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Abstract

An important class of generalized eigenvalue problemsAx = λBx is those in whichA
andB are Hermitian and some real linear combination of them is definite. For the quadratic
eigenvalue problem (QEP)(λ2A + λB + C)x = 0 with HermitianA, B andC and positive
definite A, particular interest focuses on problems in which(x∗Bx)2 − 4(x∗Ax)(x∗Cx) is
one-signed for all non-zerox—for the positive sign these problems are called hyperbolic and
for the negative sign elliptic. The important class of overdamped problems arising in mechan-
ics is a sub-class of the hyperbolic problems. For each of these classes of generalized and
quadratic eigenvalue problems we show how to check that a putative member has the required
properties and we derive the distance to the nearest problem outside the class. For definite pairs
(A,B) the distance is the Crawford number, and we derive bisection and level set algorithms
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both for testing its positivity and for computing it. Testing hyperbolicity of a QEP is shown
to reduce to testing a related pair for definiteness. The distance to the nearest non-hyperbolic
or non-ellipticn × n QEP is shown to be the solution of a global minimization problem with
n − 1 degrees of freedom. Numerical results are given to illustrate the theory and algorithms.
© 2002 Published by Elsevier Science Inc.
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1. Introduction

Eigenvalue problemsAx = λx with HermitianA have many desirable properties
and are amenable to a variety of special algorithms. Here we consider what can
be regarded as the closest analogues of this class of problems for the generalized
eigenvalue problem and the quadratic eigenvalue problem (QEP): definite general-
ized eigenvalue problems and hyperbolic QEPs. A property in common to all these
problems is that the eigenvalues are real. We also consider elliptic QEPs, which have
eigenvalues that are all non-real.

We have two aims: to determine, for a given generalized or quadratic eigenvalue
problem, whether the property of interest holds, and, if it does, to compute the dis-
tance to the nearest problem without that property. The first problem is non-trivial
because definiteness, hyperbolicity and ellipticity are all defined by optimization
problems over the unit ball. The second problem is analogous to stability radii com-
putations in control theory, whereby it is determined by how much a problem can be
perturbed without it losing its defining property.

The definite generalized eigenvalue problem is treated in Section 2. We show that
the distance from a definite problem to the nearest non-definite one is given by the
Crawford number—the number whose positivity is used to define definiteness. We
show how to compute the Crawford number using a bisection algorithm. Although
each iteration of this algorithm is expensive, only a few iterations may be required
to detect definiteness and an interval guaranteeing to contain the Crawford number
is produced. We also derive a more efficient and rapidly converging level set algo-
rithm that, in particular, tests for definiteness at the cost of solving just one quadratic
eigenvalue problem.

In Section 3 we give definitions and characterizations of hyperbolic QEPs (includ-
ing the subclass of overdamped QEPs) and elliptic QEPs. We show that testing for
hyperbolicity can be reduced to testing for definiteness of an associated generalized
eigenvalue problem. We also show that the distances to the nearest non-hyperbolic or
non-elliptic QEP can both be expressed in terms of a global minimization problem
over the unit ball.
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Numerical examples are given in both sections to illustrate the theory and algo-
rithms.

2. Definite pair

Two Hermitian matricesA,B ∈ Cn×n form a definite pair if

γ (A,B) := min
z∈Cn

‖z‖2=1

√
(z∗Az)2 + (z∗Bz)2 > 0. (2.1)

The quantityγ (A,B) is known as the Crawford number. A sufficient condition for
definiteness is that one ofA andB is definite, but it is the definiteness of a suitable
linear combination ofA andB that characterizes definiteness of the pair, as shown
by the following result [19], [20, Theorem 6.1.18]. We denote byλmin andλmax the
smallest and largest eigenvalues, respectively, of a Hermitian matrix.

Theorem 2.1. Let (A,B) be a definite Hermitian pair, and forθ ∈ R let

Aθ = A cosθ + B sinθ,
Bθ = −A sinθ + B cosθ.

(2.2)

Then there is aθ ∈ [0, 2�) such thatBθ is positive definite and

γ (A,B) = λmin(Bθ ).

Definite pairs have the desirable properties that they are simultaneously diagon-
alizable and, in the associated eigenproblem,Ax = λBx, the eigenvalues are real.
The practical importance of definite pairs stems from their appearance in physical
problems, particularly vibration problems in engineering; in practice the matrixB is
usually positive definite.

An alternative interpretation ofγ in (2.1) is

γ (A,B) = min{|w| : w ∈ F(A + iB)}, (2.3)

where the field of values of a generalG ∈ Cn×n is defined by

F(G) = {
z∗Gz : z ∈ Cn, ‖z‖2 = 1

}
.

Thus(A,B) is a definite pair if and only ifF(A + iB) does not contain the origin,
andγ (A,B) is the distance from the origin to the nearest point inF(A + iB).

