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Abstract
This paper considers the optimization problem

min
X∈Fv

f (X)+ λ‖X‖1,

where f is smooth, Fv = {X ∈ R
n×q : X T X = Iq , v ∈ span(X)}, and v is a given

positive vector. The clustering models including but not limited to the models used by k-
means, community detection, and normalized cut can be reformulated as such optimization
problems. It is proven that the domain Fv forms a compact embedded submanifold of Rn×q

and optimization-related tools including a family of computationally efficient retractions and
an orthonormal basis of any normal space ofFv are derived. ARiemannian proximal gradient
method that allows an adaptive step size is proposed. The proposed Riemannian proximal
gradient method solves its subproblem inexactly and still guarantees its global convergence.
Numerical experiments on community detection in networks and normalized cut for image
segmentation are used to demonstrate the performance of the proposed method.

Keywords Riemannian optimization ·Manifold recognition · Clustering · Inexact proximal
gradient method

1 Introduction

Optimization on Riemannian manifolds concerns optimizing a real-valued objective function
defined on a Riemannianmanifold. It has been of interest due tomany important applications,
e.g., image segmentation [60] and recognition [69], electrostatics and electronic structure
calculation [34, 74], computer vision [40, 62], signal processing [43, 70, 72], numerical
linear algebra [64], community detection [73], and machine learning [19].

Many Riemannian optimization methods for smooth objectives have been proposed and
systemically analyzed, e.g., Riemannian trust-region Newton method [1, 5], Riemannian
Broyden family method including BFGS method and its limited-memory version [39, 42,
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60], Riemannian trust-region symmetric rank-one update method and its limited-memory
version [35, 36, 38], Riemannian Newton method and Riemannian non-linear conjugate gra-
dient method [2, 63, 65, 82]. However, the work of Riemannian optimization for nonsmooth
objective functions is relatively limited. Most work considers subgradient-based methods
[8, 29, 30, 33, 81]. These methods either focus on geodesically convex objective functions
or require solving a quadratic program to high accuracy, which limits the scope of applica-
tions. When the objective functions have structure, more efficient optimization algorithms
can be developed. Recently, Chen et al. [18] considered nonsmooth problems on the Stiefel
manifold that has the splittable form minX∈M f (X) + g(X), where the manifold M is the
Stiefel manifold St(q, n) = {X ∈ R

n×q : X T X = Iq}, f is smooth, and g is nonsmooth but
admits a simple proximal mapping. A proximal gradient method is proposed therein with
global convergence and is applicable for solving large-scale problems. The proximal map-
ping is solved by a semi-smooth Newton algorithm. However, no convergence rate analysis
is given. In [41], a different version of the proximal gradient method in [7, Section 10.2] for
the splittable function is proposed without restricting the manifold to be the Stiefel manifold.
A convergence rate analysis is also given. The proximal mapping in [41] involves an iterative
algorithm that uses a semi-smooth Newton algorithm in every iteration and therefore can be
less efficient than that in [18].1 In [44], an inexact Riemannian proximal gradient method that
does not require solving the Riemannian proximal mapping of [41] exactly is proposed. It
relaxes the requirements of solving the proximal mapping while preserving the convergence
properties. However, the theoretical results therein rely on the knowledge of the constant L
of the L-retraction-smoothness of the function f , which may not be available. The present
paper proposed a different inexact proximal gradient method that avoids this difficulty.

In this paper, we consider the nonsmooth optimization problems over a subset of the
Stiefel manifold, i.e.,

min
X∈Fv

f (X)+ λ‖X‖1, (1.1)

where the gradient of f is Lipschitz continuous, ‖X‖1 denotes the 1-norm of X , i.e., ‖X‖1 =∑n
i=1

∑q
j=1 |Xi j |,

Fv = {X ∈ R
n×q : X T X = Iq , v ∈ span(X)},

v ∈ R
n is a vector with all entries being positive, and span(X) denotes the columns space

of X . Note that q ≤ n since X T X = Iq .

1.1 Applications

Problem (1.1) can be viewed as an alternative formulation of the problem

min
X∈A(n,q)

v

f (X) (1.2)

under certain circumstances, where A(n,q)
v = {X ∈ R

n×q : X T X = Iq , X ≥ 0, v ∈
span(X)}, X ≥ 0 denotes that all entries of X are nonnegative, and v is a given positive
vector. We next give a few important clustering problems that can be formulated in terms
of (1.2) and then discuss the connections between Problem (1.2) and Problem (1.1).

1 In some cases, the proximal mapping in [41] can be solved efficiently without resorting to the semi-smooth
Newton algorithm, see [41, Section 5.2].
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Example 1 (k-means model) The k-means algorithm [32, 52] was proposed to cluster vectors
in Rd . It is one of the most popular clustering algorithms due to its simplicity and efficiency.
Given n points ai in R

d and k initial estimations of the means of k groups, the k-means
algorithm first assigns ai , i = 1, . . . , n to their closest means and creates k groups. Then the
k means are updated by computing the means of the new k groups. Such a process is repeated
until the algorithm converges. The k-means algorithm can be shown to be a minimization
algorithm for solving the optimization problem

min
X∈A(n,k)

1n

||A − X X T A||2F , (1.3)

where A = [a1, a2, . . . , an]T , and 1n denotes the vector with all entries being one, see [14].

Example 2 (Community Detection) Real-world network systems often have a commu-
nity structure, which is the division of network nodes into groups such that the network
connections are denser within the groups and are sparser between the groups, see [57].
These groups are called communities, or modules. A variety of community detection
algorithms have been developed in recent years [9, 54, 56, 58, 61, 77]. Among them,
modularity optimization approaches have been shown to be highly effective in practical
applications, see [27]. In [73], it is proven that in an ideal graph, the global minimizer of
f : A(n,q)

1n
→ R : X �→ −trace(X T M X) is a matrix that represents the ground truth, where

M = A−A1n1T
n A/(1T

n A1n) is themodularitymatrix, A is the adjacencymatrix of the graph,
and q is the number of communities. In the presence of noise, the community detection is
still formulated as the optimization problem

min
X∈A1n

−trace(X T M X), (1.4)

under the assumption that the noise is not significant enough to change its minimizer.

