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Abstract1

We provide an efficient method to calculate the pseudo-inverse of theLaplacian of a bipartite graph, which is2

based on the pseudo-inverse of thenormalized Laplacian.3

© 2005 Elsevier Ltd. All rights reserved.4
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1. Introduction5

In [1], an elegant connection is made between random walks on graphs and electrical network theory.6

Quantities likeprobability of absorption andaverage commute time in graphs have their counterpart in7

electrical networks. Recently, these quantities have been applied incollaborative filtering [2] and they8

involve theLaplacian of large bipartite graphs. It is shown in [3] that theabove quantities can be derived9

from the pseudo-inverse of this Laplacian.10

In this short note, we give an efficient way to compute the pseudo-inverse of the Laplacian of an11

undirected bipartitegraph. Such a graphG = (V, E) is definedby a set of verticesV and a set of edges12

E between these vertices. Letn be the number of vertices then theadjacency matrix of the graphG is13

a matrix A ∈ R
n×n with Ai j = 1 if (i, j) ∈ E and Ai j = 0 otherwise. In thecase of a weighted graph14

Ai j > 0 if (i, j) ∈ E andAi j = 0 otherwise.15
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We assume in this document that the vertices of the bipartite graph are labelled such that the edges1

are between the firstm vertices and thek := n − m remaining ones. If the graph is also undirected then 2

the adjacency matrixA is symmetric and has the following block form: 3

A =
[
0m×m B

BT 0k×k

]
,

4

whereB is a m × k non-negative matrix. Without loss of generality we can assume thatm ≥ k since 5

otherwise one only needs to relabel the vertices. Define then the diagonal matrixD with diagonal entries 6

Dii := ∑n
j=1 Ai j . This is the so-calleddegree matrix of G and the Laplacian matrixL of G is then 7

defined as: 8

L = D − A =
[

D1 −B
−BT D2

]
,

9

whereD1 andD2 are the diagonal blocks ofD. Notice thatD is invertible whenG is connected. 10

It easily follows from the definition ofD that the symmetric matrixL is singular sinceen (the column 11

vector ofn 1’s) is in the null space ofL. We derive in this paper an efficient method to compute the 12

pseudo-inverseL+ of this Laplacian matrix. Let us recall that the pseudo-inverse (or generalized inverse)13

M+ of a matrix M is uniquely defined by the four equations:M M+ M = M, M+ M M+ = M+, 14

M+M = (M+M)T andM M+ = (M M+)T [4]. 15

2. The normalized Laplacian 16

Assuming thatD is invertible, one can scaleL to obtain anormalized Laplacian L̃, defined as: 17

L̃ := D−1/2L D−1/2 = In − D−1/2AD−1/2
18

which then has the following form: 19

L̃ =
[

Im −D−1/2
1 B D−1/2

2

−D−1/2
2 BT D−1/2

1 Ik

]
=

[
Im −B̃

−B̃T Ik

]
. (1)

20

While computing the pseudo-inverse of the Laplacian requires the eigen-decomposition ofL̃, this is 21

much simpler for the normalized Laplacian since one can make use of the singular value decomposition22

(SVD) of B̃. The following result shows the relation between the SVD of̃B and the generalized inverse 23

of L̃. 24

Theorem 1. Let the SVD of the m × k matrix B̃ be given by 25

B̃ = U


Im1 0

0 Σ
0 0


 V T = [

U1 U2 U3
]
Im1 0

0 Σ
0 0


[

V1 V2
]T

26

where k = m1 + m2, m = m1 + m2 + m3, Ui ∈ R
m×mi , Vi ∈ R

k×mi and where Σ ∈ R
m2×m2 has no 27

singular values equal to 1. Then the matrix L̃ has a decomposition
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L̃ =
[

U 0
0 V

]



Im1 −Im1

Im2 −Σ
Im3

−Im1 Im1−Σ Im2




[
U T 0
0 V T

]
(2)

1

and a generalized inverse2

L̃+ =
[

U 0
0 V

]



1
4 Im1 −1

4 Im1

Σ1 Σ2
Im3

−1
4 Im1

1
4 Im1

Σ2 Σ1




[
U T 0
0 V T

]
(3)

3

where Σ1 := (Im2 − Σ2)−1 and Σ2 := ΣΣ1.4

Proof. It follows by inspection that̃L+ satisfies the four equations for the pseudo-inverse.�5

Corollary 1. The pseudo-inverse L̃+ can be written using U12 := [ U1 U2 ] only as follows:6

L̃+ =
[

Im 0
0 0

]
+

[
U12 0
0 V

] 


−3
4 Im1 −1

4 Im1

Σ1 − Im2 Σ2

−1
4 Im1

1
4 Im1

Σ2 Σ1




[
U T

12 0
0 V T

]
. (4)

7

Proof. This follows from (3) andthe identityU3U T
3 = Im − U12U T

12. �8

Corollary 2. The semidefinite matrices L̃ and L̃+ have the following explicit eigen-decomposition:9