Two questions are of interest: “How can we test whether a given Hermitian pair
(A,B) is definite?”, and “How far is a definite pair from being non-definite?” We
consider the second question first, since the answers to the two questions are closely
related.

We define the distance from a Hermitian pair(A,B) to the nearest non-definite
pair by
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d(A,B) = min
{‖[�A �B]‖2 : z∗(A + �A + i(B + �B))z = 0,

somez /= 0
}
. (2.4)

Here, and throughout, perturbations of Hermitian matrices are assumed to be He-
rmitian. A feasible perturbation in the definition ofd is �A and�B such that[A +
�A,B + �B] has rank less thann, and the minimum of‖[�A,�B]‖2 over all such
perturbations is

σn

([
A

B

])
� d(A,B), (2.5)

whereσn denotes thenth largest singular value. However, this upper bound can be
arbitrarily weak: for

A =
[
1 0
0 −1

]
and B = µA

we haveγ (A,B) = 0 but the upper bound in (2.5) is
√

1 + µ2.
In [3] a computable formula is obtained for the 2-norm distance from an arbitrary

Hermitian pair to the nearest definite pair with a given value ofγ . Making use of the
ideas from [3] we can readily solve the converse problem (2.4).

Theorem 2.2. For HermitianA,B ∈ Cn×n, d(A,B) = γ (A,B).

Proof. We assume that(A,B) is a definite pair, otherwise the result is trivial. Sup-
posez∗(A + �A + i(B + �B))z = 0 for somezwith ‖z‖2 = 1. Then

γ (A,B) � |z∗(A + iB)z|
= |z∗(�A + i�B)z|
= ‖[z∗�Az z∗�Bz]‖2

= max
θ

∥∥∥∥[
z∗�Az z∗�Bz

] [
cosθ
sinθ

]∥∥∥∥
2

= max
θ

∥∥∥∥z∗[�A �B]
[
z cosθ
z sinθ

]∥∥∥∥
2

� ‖[�A �B]‖2. (2.6)

Thusd(A,B) � γ (A,B). Suppose, first, that the nearest point to the origin in the
convex setF(A + iB) is γ (A,B) on the real axis. Then a perturbation toA of
−γ (A,B)I shiftsF(A + iB) left to touch the origin. This perturbation gives equal-
ity throughout (2.6) and so is optimal. In the general case we can rotate the field of
values, as in (2.7) below, to reduce to the previous case.�

To summarize, computingd(A,B) is equivalent to computingγ (A,B), where-
as testing whether(A,B) is a definite pair requires only determining whether
γ (A,B) > 0.



N.J. Higham et al. / Linear Algebra and its Applications 351–352 (2002) 455–474 459

2.1. Existing methods for testing definiteness

Crawford and Moon [4,5] present a bisection-like algorithm for computing aθ

such thatBθ in (2.2) is positive definite or determining that such aθ does not exist.
At each step the algorithm performs a Cholesky factorization to test the definiteness
of Bθ for the current estimate ofθ . The algorithm takes a finite number of steps that
in the worst case is O(n), and therefore O(n4) flops can be required. This algorithm
does not computeγ (A,B).

Another way to test definiteness is to apply theJ-orthogonal Jacobi algorithm of
Veselíc [24], which breaks down when applied to an indefinite pair. However, this
algorithm uses hyperbolic transformations so is potentially unstable.

Theorem 2.1 shows that the problem of checking definiteness can be expressed
as that of checking feasibility (for some realα andβ) of the linear matrix inequality
(LMI)

αA + βB > 0,

where the inequality denotes positive definiteness of the left-hand side. Various in-
terior point methods are available for the solution of convex optimization problems
with LMI constraints [23]. However, none of them is likely to be as efficient for this
problem as Algorithm 2.4.

Finally, we note that an algorithm given by Doyle [6, Appendix] and Fan [9,
Algorithm 2.2] for finding the vector of minimum 2-norm in the convex hull of a set
of vectors can be used to computeγ (A,B), in view of (2.3). However, this algorithm
appears to be only linearly convergent and does not bracketγ (A,B), so it is less
attractive than Algorithms 2.3 and 2.4.

2.2. Bisection and level set methods

We now examine how to evaluateγ (A,B) for an arbitrary Hermitian pair(A,B).
WriteC = A + iB and note that

F(e−iθC) = e−iθF (C), (2.7)

that is, the field of values of e−iθC is that ofC rotated clockwise throughθ radians
about the origin. Moreover, it is easy to see that each pointz ∈ F(e−iθC) satisfies

1
2λmin(e

−iθC + eiθC∗) � Re(z) � 1
2λmax(e

−iθC + eiθC∗).