Example 3 (OtherGraph PartitioningTechniques) Besides community detection, other graph
partitioning problems including general weighted graph cuts, such as ratio association,
ratio cut, normalized cut, and Kernighan-Lin objective function, can be formulated as an
optimization problem, as shown in [24],

min
Y T DY=Iq ,Y T Y is diagonal, ,Y≥0,1n∈span(Y )

−trace(Y T DK DY ), (1.5)

where K ∈ R
n×n is symmetric and D ∈ R

n×n is a diagonal matrix with all entries being
positive. These graph partitioning problems have been used in many areas, such as circuit
layout [16] and image segmentation [67]. Letting X denote D1/2Y , it follows that the con-
straints in (1.5) yields X T X = Iq , X T D−1X is diagonal, X ≥ 0, and v ∈ span(X), where
v = diag(D1/2). Since X T X = Iq and X ≥ 0 imply that each row of X has at most one

nonzero entry, the constraint “X T D−1X is diagonal” is redundant. It follows that X ∈ A(n,q)
v .

Therefore, Problem (1.5) can be reformulated into

min
X∈A(n,q)

v

−trace(X T D1/2K D1/2X), (1.6)

which is in the form of (1.2).

Connections between Problem (1.1) and Problem (1.2) Problem (1.2) and Problem (1.1) are
connected in such away that the problems above can be solvedwith the latter using techniques
developed in this paper. Problem (1.2) can be reformulated by replacing the non-negative
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constraints X ≥ 0 with a sparsity constraint ‖X‖0 = n where ‖X‖0 corresponds to the total
number of nonzero elements in X , which yields

min
X∈Bv

f (X), (1.7)

where Bv = {X ∈ R
n×q : X T X = Iq , ‖X‖0 = n, v ∈ span(X)} and v is a positive vector.

For the simplicity of notation, we use Av to denote A(n,q)
v when the superscript values of n

and q are known from the context of the discussion. Problems (1.2) and (1.7) are essentially
equivalent in the sense that their solutions are connected, as shown in Lemma 1.

Lemma 1 Consider Problems (1.2) and (1.7)with the objective function f satisfying f (X) =
f (X Di ) for any i , where Di = diag(1, . . . , 1,−1, 1, . . . , 1), i.e., the i-th diagonal entry of
Di is −1. The following two statements hold:

– Let X be any matrix in Bv . Then for any column of X, denoted by xi , the signs of all
nonzero entries in xi are the same.

– Define a mapping ϑ : Rn×q �→ R
n×q : X �→ X̂ = X D j1 D j2 . . . D js , where j1, j2,

. . ., js are the indices of the columns of X whose nonzero entries are all negative. Then
X∗ is a global minimizer of Problem (1.7) in the sense that f (X∗) ≤ f (Y ),∀Y ∈ Bv if
and only if ϑ(X∗) is a global minimizer of Problem (1.2) in the sense that f (ϑ(X∗)) ≤
f (Z),∀Z ∈ Av .

Proof Since ‖X‖0 = n and v ∈ span(X), each row of X has exactly one nonzero entry.
Given any column of X , the nonzero entries in that column span the corresponding entries
in v. Since all the entries in v have the same sign, the nonzero entries in any column of X
must have the same sign. Therefore, the first statement holds.

Suppose that X∗ is a global minimizer of (1.7) and that ϑ(X∗) is not a global minimizer
of (1.2). Then there exists Z ∈ Av such that f (Z) < f (ϑ(X∗)). Since Av ⊂ Bv and
f (ϑ(X∗)) = f (X∗), we have f (Z) < f (ϑ(X∗)) = f (X∗), which implies that X∗ is not a
globalminimizer of (1.7) either. This is a contradiction. Therefore, if X∗ is a globalminimizer
of (1.7), then ϑ(X∗) must also be a global minimizer of (1.2).

Suppose that ϑ(X∗) is a global minimizer of (1.2) and that X∗ is not a global minimizer
of (1.7). Then there exists Z ∈ Bv such that f (Z) < f (X∗). It follows that f (ϑ(Z)) =
f (Z) < f (X∗) = f (ϑ(X∗)). Since ϑ(Z) and ϑ(X∗) are in Av , f (ϑ(Z)) < f (ϑ(X∗))
implies thatϑ(X∗) is not a global minimizer of (1.2) either. This is a contradiction. Therefore,
if ϑ(X∗) is a global minimizer of (1.2), then X∗ must be a global minimizer of (1.7) thus
proving the second statement.

��
Due to the constraints of Bv , the sparsest matrix in Bv has n nonzero entries. We reformulate
Problem (1.7) and use 1-norm penalization to promote the sparsity of X , which yields a
continuous optimization problem in (1.1). Using 1-norm to promote sparsity on a manifold is
not new and has been widely used for the Stiefel manifold, see e.g., [47, 75]. If the minimizer
of (1.1), denoted by X∗, is sufficiently close to Bv , then one can find the closest matrix in Bv

by a mapping PBv (X∗), see Lemma 2. If the element in the i-th row j-th column of PBv (X∗)
is not zero, then the i-th object is in the j-th cluster.

Lemma 2 Let v ∈ R
n be a positive vector, W denote diag(v), Y denote a matrix in Bv , di

denote the number of nonzero entries in i-th column of Y , ui ∈ R
di denote the vector forming

by the nonzero entries of the i-th column of Y , and u ∈ R
n denote (uT

1 uT
2 . . . uT

q )T . If
X∗ ∈ Fv is sufficiently close to Y , then it holds that

Y = PBv (X∗),
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where PBv (X∗) = W PB1n
(W−1X∗), PBv (X∗) =

(
b1‖b1
v‖ . . .

bq
‖bq
v‖

)
, 
 denotes the

Hadamard product, b j ∈ R
n for j = 1, 2, . . . , q, and

(b j )i =
{

sign((X∗)i j ) if (X∗)i j has the largest magnitude in the i-th row;
0 otherwise.

Proof Without loss of generality, assume that Y has the form

Y = diag(u1, u2, . . . , uq) :=

⎛

⎜
⎜
⎜
⎝

u1 0 . . . 0
0 u2 . . . 0
...

...
. . .

...

0 0 . . . uq

⎞

⎟
⎟
⎟
⎠

.

