noting #1iat2BA~1/2 is sim-
ilar to A=1B, and similarly forC, leads to (3.6). Conditions (3.7) and (3.8) are ob-
tained in the same way.[
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For both pairs of inequalities in Theorem 3.7 either member can be stronger than
the other, depending on the particular QEP. Indeelll, - C = I then (3.5) requires,
like (3.2), thatimax(A) < 1/4, whereas (3.6) imposes the stronger requirement that
k2(A)Amax(A) < 1/4, wherexa(A) = ||All2]A~L||2. On the other hand, foB = A
andC = I, (3.6) requires, like (3.2), thatmin(A) > 4, whereas (3.5) insists that
Amin(A) > 4i2(A).

3.2. Distance to nearest non-hyperbolic or non-elliptic QEP

We assume throughout this section thaB andC are Hermitian withA positive
definite. For a QEP that is hyperbolic or elliptic we are interested in by how much
the coefficient matrices must be perturbed for this property to be lost. Clearly, both
properties are lost whef is perturbed to lose definiteness, which can be achieved
by adding a perturbation of 2-norm equalitgin(A). The more interesting way in
which hyperbolicity or ellipticity is lost is when conditions (3.2) or (3.4) fail. We
will treat both properties together by making use of the 2 Hermitian matrix

2x*Ax  x*Bx
W(x, A, B C)= [X*Bx Zx*Cx]'

Note that

<0 forallx # 0if the QEP is hyperbolic,
>0 forallx # 0if the QEP is elliptic.

For both properties we are interested in perturbing the coefficient matrices to achieve
detW(x, A, B, C)) = 0. Therefore both the distance from a hyperbolic problem to
the nearest non-hyperbolic problem and the distance from an elliptic problem to the
nearest non-elliptic problem can be defined by

detW(x, A, B, C)) {

d(A, B, C)
=min{f(AA, AB, AC) : detW (x, A+ AA, B+ AB,C + AC)) =0
for somex = 0}. (3.9
Here,fis some non-negative function of the perturbation matrisds A B andAC.

Also of interest as a natural measure of the degree of hyperbolicity or ellipticity is
the quantity

¢(A,B,C) = | rwinl\/|(x*Bx)2 — 4(x*Ax)(x*Cx)|. (3.10)
X|[2=
We wish to obtain a simpler formulation faKA, B, C) and to compare this distance

with ¢ (A, B, C).
There are many possible choiced dbut it is convenient to work with

ano= 2]

F
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We can rewrite (3.9) as
d(A,B,C) = ”nH1in1min{f(AA, AB, AC) :
X|2=
detW(x, A+ AA, B+ AB,C + AC)) = 0}.
Denote byA Wopt = (6;;) the matrix AW of smallest Frobenius-norm for which
W(x, A, B, C) + AW is singular, for a given unit 2-norm Since
Wkx,A+AA, B+ AB,C+ AC)=W(x,A,B,C)+ W(x,AA, AB, AC),
for any feasibleA A, AB andAC in (3.9) we have

IAWoptl2 < [W(x, AA, AB, AC)|2
<4|AAIZ+2|AB|E + 4|AC|2
= f(AA, AB, AC)?,

and we have equality throughout for
AA = (811/2)xx*, AB =810xx*, AC = (822/2)xx",

for which W(x, AA, AB, AC) = AWopt. We conclude that the latter perturbations
are optimal for the givemn.

Now A Wopt = —AgpiUoptVopr Whereiopt is the eigenvalue oW (x, A, B, C) of
smallest modulus anthpt is a corresponding unit eigenvector, and so we have the
(non-convex) global minimization problem

d(A,B,C) = ”rrH1in1g(x), (3.11)
X|l2=

where
g(x) = [Aopt(W(x, A, B, O))|.
Note that, from (3.10),

¢(A,B,C) = ”n”1in1\/|de1(W(x, A, B,(0))|
Xll2=

= uﬂ?i”N |Amin(W (x, A, B, C))Amax(W (x, A, B, )|
pol

=d(A, B, ),

S0 ¢ overestimates the distance to the nearest non-hyperbolic or non-elliptic system.
The eigenvalues oV (x, A, B, C) arex*(A + C)x £ v/ (x*(A — C)x)?2 + (x*Bx)>.

For a hyperbolic problem, i€ is positive semidefinite then we take the minus sign

to obtain

Aopt = x*(A + C)x — \/(x*(A — O)x)? + (x*Bx)2. (3.12)

SinceW is indefinite with tracéW) > 0, we havelopt < 0 < Amax With [Agpt <
Amax; thusg is differentiable for all non-zergs, sinceW has distinct eigenvalues, and
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so local minima ofg can be found by standard optimization techniques. For ellip-
tic problems (3.12) also holds; here the eigenvalued/afre positive but repeated
eigenvalues are possible, gmay not be differentiable at the global minimum.

An interesting special caseis= 1. Consider, for example, the elliptic quadratic
g(x)=ax?+bx +c=x%+(2—e)x + 1, with 0 < € < 1. The discriminanb? —
4ac = e(e — 4), s0¢p(a, b, c) ~ 2¢Y/2. To obtaind(a, b, ¢) we note first that

22— 171
W(l,a,b,C)=[2_‘E 26]’ Aopt =€, UW:E[—J‘

Therefored(a, b, ¢) = € K< ¢(a, b,c) and the nearest non-elliptic quadratic is
(1—€/4)x%2 — (2 —€/2)x + 1 — €/4, which has zero discriminant.