This leads to the formulae (essentially [3, Theorem 2.1]), for a Hermitian pair(A,B),

γ (A,B) = − min

(
min

0�θ�2�
λmax(A cosθ + B sinθ), 0

)

= max

(
max

0�θ�2�
λmin(A cosθ + B sinθ), 0

)
, (2.8)
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where the outer min and max account for the case where 0∈ F(C), so that(A,B) is
not a definite pair. Computingγ (A,B) is therefore a one-dimensional global optimi-
zation problem. Optimization techniques that are based on function minimization or
on a simple grid search (as used in [3]) produce at best a local minimum. By taking
advantage of the structure of the problem we will derive methods that guarantee to
capture the global minimum. It was pointed out by a referee that (2.8) can also be
reformulated as a convex optimization problem involving matrices of ordern, but
this alternative has not yet been compared with the methods proposed in this paper.

Rewriting (2.8), our aim is to compute

ω(A,B) = max{f (z) : |z| = 1},
where

f (z) = λmin(M(z)), M(z) = (z−1C + zC∗)/2,
and whereM(z) is Hermitian forz on the unit circle. For suchz the functionf is a
continuous function ofz and so it achieves every value between its minimum and
its maximum. We can assume without loss of generality thatC is non-singular, as
otherwise 0∈ F(A + iB) and(A,B) is not a definite pair.

For a givenξ we ask whetherf achieves the levelξ , that is, whetherξ is the
smallest eigenvalue ofM(z) for somez on the unit circle. For any non-zeroz the
following equivalence is clear:

det(M(z) − ξI ) = 0 ⇐⇒ det(Q(z)) := det(C − 2ξzI + z2C∗) = 0. (2.9)

The quadraticQ has 2n eigenvalueszj . We compute thezj , and for each one on the
unit circle (if there are any) we computeλmin(M(zj )). If λmin(M(zj )) = ξ for some
j then we know thatf (z) = ξ is achieved, and otherwise it is not. This provides
the basis for a bisection algorithm for maximizingf, analogous to that of Byers [2]
for computing the distance to the nearest unstable matrix. On each iteration of the
following algorithmf (z) = a � ω(A,B) � b, for somez on the unit circle.

Algorithm 2.3. Given HermitianA andB with A + iB non-singular, a bracket[a, b]
for ω(A,B) with a = f (z) for some|z| = 1, and a tolerance tol, this algorithm
refines the bracket to an interval of width at most tol containingγ (A,B).

while b − a > tol
ξ = (a + b)/2
Compute the eigenvalueszj of Q(z).
If λmin(M(zj )) = ξ for some eigenvaluezj of Q on the unit circle

a = ξ

else
b = ξ

if b � 0, return witha = b = 0, end %γ (A,B) = 0
end

end
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Note that instead of bisecting using the arithmetic mean of the interval[a, b],
whena > 0 we could use the geometric mean

√
ab (suitably modified whena is

very small), which is preferable if|ω(A,B)| is much smaller than the initial value
of b.

Algorithm 2.3 needs an initial interval[a, b] that bracketsω(A,B), with a =
f (z) for some|z| = 1. From (2.5) and Theorem 2.2 we can take

b = σn

([
A

B

])
(2.10)

and

a =
{

max(a0, 0) if (A,B) is known to be definite,
a0 otherwise,

(2.11)

where (by sampling atz = ±1,±i),

a0 := max
{
λmin(A),−λmax(A), λmin(B),−λmax(B)

}
.

For the tests|zj | = 1 andλmin(M(zj )) = ξ a tolerance is needed of size less than tol
but greater than the error in the computed eigenvalue (which is roughly the condition
number of the eigenvalue multiplied by the machine precision, if a stable solver is
used).

The algorithm terminates as soon as it generates a negativeb, since that guarantees
ω(A,B) < 0 and hence thatγ (A,B) = 0, that is, the pair is not definite. If our aim is
to test whether(A,B) is definite but not to computeγ (A,B) then we can terminate
Algorithm 2.3 as soon as the lower bounda is positive.

Whenω(A,B) is zero or tiny many iterations may be required to verify definite-
ness or non-definiteness, as thenω(A,B) must be computed accurately enough to
determine its sign. This limitation will affect any numerical method. In particular,
if γ (A,B) is of the order of the unit roundoff times some normwise measure of
(A,B) then we cannot expect to determine definiteness in floating point arithme-
tic, since Theorem 2.2 implies that backward errors due to roundoff can change the
definiteness of the pair.

Algorithm 2.3 guarantees to produce an interval in whichγ (A,B) lies, but each
iteration is expensive as it requires the solution of a quadratic eigenvalue problem
and up to 2n Hermitian eigenproblems.