Partition the vector v by v = (vT
1 vT

2 . . . vT
q )T , where vi ∈ R

di . It follows that ui =
sivi/‖vi‖, i = 1, 2, . . . , q , where si is either one or negative one. Therefore, W−1Y =
diag( s1‖v1‖1d1 ,

s2‖v2‖1d2 , . . . ,
sq
‖vq‖1dq ). If W−1X∗ is sufficiently close to W−1Y in the sense

that the location of the largest magnitude entry of each row does not change, then it holds
that

W−1Y = PB1n
(W−1X∗),

which implies Y = PBv (X∗). ��
In summary, Problems (1.1), (1.2) and (1.7) are closely connected and can be viewed as
optimization models for solving the same applications.

1.2 Our Contribution

In this paper, we propose a new optimization model given in (1.1) to characterize clustering
problems, including k-means model, community detection, normalized cut, and other graph
partitioning techniques. It is proven here that the domainFv forms an embedded submanifold
ofRn×q . A family of computationally efficient retractions is developed.An orthonormal basis
of any normal space of Fv is given. Such a basis yields a computationally efficient charac-
terization of the normal space and is important in Riemannian proximal gradient methods. A
Riemannian proximal gradientmethod that does not require solving theRiemannian proximal
mapping exactly is developed, analyzed, and evaluated. Note that most existing Riemannian
proximal gradient methods require solving their subproblems exactly [18, 41, 45]. Compared
to the only existing inexact Riemannian proximal gradient method [44], the algorithm pro-
posed in this paper allows adaptive step sizes rather than an unknown fixed step size and
still guarantees global convergence. In the numerical experiments, the proposed model and
optimization algorithm is shown to have performance superior to existing state-of-the-art
algorithms in community detection and normalized cut problems.

1.3 RelatedWork

To the best of our knowledge, the literature does not consider Problems (1.1), (1.2), or (1.7)
for generic functions f . They focus on some special formulations of the objective f . If the
function f is given by

f (X) = −trace(X T M X) (1.8)
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with a positive semidefinite matrix M , then Problem (1.7) with v = 1n is a commonly-
encountered objective function in the task of clustering. Spectral-type of clustering algorithms
and k-means-based algorithms have been proposed [23, 78, 80]. For example, the spectral
clustering algorithm in [80] first finds a basis of the eigenspace that corresponds to theq largest
eigenvalues and then finds a matrix in C := {X ∈ R

n×q : X T X is diagonal, X1q = 1n} that
is closest to the eigenspace. The kernel k-means algorithm views the matrix M as a kernel
matrix. It follows that the standard k-means algorithm can be used [23].

For a generic objective f , the closest formulation to Problem (1.2) is given in [46, 59].
The formulation therein is Problem (1.2) with the constraint v ∈ span(X) being dropped,
that is,

min
X T X=Iq ,X≥0

f (X). (1.9)

The papers [46, 59] use different approaches to reformulate Problem (1.9). The former [46]
develops a penaltymethod by penalizing the orthogonal constraints in X and keeping the non-
negative andmultiple sphere constraints, and the latter [59] keeps the orthonormal constraints
and penalizes the nonnegative constraints. If the feasible set Fv is a manifold, then Prob-
lem (1.1) can be optimized by Riemannian proximal gradient methods in [41, 44]. However,
it is not considered in [41, 44] if the set Fv in Problem (1.1) is a manifold.

Related work given in [15] considers reformulating the k-means clustering problem as an
optimization problem on the manifold F1n . Rather than promoting the sparsity, the authors
propose to penalize the negativity of entries in X and reformulate the k-mean clustering
problem as

min
X∈F1n

−trace(X T M X)+ λ‖X−‖2F,

where X− indicates the negative entries of X . Though the paper [15] states that F1n is a
manifold, but does not give a rigorous proof. Moreover, we consider a more general case for
Fv with a positive vector v. The retraction proposed in [15] involves a computation of an
n-by-n matrix exponential (O(n3) flops), which is unacceptable for large n. The retraction
in the present paper (see Theorem 4) only requires O(np2) flops and can be used for large-
scale problems.2 In addition, this paper gives an orthonormal basis of the normal space
of Fv which allows a computationally efficient characterization for the normal space. The
well-known Riemannian steepest descent method is used in [15] while we propose a more
sophisticated and effective inexact Riemannian proximal gradient method for the nonsmooth
cost function in (1.1).

A preliminary version of this paper is given in [73], which focuses on the community
detection problem [55] and therefore only considers F1n . In addition, the paper [73] uses
iterations of the existingRiemannian proximal gradientmethod in [18] on the Stiefelmanifold
for the problem

min
x∈St(q,n)

−trace(X T M X)+ λ‖X‖1,

and projects every iterate xk onto F1n . Such a method, called the Riemannian projected
proximal gradient method, is neither guaranteed to generate descent iterates in the sense of
the function value nor guaranteed to convergence globally. The geometric structure of the
constrained set is not explored either.

2 Throughout this paper, the computational complexity is measured by flop counts. A flop is a floating point
operation [28, Section 1.2.4].
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An inexact Riemannian proximal gradient method has been proposed in [44] which is
based on the Riemannian proximal gradient method [41]. The version in [44] is insightful
from theoretical aspects, that is, theoretical conditions that guarantee local convergence rate
are given. However, those results rely on a sufficiently large parameter L̃ in the Riemannian
proximal mapping

η̂x ≈ argminη∈TxMtrace(grad f (x)T η)+ L̃

2
‖η‖2 + g(Rx (η)), (1.10)

and the use of a fixed step size, where Rx denotes a retraction onM. In practice, a sufficiently
large L̃ is usually unknown, and estimating L̃ requires extra work. The inexact Riemannian
proximal gradient method proposed in the present paper avoids this problem, allows adaptive
step size, guarantees global convergence, and therefore is preferable from the point of view
of computational efficiency and provable robustness.

By following the discussions in [31, Section 6], a related set defined by Fv = {X ∈
Gr(q, n) | [v] ⊂ X} is recognized as a sub-Grassmannian and a subvariety ofGr(q, n), where
Gr(q, n) denotes the Grassmann manifold, i.e., the set of q-dimensional linear subspaces in
R

n , and [v] denotes the linear space spanned by v, i.e., [v] = {αv | α ∈ R}. Moreover, Fv is
also a Schubert variety by [79, Definition 6 and Section 8]. Consider the natural projection
π : St(q, n) → Gr(q, n) in [11, Example 9.19]. We can see that Fv = π(Fv). However, such
a connection does not yield a straightforward derivation for showing that Fv is a manifold.