3.3. Numerical examples

We give three numerical examples to illustrate the results, each with a different
type of QEP: the first is real and overdamped, the second is complex and hyperbolic
but not overdamped, and the third is real and elliptic.

The question arises of whether for real data we can restrictbe real in the
minimizations (3.10) and (3.11), since the all the definitions in this section involve
complexx. Forn > 2 the answer is yes, and indeed hyperbolicity is sometimes de-
fined in terms of reak whenQ is real (see [7,8,14], for example). The exclusion of
n = 2 relates to a subtlety in the definition (2.1) of definite pair; see [17,19] and [20,
p. 290] for a discussion of this issue.

In computingd (A, B, C) and¢ (A, B, C) we used direct search (functiedsmax
from [12]), taking the convergence tolerance of order the unit roundoff to obtain the
best possible accuracy and trying different starting values in order to be confident
that the global minima were obtained.

3.3.1. Damped mass-spring system

Our first example is from a damped mass—spring system; see [21] for the detalils.
With four masses and a particular choice of the masses and the spring and damper
constants the matrices are

8 -4 0 0 2 -1 0 o0
4 12 -4 0 1 3 -1 0
A=h B=19 4 12 -4 “Tlo -1 3 -1

0 0O -4 8 0 o -1 2

All three matrices are positive definite and the quadratic eigenvalue problem (3.1) is
overdamped. The sufficient conditions (3.5) and (3.6) for hyperbolicity are identical
in this case and are not satisfied. On applying Algorithm 2.3 to the(dairB;) in
Theorem 3.6, the pair is diagnosed definite, and hence the QEP hyperbolic, after just
one iteration.

Minimization of g(x) yieldedd (A, B, C) = 2.0, with optimal perturbations of
a particularly simple form in this cas&&A = 0.125e", AB = —0.25¢e", AC =
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Table 1
Eigenvalues of original (hyperbolic) and perturbed (non-hyperbolic) quadratic eigenvalue problem from
a damped mass—spring system

Original Perturbed

—1.7403el —1.7403el
—1.1745el —1.1745el
—6.0824e0 —6.0824e0
—3.7321e0 —1.0000e0
—2.6795e-1 —1.0000e0
—2.6072e-1 —2.6072e-1
—2.5544e-1 —2.5544e-1
—2.5364e-1 —2.5364e-1

0.12%e", wheree is the vector of 1’s. All ofA + AA, B+ AB andC + AC are
positive definite. By comparisop,(A, B, C) = 3.4641. The eigenvalues of the orig-

inal and perturbed quadratic eigenvalue problems are shown in Table 1. In this ex-
ample, loss of hyperbolicity coincides with loss of the gap between the primary and
secondary eigenvalues.

3.3.2. Moving wiresaw
We consider a model of the motion of a wiresaw used to cut through silicon ingot
[25]. The underlying partial differential equation has the form

Upr — 20ty — (L — vy, = 0, (3.13)
whereu(x, t) is the unknown function andis a parameter. Approximating

u(x. 1) =Y q(t) sin(kmx) (3.14)
k=1

and applying the Galerkin method gives the second-order differential equation

Mg@) +Cq@) + Kq(t) =0, (3.15)
whereq (1) = [q1(t), ..., gn(D]T, M= 1,/2, K = diagy ;, (j*n*(1 — v?)/2), and

4ij . -,
C = —CT = (Cij) with Cij = jz_izv if i + ‘]_IS Odd
0 otherwise.

This is a gyroscopic system with correspondingatrix G(A) = A2M + AC + K.
Let

Q1) = —G(—ir) = A>M + A(iC) — K.

The coefficient matrices are Hermitian and fok 1 it is easily checked th& is
positive definite and hend@ is hyperbolic. HoweverQ is not overdamped.

We tookn = 8 andv = 0.01. We found that/(M,iC, —K) = 1.0, with opti-
mal perturbation®\M = —ee' /16, AC = AK = 0, andp (M, iC, —K) = 4.4427.



472 N.J. Higham et al. / Linear Algebra and its Applications 351-352 (2002) 455-474

The eigenvalues of (1) and the perturbed QEP come in paisi, A). In contrast
with the previous example, the loss of hyperbolicity coincides with the loss of the
non-singularity oM and the appearance of infinite eigenvalues.

3.3.3. Wave equation
We consider the free vibration of a string with clamped ends in a spatially inhomo-

geneous environment. The equation characterizing the wave motion can be described
by [10]

Uy +ea(x)uy = Au, x€[0,n], €>0,
u(,0) =u(,m)=0.

Approximatingu as in (3.14) and applying the Galerkin method again leads to a sec-
ond-order differential equation (3.15), here with= (n/2)1,,, K = (n/2)diag(j?),
and

C=(ckj), cxj= /:ea(x) sin(kx) sin(jx) dx.

In our experiments we take= 9, a(x) = x?(n — x)? — 8,8 = 201 ande = 0.1.

The sufficient conditions (3.7) and (3.8) for ellipticity are not satisfied but the con-
dition 2 of Theorem 3.5 is satisfied, so the QEP is elliptic. We founddhit, C, K)
= 0.0588 andyp (M, C, K) = 28.1. The spectra of the original and the perturbed
QEP are shown in Fig. 4. The loss of ellipticity corresponds to the two eigenvalues
closest to the real axis merging to become the double eigenvalue 1.

10

i
D
vo00000®

10 : . i i
0.98 0.985 0.99 0.995 1 1.005

Fig. 4 Spectrum oD (1) for the wave example. The eigenvalues of the original elliptic QEP are marked
by “0” and those of the perturbed QEP by
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