A more efficient algorithm can be obtained by applying the level set algorithm of
[18], which was derived for stability radii computations. The idea is to consider all
the eigenvalues of the Hermitian matrix

A cosθ + B sinθ − ξI = 1
2(e

−iθC + eiθC∗) − ξI,

where the levelξ is a parameter. Since this matrix is analytic in the real variable
θ , the eigenvalues are piecewise analytic functions ofθ , losing analyticity only at
θ corresponding to a multiple eigenvalue [13]. Moreover, the unit modulus zeros of
det(M(z) − ξI ) determine the “zero crossings” of these functions, since

det(A cosθ + B sinθ − ξI ) = 0 ⇐⇒ det(M(z) − ξI ) = 0, z = eiθ .
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By (2.9), these are also the unit modulus eigenvalues of the quadratic polynomial
Q(z) = C − 2ξzI + z2C∗. For such an eigenvaluezj = eiθj of Q we have, recalling
the notation (2.2),

Q(zj ) = 2zj (Aθj − ξI ),

and hence any eigenvector ofQ corresponding to the eigenvaluezj is an eigenvector
of Aθj − ξI corresponding to the eigenvalue 0. It follows from standard results (see,
e.g., [13]) that for a simple zero eigenvalue ofAθj − ξI with normalized eigenvector
v, the derivative of the eigenvalue is given by

�
�θ

λi(Aθ − ξI )|θj = v∗ �
�θ

(Aθ − ξI )|θj v = v∗Bθj v. (2.12)

More generally, for an eigenvector space of dimensionk spanned by ann × k or-
thonormal matrixV, the eigenvalues of thek × k matrix V ∗Bθj V are the deriva-
tives of thek eigenvalue crossings atθj . The sign of the derivatives determines if an
eigenvalue increases or decreases at each particular zero crossing, with a zero deriva-
tive signalling a multiple eigenvalue. Now setξ = 0. If all n eigenvalues ofA cosθ +
B sinθ become positive at a particular angleθ then they all become negative atθ ± �,
since

A cos(θ ± �) + B sin(θ ± �) = −(A cosθ + B sinθ). (2.13)

It follows that a definite pair must have, for someθ , at leastn strictly increasing
crossings in[θ − �, θ) and at leastn strictly decreasing crossings in[θ, θ + �). Since
there are at most 2n zeros in any interval[θ − �, θ + �), a definite pair must have
exactly nconsecutive strictly increasing zero crossings followed byn consecutive
strictly decreasing zero crossings in[θ − �, θ + �). This is clearly also a sufficient
condition for a definite pair, sincen consecutive strictly increasing zero crossings in
an interval[θ − �, θ) ensure that all eigenvalues ofA cosθ + B sinθ are positive.
The procedure for testing definiteness is thus very simple.

Algorithm 2.4. Given a Hermitian pair(A,B) with A + iB non-singular this algo-
rithm determines whether or not the pair is definite.

Compute the eigenvalues ofQ(z) (with ξ = 0).
If there are 2n eigenvalues of unit modulus

Compute the derivatives in (2.12) (withξ = 0).
If there aren consecutive strictly increasing andn consecutive
strictly decreasing zero crossings

The pair is definite; return
end

end
The pair is not definite.

This algorithm enables us to test for definiteness by solving just one quadratic
eigenvalue problem.
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Fig. 1. Eigenvalues of a 5× 5 matrixA cosθ + B sinθ as a function ofθ ∈ [−�, �].

Fig. 1 illustrates the algorithm. The matricesA andB are random, 5× 5, real and
symmetric. The 10 unit modulus eigenvalues ofQ are marked with circles and the
sign of the derivative is marked under each zero crossing. The pattern of the signs
proves definiteness. The interval containing the maximum of the smallest eigen-
value is[1.9187, 2.1851] and the eigenvalues ofA cosθ + B sinθ at the midpoint
are marked with diamonds. These are all positive, which confirms the definiteness of
the pair.

The same idea can be used to compute the Crawford number,γ (A,B). Use Algo-
rithm 2.4 to test definiteness of the pair. If definiteness is confirmed then an interval
of θ is known throughout whichλmin(A cosθ + B sinθ) > 0; compute the eigen-
values at its midpoint,θmid. The valueξ = λmin(A cosθmid + B sinθmid) > 0 is then
a lower bound for the Crawford number that can be used for the next “level”. If
λmin(A cosθ + B sinθ) is not multiple at its maximum value then this scheme can
be shown to be quadratically convergent [11]. Moreover, variants are proposed in
[11] that generically have a higher order of convergence by exploiting the computed
derivatives at the zero crossings.

While the bisection algorithm is less efficient and slower to converge than the
level set algorithm it does have one advantage: it produces a bracket forγ (A,B)

that shrinks to zero, whereas the level set algorithm produces only a monotonically
increasing lower bound.