1.4 Organization

This paper is organized as follows. Section2 defines the notation and presents some prelim-
inaries. Section3 proves that the set Fv is a manifold and the optimization-related geometry
tools are also derived. Section4 gives an inexact Riemannian proximal gradient method and
its global convergence analysis. The numerical experiments are shown in Sect. 5. Finally, the
conclusion and future work are stated in Sect. 6.

2 Notation and Preliminaries

Unless otherwise indicated, the Riemannian concepts of this paper follow from the standard
literature, e.g., [2, 10] and the related notation follows from [2]. A Riemannian manifoldM
is a manifold endowed with a Riemannian metric (ηx , ξx ) �→ 〈ηx , ξx 〉x ∈ R, where ηx and ξx

are tangent vectors in the tangent space ofM at x . The induced norm in the tangent space at x
is denoted by ‖ · ‖x . Throughout this paper, unless otherwise indicated, we use the Euclidean
metric, i.e., 〈U , V 〉 = trace(U T V ) and ‖U‖ = √〈U , V 〉 = ‖U‖F. Therefore, the subscript
of 〈·, ·〉 and ‖ · ‖ can be omitted. The tangent space of the manifold M at x is denoted by
TxM, and the tangent bundle, which is the disjoint union of all tangent spaces, is denoted
by TM. An open ball on a tangent space is denoted by B(x, r) = {ξx ∈ TxM | ‖ξx‖ < r}.
The Riemannian gradient of a function h :M→ R, denoted gradh(x), is the unique tangent
vector satisfying: Dh(x)[ηx ] = 〈ηx , gradh(x)〉x ,∀ηx ∈ TxM,where Dh(x)[ηx ] denotes the
directional derivative of h along the direction ηx .

A retraction, by definition, is a smooth (C∞) mapping from the tangent bundle to the
manifold such that

(i) R(0x ) = x for all x ∈M, and (2.1)
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(ii)
d

dt
R(tηx )|t=0 = ηx for all ηx ∈ TxM (2.2)

where 0x denotes the origin of TxM. Moreover, Rx denotes the restriction of R to TxM.
The domain of R does not need to be the entire tangent bundle.

Given a manifold M, a subset M of M can also form a special manifold, called an
embedded submanifold of M. A characterization of embedded submanifolds is given in
[11, Proposition 8.70]. For completeness, we state it as a definition in Definition 1. This
characterization is used in Theorem 1 for proving the set Fv is an embedded submanifold of
St(q, n).

Definition 1 (Embedded submanifolds ofM) LetM be a subset of amanifoldM.We sayM
is a (smooth) embedded submanifold ofM if eitherM is an open subset ofM or for a fixed
integer k ≥ 1 and for each x ∈ M there exists a neighbourhood U of x in M and a smooth
function h : U → R

k such that

(a) If y is in U , then h(y) = 0 if and only if y ∈M; and
(b) rank Dh(x) = k,

where D denotes the differential operator. Such a function h is called a local defining function
for M at x .

If the manifold M is a compact embedded submanifold of Rn , then by [12], there exist
two positive constants M1 and M2 such that

‖Rx (ηx )− x‖ ≤ M1‖ηx‖ (2.3)

‖Rx (ηx )− x − ηx‖ ≤ M2‖ηx‖2, (2.4)

hold for any x ∈ M and ηx ∈ TxM. A vector transport T : TM ⊕ TM → TM :
(ηx , ξx ) �→ Tηx ξx associated with a retraction R is a smooth mapping such that, for all
(x, ηx ) in the domain of R and all ξx ∈ TxM, it holds that (i) Tηx ξx ∈ TR(ηx )M, (ii)
T0x is the identity operator id : TxM → TxM, and (iii) Tηx is a linear map, where id
denotes the identity operator. The vector transport by differential retraction TR is defined by
TRηx

ξx = d
dt Rx (ηx + tξx )|t=0.

The Stiefel manifold St(q, n) is defined by St(q, n) = {X ∈ R
n×q : X T X = Iq}. The

tangent space of St(q, n) at X is

TXSt(q, n) = {X�+ X⊥K : �T = −�, K ∈ R
(n−q)×q}, (2.5)

where � is skew-symmetric and X⊥ ∈ R
n×(n−q) is a matrix with orthonormal columns such

that
(
X X⊥

)
is orthonormal.

0n denotes a vector with length n and all entries zero and 0m×n denotes a m-by-n matrix
with all entries zero. Is denotes the s-by-s identity matrix. The subscript of 0 or I is omitted
if its size is clear from the context. Given an n-by-n matrix M , eM denotes the matrix
exponential.

3 Manifold Structure ofFv

Throughout this paper, the notation Fv always refers to the set with a positive vector v. In
this section, we prove that the set Fv forms an embedded submanifold of Rn×q and derive
optimization-related tools. Theorem 1 show thatFv is an embedded submanifold of St(q, n).
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Theorem 1 The set Fv is an embedded submanifold of St(q, n) with dimension
dim(St(q, n)) − (n − q) = nq − q(q + 1)/2 − n + q. Furthermore, Fv is an embedded
submanifold of Rn×q with the same dimension and Fv is compact.

Proof We verify that Fv is an embedded submanifold of St(q, n) by following Definition 1.
For any X ∈ Fv , let X⊥ be a matrix such that

(
X X⊥

)T (
X X⊥

) = In . Therefore, by [26,
(2.23)], we have that for any V ∈ TXSt(q, n),

ExpX (V ) = (
X X⊥

)
e

(
� −K T

K 0

)

(
Iq

0

)

, (3.1)

defines the exponential mapping with respect to the canonical metric, where eM denotes
the matrix exponential of M , V = X� + X⊥K , and the canonical metric is 〈ηX , ξX 〉X =
tr(ηT

X (In − 1
2 X X T )ξX ) for ηX , ξX ∈ TXSt(q, n). Since the matrix exponential of a skew-

symmetric matrix is orthogonal, ExpX (V ) in (3.1) is an orthonormal matrix. By [25,
Theorem 3.7], there exists a positive constant δ > 0 such that ExpX is a diffeomorphism in
B(X , δ). It follows that for any Y ∈ ExpX (B(X , δ)), the mapping Exp−1X (Y ) is well-defined
and Y = ExpX (Exp−1X (Y )), i.e.,

Y = (
X X⊥

)
e

⎛

⎜
⎝

X TExp−1X (Y ) −
(

X T⊥Exp
−1
X (Y )

)T

X T⊥Exp
−1
X (Y ) 0

⎞

⎟
⎠ (

Iq

0

)

. (3.2)

Define a function φ : ExpX (B(x, δ)) → R
n×(n−q) by

φ(Y ) = (
X X⊥

)
e

⎛

⎜
⎝

X TExp−1X (Y ) −
(

X T⊥Exp
−1
X (Y )

)T

X T⊥Exp
−1
X (Y ) 0

⎞

⎟
⎠ (

0
In−q

)

.