L̃ = UL̃ΣL̃U T
L̃

, L̃+ = UL̃Σ+
L̃

U T
L̃10

where11

UL̃ = 1√
2

[−U1 −U2 −√
2U3 U1 U2

V1 V2 0 V1 V2

]
, ΣL̃ =




2Im1

Im2 + Σ
Im3

0m1

Im2 − Σ




12

and13

Σ+
L̃

=




1
2 Im1

(Im2 + Σ )−1

Im3

0m1

(Im2 − Σ )−1


 . (5)

14

Proof. Due to the scaling (1), it follows that‖B̃‖2 ≤ 1 andhence that̃L ≥ 0. The decomposition then15

follows from (2) andUL̃U T
L̃

= I . �16
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It is important tonote that whenm � k computing a pseudo-inverse via (4) is more economical than 1

via the eigenvalue decomposition of an(m + k) × (m + k) matrix, since this would requireO(m + k)3
2

floating point operations (flops) instead of theO(mk2) needed for the SVD approach (see [4] for an 3

operation count of the so-called economical SVD approach). 4

3. Projectors and pseudo-inverses 5

For ann × � matrix M one can define the projectorsΠM on the image ofM andΠMT on the image 6

of MT , using the pseudo inverse ofM (see [4]): 7

ΠM = M M+, ΠMT = M+M. 8

It is often simpler to write it in terms of orthogonal basesVM andUM of the respective kernels ofM and 9

MT : 10

ΠM = In − VM V T
M , ΠMT = I� − UMU T

M 11

and these can e.g. be obtained from an orthogonal decomposition ofM. This is especially useful when 12

the dimension of the kernels is small compared to the dimensionsn and � of the matrix M. For an 13

irreducible undirected bipartite graph, the LaplacianL is symmetric and its kernel is known to be of 14

dimension 1 and spanned byen and henceΠL = ΠLT = In − 1
n eneT

n . 15

In order to compute the pseudo-inverse of the Laplacian matrixL from the normalized Laplacian 16

matrix, we make use of the following result: 17

Theorem 2. Given M ∈ R
n×�, then for any invertible matrices D1 and D2 we have: 18

M+ = ΠMT D2(D1M D2)
+ D1ΠM . (6) 19

Proof. It follows from ΠM = M M+, ΠMT = M+M that 20

ΠMT D2(D1M D2)
+D1ΠM = M+ M D2(D1M D2)

+ D1M M+
21

= M+ D−1
1 (D1M D2)(D1M D2)

+(D1M D2)D−1
2 M+

22

= M+ D−1
1 (D1M D2)D−1

2 M+ = M+M M+ = M+. � 23

If we apply this result to compute the pseudo-inverse of the Laplacian matrixL then the pseudo-inverse 24

of L is: 25

L+ = ΠL D−1/2(D−1/2L D−1/2)+D−1/2ΠL = ΠL D−1/2L̃+D−1/2ΠL . (7) 26

Suppose thatG is connected, then the kernel ofL is spanned byen and 27

L+ =
(

In − 1

n
eneT

n

)
D−1/2L̃+D−1/2

(
In − 1

n
eneT

n

)
. (8)

28

If the graphG is not connected, then one can relabel the firstm vertices and the lastk vertices such that 29

the permuted matrix B has the form 30

Pm B Pk =




B1
. . .

Bt
0


 , (9)

31
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and where each subgraph1

Ai =
[
0mi×mi Bi

BT
i 0ki ×ki

]
2

is now connected. The complexity of the relabelling is proportional to the number of edges in the graph3

(see [5]). Moreover the pseudo-inverse of the Laplacian then amounts to a block arrangement of the4

pseudo-inverses of the smaller Laplacians. Notice also that for each connected subgraph, the condition5

that the corresponding degree matrixDi is invertible is automatically satisfied.6

Remark 1. If a graph consists of two (or more) chained bipartite graphs, then the adjacency matrixA7

has the form8

A =




B1

BT
1 B2

BT
2

. . .

. . . B�

BT
�




.

9

This can also be relabelled in an adjacency matrix of the type found in bipartite graphs. For� = 2 and10

� = 3 this would e.g. yield11

P T AP =

 B1

BT
2

BT
1 B2


 , P T AP =




B1

BT
2 B3

BT
1 B2

BT
3


 .

12

The same techniques can therefore also be applied for computing the pseudo-inverse of the Laplacian of13

such graphs.14

Remark 2. If only ther dominant eigenvectors ofL+ are needed, they can be approximated by ther15

dominant eigenvectors of̃L+. In fact, (5) yields the exact eigen-decomposition of̃L+. Onecan use the16

orthogonal basis̃Ur corresponding to ther largest eigenvalues of̃L+ to approximate ther corresponding17

dominant eigenvectors ofL+ as follows:18

Ur := ΠL D−1/2Ũr . (10)19

This initial approximation can be used in an iterated procedure to compute ther dominant eigenvectors20

of L+.21

4. Concluding remarks22

We have presented a method for calculating the pseudo-inverse of the Laplacian of a bipartite graph.23

The method will have a good performance when the two subsets are very different in size and/or when24

the graph is decomposed into smaller connected bipartite subgraphs.25
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