We give a numerical example, withn = 10 and

A = (|i − j |) (Fiedler matrix),
B = UTU, U unit upper triangular with

uij = −1, j > i (Moler matrix).
(2.14)
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Fig. 2. F(A + iB), with A the Fiedler matrix andB the Moler matrix.

The pair(A,B) is obviously definite, and applying Algorithm 2.3 with tol= 10−4

we obtain after 15 iterations an interval that enables us to conclude thatd(A,B) =
γ (A,B) = 0.1868 to 4 significant figures. The initial interval from (2.10) and (2.11)
is [a, b] = [8.583× 10−6, 2.314]. Sincea0 in (2.11) is positive, the algorithm deter-
mines immediately thatγ (A,B) > 0. Fig. 2 plotsF(A + iB), with the eigenvalues
ofA + iB marked as crosses. SinceB is positive definite, the field of values lies in the
upper half-plane. The smallest eigenvalue ofB is 8.6 × 10−6, so while a perturbation
of order 10−6 causesB to lose definiteness, a perturbation of order 10−1 to A andB
is necessary to cause the pair to lose definiteness.

When we apply Algorithm 2.4 to this example we again detect that the matrix pair
is positive definite; see Fig. 3. The smallest eigenvalue ofA cosθ + B sinθ at the
midpoint of the relevant interval is 0.1867, which is a lower bound for the Crawford
number.

3. Hyperbolic and elliptic systems

Now we turn our attention to the quadratic eigenvalue problem (QEP) [22]

Q(λ)x = (λ2A + λB + C)x = 0, A, B,C ∈ Cn×n. (3.1)

An important class of QEPs is defined as follows [15].

Definition 3.1. The QEP (3.1) is hyperbolic ifA is Hermitian positive definite,B
andC are Hermitian, and

(x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all non-zerox ∈ Cn. (3.2)
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Fig. 3. Eigenvalues ofA cosθ + B sinθ with A the Fiedler matrix andB the Moler matrix.

For any eigenpair(x, λ), on premultiplication of (3.1) byx∗ we obtain the scalar
quadratic equationλ2x∗Ax + λx∗Bx + x∗Cx = 0, with solutions

λ = −x∗Bx ± √
(x∗Bx)2 − 4(x∗Ax)(x∗Cx)

2x∗Ax
, (3.3)

at least one of which is an eigenvalue. It follows that for a hyperbolic QEP all 2n

eigenvalues are real. A hyperbolic QEP has further properties [7,8], [14, Section
7.6]: there is a gap between then largest eigenvalues (the primary eigenvalues) and
the n smallest eigenvalues (the secondary eigenvalues), and there aren linearly in-
dependent eigenvectors associated with the primary eigenvalues and likewise for the
secondary eigenvalues (in other words, all the eigenvalues are semi-simple).

We note that certain types of gyroscopic systems are equivalent to hyperbolic
systems; see the example in Section 3.3.2.

A more specialized class of QEPs is those that are overdamped.

Definition 3.2. The QEP (3.1) is overdamped if it is hyperbolic withB Hermitian
positive definite andC Hermitian positive semidefinite.

It is immediate from (3.3) that for overdamped problems the eigenvalues are non-
positive. These problems are essentially shifted hyperbolic problems. To see why,
consider the identity

Q(λ + θ)= λ2A + λ(B + 2θA) + C + θB + θ2A

=: λ2Ã + λB̃ + C̃ = Q̃(λ).
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It is easy to see that (3.2) holds forQ if and only if it holds forQ̃. Moreover, ifQ
is hyperbolic theñQ is overdamped for a large enough shiftθ , sinceA is positive
definite, and conversely any overdamped QEP can be shifted to make it non-over-
damped but still hyperbolic.

Another important class of QEPs is those for which (3.2) holds with the inequality
reversed.

Definition 3.3. The QEP (3.1) is elliptic ifA is Hermitian positive definite,B andC
are Hermitian, and

(x∗Bx)2 < 4(x∗Ax)(x∗Cx) for all non-zerox ∈ Cn. (3.4)

Elliptic QEPs clearly have non-real eigenvalues, and, necessarily,C is positive
definite.

3.1. Testing for hyperbolicity and ellipticity

The first question of interest is how to test whether a given QEP is hyperbolic
or elliptic. We need the following results from [15,16], which are generalizations of
properties that are obvious forn = 1.

Theorem 3.4. A QEP with A, B and C Hermitian and A positive definite is hyper-
bolic if and only ifQ(µ) is negative definite for someµ ∈ R.

Theorem 3.5. Ellipticity of a QEP with A,B and C Hermitian and A positive definite
is equivalent to either of the conditions:
1. Q(µ) is positive definite for allµ ∈ R,

2. (x∗Bx)2 < 4(x∗Ax)(x∗Cx) for all eigenvectors x of the QEP.