It follows from (3.2) that

φ(Y )T Y = 0(n−q)×q . (3.3)

Since Exp−1X is smooth in ExpX (B(X , δ)), φ is a smooth function in its domain. Furthermore,
it follows from φ(X)T X⊥ = In−q that there exists a constant δ̃ > 0 such that φ(Z)T X⊥ is
full rank, i.e.,

rank
(
φ(Z)T X⊥

)
= n − q, (3.4)

for any Z ∈ ExpX (B(X , δ̃)). Let δ̂ = min(δ, δ̃) andNX = ExpX (B(X , δ̂)). We now define a
function h by h : NX → R

n−q : Y �→ h(Y ) = φ(Y )T v. Next, we verify that the function h
is a local defining function in the sense that h−1(0) = NX ∩Fv and Dh(Y ) : TYSt(q, n) →
R

n−q is surjective for any Y ∈ NX .3

For any Z ∈ h−1(0), it holds that φ(Z)T v = 0 and Z ∈ St(q, n). Since φ(Z)T v = 0
implies v ∈ span(Z), we have Z ∈ Fv , which means h−1(0) ⊆ NX ∩ Fv . On the other
hand, for any Z ∈ NX ∩ Fv , it is obvious that h(Z) = 0, which means NX ∩ Fv ⊆ h−1(0).
Overall, the equation h−1(0) = NX ∩ Fv holds.

3 Note that the local definition function only requires Dh(Y ) to be full rank at Y = X . Here, we prove a
stronger result.
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Let V denote Exp−1X (Y ). For any U ∈ TExpX (−V )St(q, n), let V̇ = T −1Exp−V
(−U ) and

W = TExpV
V̇ , where TExp denotes the vector transport by differentiating the exponential

mapping (3.2). Note that V̇ is well-defined since −V ∈ B(X , δ̂). We have

Dh(Y ) [W ] = (Dφ(Y ) [W ])T v

=

⎛

⎜
⎜
⎜
⎜
⎝

(
X X⊥

)
De

⎛

⎜
⎝

X TExp−1X (Y ) −
(

X T⊥Exp
−1
X (Y )

)T

X T⊥Exp
−1
X (Y ) 0

⎞

⎟
⎠

[W ]

(
0

In−q

)

⎞

⎟
⎟
⎟
⎟
⎠

T

v

= (
0 In−q

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D

⎛

⎜
⎜
⎜
⎜
⎝

e

⎛

⎜
⎝
−X TExp−1X (Y )

(
X T⊥Exp

−1
X (Y )

)T

−X T⊥Exp
−1
X (Y ) 0

⎞

⎟
⎠ (

Iq

0

)

⎞

⎟
⎟
⎟
⎟
⎠
[W ]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

α,

where α = X T v, (eA)T = e−A for any skew symmetric matrix A, and X⊥v = 0.
Define the functions

G(Y ) = e

⎛

⎜
⎝
−X TExp−1X (Y )

(
X T⊥Exp

−1
X (Y )

)T

−X T⊥Exp
−1
X (Y ) 0

⎞

⎟
⎠ (

Ip

0

)

, and

H

(
�

K

)

= ExpX (X�+ X⊥K ).

Since V , V̇ ∈ TXSt(q, n), there exist skew symmetric matrices �V ,�V̇ and matrices
KV , KV̇ such that V = X�V + X⊥KV and V̇ = X�V̇ + X⊥KV̇ . By the chain rule

DG ◦ H

(
�V

KV

) [(
�V̇
KV̇

)]

= DG

(

H

(
�V

KV

)) [

DH

(
�V

KV

) [(
�V̇
KV̇

)]]

and W = TExpV
V̇ ,

we have that

De

⎛

⎜
⎝
−X TExp−1X (Y )

(
X T⊥Exp

−1
X (Y )

)T

−X T⊥Exp
−1
X (Y ) 0

⎞

⎟
⎠ (

Ip

0

)
[
TExpV

V̇
]

= D

⎛

⎜
⎝e

(−�V K T
V−KV 0

)

(
Ip

0

)
⎞

⎟
⎠

[(
�V̇
KV̇

)]

.

It follows that

Dh(Y ) [W ] = − (
0 In−q

)
D

⎛

⎜
⎝e

(−�V K T
V−KV 0

)

(
Ip

0

)
⎞

⎟
⎠

[(−�V̇−KV̇

)]

α

= (
0 In−q

) (
X X⊥

)T TExp−V
(V̇ ) = (

0 In−q
) (

X X⊥
)T TExp−V

(T −1Exp−V
(−U ))

= − (
0 In−q

) (
X X⊥

)T
Uα = −X T⊥Uα. (3.5)

123



Journal of Scientific Computing            (2025) 103:8 Page 11 of 36     8 

Since U can be any tangent vector in TExpX (−V )St(q, n) and X T⊥φ(ExpX (−V )) is full rank
by (3.4), the vector−X T⊥Uα can be any one inRn−q . Therefore, Dh(Y ) is surjective and has
full rank. Therefore, by [11, Definition 8.70], Fv is an embedded submanifold of St(q, n).
Furthermore, by [11, Exercise 3.33], Fv is also an embedded submanifold of Rn×q .

Since Fv is a subset of St(q, n), it is a bounded set. Moreover, for any Z /∈ Fv , we have
that either (i) Z T Z �= Iq or (ii) Z T Z = Iq and v /∈ span(Z). If Z T Z �= Iq , then consider
the function T (X) = ‖X T X − Iq‖2. We have T (Z) > 0. Since T (X) is a continuous
function, there exists a neighborhood of Z such that for all Y in the neighborhood it holds
that T (Y ) > 0, which implies Y /∈ Fv . If Z T Z = Iq and v /∈ span(Z), then consider the
function T̃ (X) = ‖v−X X T v‖2.We have that T̃ (Z) = ‖v−Z Z T v‖2 = minc ‖v−Zc‖2 > 0
and T̃ (X) is a continuous function. Therefore, there exists a neighborhood of Z such that for
all Y in the neighborhood it holds that T̃ (Y ) > 0, which implies Y /∈ Fv . Overall, for any
Z /∈ Fv , there exists a neighborhood of Z such that the intersection of the neighborhood and
Fv is an empty set. It follows that Fv is a closed set. Thus, Fv is compact. ��

An intuitive approach for proving Fv to be an embedded submanifold of St(q, n) is to
consider the function h : St(q, n) → R

n : X �→ v − X T Xv. We can see that Fv is the
zero level set of h, i.e., Fv = h−1(0). If one could show that h has a constant rank in a
neighborhood of Fv in St(q, n), then it follows from [11, Proposition 8.77] that Fv is an
embedded submanifold of St(q, n). Omitting the details, one can show that

(vec ◦ Dh(X) ◦�)(�, K ) = −((vT X)⊗ X⊥ + ((vT X⊥)⊗ X T )L)vec(K ),

where vec(M) denotes the vector obtained by stacking the columns of the matrix M , L is
the perfect shuffle matrix such that vec(AT ) = Lvec(A),∀A ∈ R

n×(n−q), � : skewq ×
R

(n−q)×q → TXSt(q, n) : (�, K ) �→ X�+ X⊥K , and skewq = {� ∈ R
q×q | �T = −�}.

However, the rank of (vT X)⊗ X⊥ + ((vT X⊥)⊗ X T )L may not have a constant rank n− q
in a neighborhood of Fv .

Theorem 2 gives the tangent space at any X ∈ Fv and its perpendicular space with respect
to the Euclidean metric.

Theorem 2 Let Fv be the embedded submanifold of Rn×q . The tangent space of Fv at X is
given by

TXFv = {X�+ X⊥K : �T = −�, K ∈ R
(n−q)×q , K X T v = 0}

and the perpendicular space of TXFv with respect to the Euclidean metric, called the normal
space at X, is given by

NXF = {X S + X⊥uvT X : S = ST , u ∈ R
n−q}.

Proof It follows from [11, Exercise 3.33] that TXFv = kerDh(X). By (3.5), we have that for
any U ∈ TXSt(q, n), Dh(X)[U ] = −K X T v, where U = X� + X⊥K and � is any skew
symmetric matrix and K is any n-by-(n − q) matrix. Therefore, it holds that kerDh(X) =
{X�+ X⊥K : �T = −�, K ∈ R

(n−q)×q , K X T v = 0}.
For any V ∈ TXFv and U ∈ NXFv , it is easy to verify that trace(U T V ) = 0. In addition,

dim(TXFv) + dim(NXFv) = nq − n − q − q(q + 1)/2 + q(q + 1)/2 + n + q = nq =
dim(Rn×q). Therefore, NXFv = (TXFv)

⊥ which implies NXFv is the normal space of Fv

at X . ��
Theorem 3 Given any Z ∈ R

n×q , the orthogonal projection to NXFv is given by

PNX (Z) = X
X T Z + Z T X

2
+ (I − X X T )Z α̂α̂T ,
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where α̂ = X T v/‖X T v‖. The orthogonal projection to TXFv is therefore

PTX (Z) = X
X T Z − Z T X

2
+ (I − X X T )Z(I − α̂α̂T ).

Proof By observing the formats of PNX (Z) and PTX (Z), we have PNX (Z) ∈ NXFv and
PTX (Z) ∈ TXFV . Therefore, the result follows from PNX (Z)+ PTX (Z) = X X T Z + (I −
X X T )Z = Z . ��

Given X ∈ St(q, n), the orthonormal projection from X to Fv with v = 1n has been
derived in [73]. The orthonormal projection with any v > 0 can be derived similarly. We
state the result without proof in Lemma 3.

Lemma 3 For any X ∈ St(q, n) with X T v �= 0, the global minimizer of the problem
PFv (X) = argminY∈Fv

‖X − Y‖2F is given by Y∗ = vqT∗ /‖v‖2 + X(I − q∗qT∗ ), where
q∗ = X T v/‖X T v‖2.

One way to define a retraction on Fv is by orthogonal projection [3], i.e.,

Rproj
X (V ) = PFv (X + V ), (3.6)

where X ∈ F and V ∈ TXF . However, we do not have a closed-form solution of PFv (X+V )

in general. A practical family of retractions is given in Theorem 4.

Theorem 4 For any X ∈ Fv , there exists a positive number δX > 0 such that the mapping

RX : B(x, δX ) → Fv : V �→ RX (V ) = PFv ◦ R̃X (3.7)

satisfies the two conditions of the retraction, i.e., e06)and (2.2), where R̃ is any retraction
on St(q, n). Moreover, if the retraction R̃ satisfies span(R̃X (V )) = span(X + V ), then the
domain of R̃ in (3.7) is the whole tangent bundle. Such retractions R̃ include the retraction
by QR decomposition [2, (4.8)] and the retraction by polar decomposition [2, (4.7)].

Proof Since X satisfies X T v �= 0, R̃X (0X ) = X , and R̃X is smooth, there exists a positive
δX > 0 such that PFv (R̃X (V )) is well-defined for any V ∈ B(X , δX ). The smoothness
of R follows from the smoothness of R̃ and PFv . We have RX (0X ) = PFv (R̃X (0X )) =
PFv (X) = X , where the second equality follows from the property of the retraction R̃ and
the last equation follows from the definition of the projection PFv .

In addition, we have

d

dt
RX (tV )|t=0 = d

dt

(
PFv ◦ R̃X

)
(tV )|t=0 =

(

DPFv (R̃X (tV ))

[
d

dt
R̃X (tV )

])

|t=0
=DPFv (X)[V ] = DRproj

X (0X )[V ] = V ,

where the second equality follows from the chain rule, the third equality follows from
R̃X (0V ) = X and d

dt R̃X (tV )|t=0 = V , and the last equality follows from the fact that (3.6)
is a retraction.