Theorem 3.5 shows that to test for ellipticity is straightforward: compute the
eigenvectors and check whether the discriminant condition is satisfied for all of
them.

Testing for hyperbolicity is more complicated. Theorem 3.4 shows that it would
suffice to solve the one-dimensional global optimization problem minµ λmax(Q(µ)).
We show that testing for hyperbolicity can be reduced to testing for definiteness of a
Hermitian pencil of twice the dimension, which can be done using Algorithm 2.3 or
Algorithm 2.4. The following result is a slight generalization of one of Veselić [24,
Theorem A5] and is essentially contained in [1].

Theorem 3.6. A QEP with A, B and C Hermitian and A positive definite is hyper-
bolic if and only if the pair(A1, B1) is definite, where

A1 =
[−C 0

0 A

]
, B1 = −

[
B A

A 0

]
.
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Proof. Recall from Theorem 2.1 that(A1, B1) is definite if and only ifαA1 + βB1
is positive definite for someα andβ. Clearly,α = 0 can be ruled out, sinceB1 is
indefinite. Forα /= 0 we have

αA1 + βB1 =
[−αC − βB −βA

−βA αA

]
=

[
I −β

α
I

0 I

][
−αC − βB − β2

α
A 0

0 αA

] [
I 0

−β
α
I I

]
.

SoαA1 + βB1 is congruent to

α diag
( − (µ2A + µB + C),A

)
,

whereµ = β/α. The result now follows from Theorem 3.4, sinceA is positive
definite. �

Also of interest are sufficient conditions for hyperbolicity and ellipticity that may
be verifiable using knowledge of the QEP. The following result provides some con-
ditions based on extremal eigenvalues of the coefficient matrices (condition (3.6) is
given in [1, Theorem 3]). Here,σmin andσmaxdenote the smallest and largest singular
values.

Theorem 3.7. A QEP with A Hermitian positive definite and B and C Hermitian is
hyperbolic if either of the following inequalities holds:

σmin(B)2 > 4λmax(A)λmax(C), (3.5)

min
i

|λi(A−1B)|2 > 4λmax(A
−1C). (3.6)

A QEP with A, B and C Hermitian and A and C positive definite is elliptic if either
of the following inequalities holds:

σmax(B)2 < 4λmin(A)λmin(C), (3.7)

max
i

|λi(A−1B)2| < 4λmin(A
−1C). (3.8)

Proof. Condition (3.5) is immediate from the variational characterization of eigen-
values of Hermitian matrices. SinceA is positive definite it has a unique Hermitian
positive definite square rootA1/2, and by settingx = A−1/2y condition (3.2) is
transformed to

(y∗A−1/2BA−1/2y)2 > 4(y∗y)(y∗A−1/2CA−1/2y) for all y /= 0.

Again applying the variational characterization and noting thatA−1/2BA−1/2 is sim-
ilar to A−1B, and similarly forC, leads to (3.6). Conditions (3.7) and (3.8) are ob-
tained in the same way.�
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For both pairs of inequalities in Theorem 3.7 either member can be stronger than
the other, depending on the particular QEP. Indeed, ifB = C = I then (3.5) requires,
like (3.2), thatλmax(A) < 1/4, whereas (3.6) imposes the stronger requirement that
κ2(A)λmax(A) < 1/4, whereκ2(A) = ‖A‖2‖A−1‖2. On the other hand, forB = A

andC = I , (3.6) requires, like (3.2), thatλmin(A) > 4, whereas (3.5) insists that
λmin(A) > 4κ2(A).

3.2. Distance to nearest non-hyperbolic or non-elliptic QEP

We assume throughout this section thatA, B andC are Hermitian withA positive
definite. For a QEP that is hyperbolic or elliptic we are interested in by how much
the coefficient matrices must be perturbed for this property to be lost. Clearly, both
properties are lost whenA is perturbed to lose definiteness, which can be achieved
by adding a perturbation of 2-norm equal toλmin(A). The more interesting way in
which hyperbolicity or ellipticity is lost is when conditions (3.2) or (3.4) fail. We
will treat both properties together by making use of the 2× 2 Hermitian matrix

W(x,A,B,C) =
[
2x∗Ax x∗Bx

x∗Bx 2x∗Cx

]
.

Note that

det(W(x,A,B,C))

{
< 0 for all x /= 0 if the QEP is hyperbolic,
> 0 for all x /= 0 if the QEP is elliptic.

For both properties we are interested in perturbing the coefficient matrices to achieve
det(W(x,A,B,C)) = 0. Therefore both the distance from a hyperbolic problem to
the nearest non-hyperbolic problem and the distance from an elliptic problem to the
nearest non-elliptic problem can be defined by

d(A,B,C)

= min
{
f (�A,�B,�C) : det(W(x,A + �A,B + �B,C + �C)) = 0

for somex /= 0
}
. (3.9)

Here,f is some non-negative function of the perturbation matrices�A, �B and�C.
Also of interest as a natural measure of the degree of hyperbolicity or ellipticity is
the quantity

φ(A,B,C) = min‖x‖2=1

√
|(x∗Bx)2 − 4(x∗Ax)(x∗Cx)|. (3.10)

We wish to obtain a simpler formulation ford(A,B,C) and to compare this distance
with φ(A,B,C).

There are many possible choices off, but it is convenient to work with

f (A,B,C) =
∥∥∥∥[

2A B

B 2C

]∥∥∥∥
F
.



N.J. Higham et al. / Linear Algebra and its Applications 351–352 (2002) 455–474 469

We can rewrite (3.9) as

d(A,B,C) = min‖x‖2=1
min

{
f (�A,�B,�C) :
det(W(x,A + �A,B + �B,C + �C)) = 0

}
.

Denote by�Wopt = (δij ) the matrix�W of smallest Frobenius-norm for which
W(x,A,B,C) + �W is singular, for a given unit 2-normx. Since

W(x,A + �A,B + �B,C+ �C)=W(x,A,B,C) + W(x,�A,�B,�C),

for any feasible�A, �B and�C in (3.9) we have

‖�Wopt‖2
F � ‖W(x,�A,�B,�C)‖2

F

� 4‖�A‖2
F + 2‖�B‖2

F + 4‖�C‖2
F

= f (�A,�B,�C)2,

and we have equality throughout for

�A = (δ11/2)xx
∗, �B = δ12xx

∗, �C = (δ22/2)xx
∗,

for whichW(x,�A,�B,�C) = �Wopt. We conclude that the latter perturbations
are optimal for the givenx.

Now �Wopt = −λoptvoptv
∗
opt, whereλopt is the eigenvalue ofW(x,A,B,C) of

smallest modulus andvopt is a corresponding unit eigenvector, and so we have the
(non-convex) global minimization problem

d(A,B,C) = min‖x‖2=1
g(x), (3.11)

where

g(x) = |λopt(W(x,A,B,C))|.
Note that, from (3.10),

φ(A,B,C) = min‖x‖2=1

√|det(W(x,A,B,C))|

= min‖x‖2=1

√|λmin(W(x,A,B,C))λmax(W(x,A,B,C))|
� d(A,B,C),

soφ overestimates the distance to the nearest non-hyperbolic or non-elliptic system.
The eigenvalues ofW(x,A,B,C) arex∗(A + C)x ± √

(x∗(A − C)x)2 + (x∗Bx)2.
For a hyperbolic problem, ifC is positive semidefinite then we take the minus sign
to obtain

λopt = x∗(A + C)x −
√
(x∗(A − C)x)2 + (x∗Bx)2. (3.12)

SinceW is indefinite with trace(W) > 0, we haveλopt < 0 < λmax with |λopt| <
λmax; thusg is differentiable for all non-zerox, sinceWhas distinct eigenvalues, and
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so local minima ofg can be found by standard optimization techniques. For ellip-
tic problems (3.12) also holds; here the eigenvalues ofW are positive but repeated
eigenvalues are possible, sog may not be differentiable at the global minimum.

An interesting special case isn = 1. Consider, for example, the elliptic quadratic
q(x)=ax2 + bx + c = x2 + (2 − ε)x + 1, with 0< ε � 1. The discriminantb2 −
4ac = ε(ε − 4), soφ(a, b, c) ≈ 2ε1/2. To obtaind(a, b, c) we note first that

W(1, a, b, c) =
[

2 2− ε

2 − ε 2

]
, λopt = ε, vopt = 1√

2

[
1

−1

]
.

Therefore d(a, b, c) = ε � φ(a, b, c) and the nearest non-elliptic quadratic is
(1 − ε/4)x2 − (2 − ε/2)x + 1 − ε/4, which has zero discriminant.

3.3. Numerical examples

We give three numerical examples to illustrate the results, each with a different
type of QEP: the first is real and overdamped, the second is complex and hyperbolic
but not overdamped, and the third is real and elliptic.

The question arises of whether for real data we can restrictx to be real in the
minimizations (3.10) and (3.11), since the all the definitions in this section involve
complexx. Forn > 2 the answer is yes, and indeed hyperbolicity is sometimes de-
fined in terms of realx whenQ is real (see [7,8,14], for example). The exclusion of
n = 2 relates to a subtlety in the definition (2.1) of definite pair; see [17,19] and [20,
p. 290] for a discussion of this issue.

In computingd(A,B,C) andφ(A,B,C) we used direct search (functionmdsmax
from [12]), taking the convergence tolerance of order the unit roundoff to obtain the
best possible accuracy and trying different starting values in order to be confident
that the global minima were obtained.