For the second part of the result, we only need to verify that (X + V )T v �= 0 for all
V ∈ TXFv . Let α = X T v �= 0. By the form of the tangent space TXFv in Theorem 2, we
have αT (X + V )T v = αT (X + X� + X⊥K )T v = αT α + αT �α = ‖α‖22 �= 0, which
implies (X + V )T v �= 0. ��
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By Theorem 4, two retractions of Fv based on QR decomposition and polar decomposition
are respectively given by

Rqf
X (V ) = vqT∗ /‖v‖2 + qf(X + V )(I − q∗qT∗ ) (3.8)

where q∗ = qf(X + V )T v/‖qf(X + V )T v‖2 and qf(X + V ) denotes the Q factor of the QR
decomposition of X + V that, moreover, has positive diagonal entries in the R factor; and

Rpolar
X (V ) = vqT∗ /‖v‖2 + (X + V )(I + V T V )−1/2(I − q∗qT∗ ), (3.9)

where q∗ = (I +V T V )−1/2(X +V )T v/‖(I +V T V )−1/2(X +V )T v‖2. Since the dominant
part of the computations in (3.8) and (3.9) are respectively the QR decomposition and polar
decomposition, their computations both take O(np2) flops. The retraction proposed in [15,
(14)] is computationally more expensive. Specifically, the retraction in [15] is given by

RX (V ) = exp(B) exp(A′)X , (3.10)

where A = X T V , A′ = X AX T , and B = V X T − X V T − 2A′. The computation
of (3.10) requires an evaluation of an exponential of an n-by-n matrix B and therefore
can be computationally unacceptable when n is large.

The proposed proximal gradient method also relies on an orthonormal basis of the normal
space of Fv , which is given in Lemma 4.

Lemma 4 The set

BX ={XeieT
i : i = 1, · · · , q} ∪ { 1√

2
X(eieT

j + e jeT
i ) : i = 1, · · · , q, j = i + 1, · · · , q}

∪ {X⊥ẽi ṽ
T X , i = 1, · · · , n − q}, (3.11)

defines an orthonormal basis of NXF with respect to the Euclidean metric, where x ∈ Fv ,
(e1, · · · , eq) is the canonical basis of Rq , (ẽ1, · · · , ẽn−q) is the canonical basis of Rn−q and
ṽ = v/‖v‖.

Proof Let Ti j = 1√
2

X(eieT
j + e jeT

i ) if i �= j , Tii = XeieT
i and T̃i = X⊥ẽi ṽ

T X . It is easy to

verify that if i1 = i2 and j1 = j2, then trace(T T
i1 j1

Ti2 j2) = 1, otherwise trace(T T
i1 j1

Ti2 j2) = 0

for all i1, j1, i2, j2; and that trace(T T
i j T̃k) = 0, for all i, j, k. We also have

trace(T̃ T
i T̃ j ) =trace

(
X T ṽẽT

i X T⊥X⊥ẽ j ṽ
T X

)
= trace

(
ẽT

i ẽ j ṽ
T X X T ṽ

)

=trace
(
ẽT

i ẽ j ṽ
T ṽ

)
= ẽT

i ẽ j ,

where the second equality follows from X T⊥X⊥ = I and the third equality follows from
ṽ ∈ span(X). ��

Let Vi , i = 1, . . . q(q+1)/2+n−q denote the entries in the basis BX . Define a function
by

BX : Rq(q+1)/2+n−q → R
n×q : u → BX u =

q(q+1)/2+n−q∑

i=1
ui Vi ∈ NxFv (3.12)

and another function by

BT
X : Rn×p → R

q(q+1)/2+n−q : V → u, (3.13)
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where ui = trace(V T Vi ). These two functions are used in the proximal gradient method
given in Sect. 4.

Though the matrix X⊥ is used in the orthonormal basis (3.11), one does not need to
construct such a matrix and only needs to use two mappings αX : Rn×q → R

n×q : A �→
(X X⊥)T A and βX : Rn×q → R

n×q : A �→ (X X⊥)A. These two mappings can be
computed efficiently (O(np2)), see details in [37, Algorithms 4 and 5]. It follows that the
mappings BT

X and BX can be computed by O(np2) flops and the detailed implementations
are stated in Algorithms 1 and 2.

Algorithm 1 Compute BT
X : Rn×p → R

q(q+1)/2+n−q : V �→ BT
X (V )

Input: X ∈ Fv , V ∈ NXFv ; a positive vector v ∈ R
n ; a function αX : Rn×p → R

n×p : A �→ (X X⊥)T A.

1:

(
S
K

)

= αX (V ), where S ∈ R
p×p and K ∈ R

(n−q)×q ;

2: k = 1;
3: for j = 1, . . . , p do u(k) = Sii and where Sii denotes the i-th row, i-th column entry of the matrix S, and

set k ← k + 1;
4: end for
5: for j = 2, . . . , p, i = 1, . . . j − 1 do u(k) = √

2Si j , u(k) = √
2S ji , and k ← k + 1;

6: end for
7: z = K X T v‖v‖/‖vX X T v‖;
8: for j = 1 : n − q do u(k) = z j and k ← k + 1;
9: end for
10: return u;

Algorithm 2 Compute BX : Rq(q+1)/2+n−q → R
n×q : u �→ BX (u)

Input: X ∈ Fv , u ∈ R
q(q+1)/2−n−q ; a positive vector v ∈ R

n ; a function βX : Rn×p → R
n×p : A �→

(X X⊥)A.
1: k = 1;
2: for j = 1, . . . , p do Sii = u(k) and k ← k + 1;
3: end for
4: for j = 2, . . . , p, i = 1, . . . j − 1 do Si j = u(k)/

√
2, S ji = u(k)/

√
2, and k ← k + 1;

5: end for
6: for j = 1 : n − q do z j = u(k) and k ← k + 1;
7: end for

8: return βX

(
S

zvT X/‖v‖
)

;

4 AManifold Proximal Gradient Method

For simplicity of notation, throughout this section, we use lowercase x to denote a point in
the domain manifold M := Fv and use gλ(x) to denote λ‖x‖1. Therefore, Problem (1.1)
becomes

min
x∈M Fλ(x) := f (x)+ gλ(x), (4.1)

where the subscript λ is used to highlight the dependency on λ.
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The proposed algorithm and convergence analysis rely on Assumption 1. Note that
gλ(x) = λ‖x‖ is a Lipschitz continuous function.
Assumption 1 The gradient of f is Lipschitz continuous onMwith a Lipschitz constant L f

and the function g is Lipschitz continuous with Lipschitz constant Lg , where the Lipschitz
continuity is defined in the sense of the Euclidean setting.

4.1 AlgorithmDescription

The manifold proximal gradient method proposed for Problem (4.1) is stated in Algorithm 3.
It is based on the AManPG algorithm in [45] and for simplicity is referred to as I-AManPG
throughout the remainder of the paper.