3.3.1. Damped mass–spring system
Our first example is from a damped mass–spring system; see [21] for the details.

With four masses and a particular choice of the masses and the spring and damper
constants the matrices are

A = I4, B =


8 −4 0 0

−4 12 −4 0
0 −4 12 −4
0 0 −4 8

 , C =


2 −1 0 0

−1 3 −1 0
0 −1 3 −1
0 0 −1 2

 .

All three matrices are positive definite and the quadratic eigenvalue problem (3.1) is
overdamped. The sufficient conditions (3.5) and (3.6) for hyperbolicity are identical
in this case and are not satisfied. On applying Algorithm 2.3 to the pair(A1, B1) in
Theorem 3.6, the pair is diagnosed definite, and hence the QEP hyperbolic, after just
one iteration.

Minimization of g(x) yieldedd(A,B,C) = 2.0, with optimal perturbations of
a particularly simple form in this case:�A = 0.125eeT, �B = −0.25eeT, �C =
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Table 1
Eigenvalues of original (hyperbolic) and perturbed (non-hyperbolic) quadratic eigenvalue problem from
a damped mass–spring system

Original Perturbed

−1.7403e1 −1.7403e1
−1.1745e1 −1.1745e1
−6.0824e0 −6.0824e0
−3.7321e0 −1.0000e0
−2.6795e−1 −1.0000e0
−2.6072e−1 −2.6072e−1
−2.5544e−1 −2.5544e−1
−2.5364e−1 −2.5364e−1

0.125eeT, wheree is the vector of 1’s. All ofA + �A, B + �B andC + �C are
positive definite. By comparison,φ(A,B,C) = 3.4641. The eigenvalues of the orig-
inal and perturbed quadratic eigenvalue problems are shown in Table 1. In this ex-
ample, loss of hyperbolicity coincides with loss of the gap between the primary and
secondary eigenvalues.

3.3.2. Moving wiresaw
We consider a model of the motion of a wiresaw used to cut through silicon ingot

[25]. The underlying partial differential equation has the form

utt − 2vuxt − (1 − v2)uxx = 0, (3.13)

whereu(x, t) is the unknown function andv is a parameter. Approximating

u(x, t) =
n∑

k=1

qk(t) sin(k�x) (3.14)

and applying the Galerkin method gives the second-order differential equation

Mq̈(t) + Cq̇(t) + Kq(t) = 0, (3.15)

whereq(t) = [q1(t), . . . , qn(t)]T,M= In/2,K= diag1�j�n

(
j2�2(1 − v2)/2

)
, and

C = −CT = (cij ) with cij =
{

4ij
j2−i2

v if i + j is odd,

0 otherwise.

This is a gyroscopic system with correspondingλ-matrixG(λ) = λ2M + λC + K.
Let

Q(λ) = −G(−iλ) = λ2M + λ(iC) − K.

The coefficient matrices are Hermitian and forv < 1 it is easily checked thatK is
positive definite and henceQ is hyperbolic. However,Q is not overdamped.

We took n = 8 andv = 0.01. We found thatd(M, iC,−K) = 1.0, with opti-
mal perturbations�M = −eeT/16,�C = �K = 0, andφ(M, iC,−K) = 4.4427.
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The eigenvalues ofQ(λ) and the perturbed QEP come in pairs(−λ, λ). In contrast
with the previous example, the loss of hyperbolicity coincides with the loss of the
non-singularity ofM and the appearance of infinite eigenvalues.

3.3.3. Wave equation
We consider the free vibration of a string with clamped ends in a spatially inhomo-

geneous environment. The equation characterizing the wave motion can be described
by [10]{

utt + εa(x)ut = �u, x ∈ [0, �], ε > 0,
u(t, 0) = u(t, �) = 0.

Approximatingu as in (3.14) and applying the Galerkin method again leads to a sec-
ond-order differential equation (3.15), here withM = (�/2)In, K = (�/2)diag(j2),
and

C = (ckj ), ckj =
∫ �

0
ε a(x) sin(kx) sin(jx)dx.

In our experiments we taken = 9, a(x) = x2(� − x)2 − δ, δ = 201 andε = 0.1.
The sufficient conditions (3.7) and (3.8) for ellipticity are not satisfied but the con-

dition 2 of Theorem 3.5 is satisfied, so the QEP is elliptic. We found thatd(M,C,K)

= 0.0588 andφ(M,C,K) = 28.1. The spectra of the original and the perturbed
QEP are shown in Fig. 4. The loss of ellipticity corresponds to the two eigenvalues
closest to the real axis merging to become the double eigenvalue 1.

Fig. 4 Spectrum ofQ(λ) for the wave example. The eigenvalues of the original elliptic QEP are marked
by “o” and those of the perturbed QEP by “+”.
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