Algorithm 3 An Inexact Manifold Proximal Gradient Method (I-AManPG)
Input: Lipschitz constant L f on ∇ f , parameter μ > 0 in the proximal mapping, line search parameter

σ ∈ (0, 1/(8μ)], positive integer N for safeguard, initial iterates �y and �z for the semi-smooth Newton
algorithm;

1: t0 = 1, y0 = x0, z0 = x0;
2: for k = 0, . . . do
3: if mod (k, N ) = 0 then ! Invoke safeguard every N iterations
4: Invoke Algorithm 4: [zk+N , xk , yk , tk , �z ] = Alg4(zk , xk , yk , tk , Fλ(xk ), �z);
5: end if
6: Approximately solve ηyk ≈ argminη∈Tyk M〈grad f (yk ), η〉 + 1

2μ ‖η‖2 + gλ(yk + η) such that (4.13)

holds;
7: xk+1 = Ryk (ηyk );

8: tk+1 =
√
4t2k+1+1

2 ;

9: Compute yk+1 = Rxk+1
(
1−tk
tk+1 PTxk+1M(xk − xk+1)

)
;

10: end for

Algorithm 3 is a generalization of the accelerated proximal gradient method (FISTA) [6]
to an embedded submanifold. The Euclidean version of FISTA consists of the following
steps:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ηyk = argminη∈Rn×p 〈∇ f (yk), η〉 + 1
2μ‖η‖2 + gλ(yk + η)

xk+1 = yk + ηyk

tk+1 =
√
4t2k+1+1

2

yk+1 = xk+1 + tk−1
tk+1 (xk+1 − xk),

(4.2)

where μ is a positive constant. The subproblem in the first step of (4.2) is generalized to the
Riemannian setting by

argminη∈Tyk M〈grad f (yk), η〉 + 1

2μ
‖η‖2 + gλ(yk + η), (4.3)

where η is required to be in the tangent space. Such a generalization has been used in [18].
It is well known that the FISTA algorithm does not converge globally for non-convex

problems. Therefore, a modification is required in FISTA for global convergence. Here,
we use the same approach as that in [45] by adding a safeguard of a proximal gradient step,
see Algorithm 4. Specifically, let xi N , xi N+1, . . . , xi N+N be a sequence of N+1 consecutive
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Algorithm 4 Safeguard for Algorithm 1
Input: (zk , xk , yk , tk , Fλ(xk ), �z); shrinking parameter in line search ν ∈ (0, 1), the maximum number of

iterations for line search Nmax > 0;
Output: [zk+N , xk , yk , tk , �z ];
1: Approximately solve ηzk ≈ argminη∈Tzk M〈grad f (zk ), η〉 + 1

2μ ‖η‖2 + gλ(zk + η) such that (4.13)

holds;
2: Set α = 1, and iiter = 0;
3: while Fλ(Rzk (αηzk )) > Fλ(zk )− σα‖ηzk ‖2 and iiter < Nmax do
4: α = να; iiter = iiter + 1;
5: end while
6: if iiter = Nmax then
7: Line search fails;
8: end if
9: if Fλ(Rzk (αηzk )) < Fλ(xk ) then ! Safeguard takes effect
10: xk = Rzk (αηzk ), yk = Rzk (αηzk ), and tk = 1;
11: else
12: xk , yk and tk keep unchanged;
13: end if
14: zk+N = xk ; ! Update the compared iterate;

iterates generated by the Riemannian version of the FISTA, i.e., Steps 6 to 9 of Algorithm 3.
We then compare the function value at xi N+N to that at an iterate by a proximal gradient
step, i.e., Rxi N (αηxi N ), where α is an appropriate step size from Step 3 of Algorithm 4. If
Fλ(Rxi N (αηxi N )) < Fλ(xi N+N ), then the safeguard takes effect by restarting the Riemannian
version of FISTA, see Step 9 of Algorithm 4.

Though Algorithm 3 is based on the AManPG in [45, Algorithm 1], they have an impor-
tant difference that influences their efficiency. The difference is the accuracy of solving the
subproblem

argminη∈Tyk M〈grad f (yk), η〉 + 1

2μ
‖η‖2 + gλ(yk + η). (4.4)

In [45], the authors require the subproblem to be solved exactly for convergence analysis,
whereas we only require solving it with sufficient accuracy. The quantitive accuracy that
guarantees global convergence is also given.

A proximalmapping in the Euclidean setting often admits a computationally cheap closed-
form solution. However, in the Riemannian setting, the proximal mapping does not usually
have a closed-form solution due to the existence of an extra linear constraint: η ∈ TykM.
The existing Riemannian proximal mappings in [18, 41, 44, 45] are solved by a semi-smooth
Newton algorithm. In the theoretical analyses of [18, 41, 45] for global convergence, the Rie-
mannian proximalmappings are assumed to be solved exactly. In [44], an inexact Riemannian
proximal gradient (IRPG) is proposed. Though not solving the Riemannian proximal map-
ping exactly, IRPG assumes a sufficiently small μ in (4.3) which needs to be estimated in
practice. Here, we also need the Riemannian proximalmapping to be solved approximately. It
is shown later in Lemma 6 that if the Riemannian proximal mapping is solved with sufficient
accuracy, then the resulting tangent vector is a descent direction, independent of the choice
of μ.

If η∗x is the exact solution of (4.3), then it satisfies

η∗x = argminη〈ξx , η〉 + 1

2μ
〈η, η〉 + gλ(x + η) subject to η ∈ TxM, (4.5)
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where we omit the subscript k, use x instead of y, and use

ξx = grad f (x).

It follows that η ∈ TxM is equivalent to BT
x η = 0, where BT

x is a linear operator defined
in (3.13). Therefore, the KKT condition for (4.5) is given by

∂ηL(η,�) = 0, (4.6)

BT
x η = 0, (4.7)

where L(η,�) is the Lagrangian function defined by

L(η,�) = 〈ξx , η〉 + 1

2μ
〈η, η〉 + gλ(x + η)− 〈�, BT

x η〉. (4.8)

As shown in [18, (4.6)], Equation (4.6) yields

η = v(�) := Proxμg (x − μ(ξx − Bx�))− x, (4.9)

where Bx is a linear operator defined in (3.12) and

Proxμg(z) = argminv∈Rn×p
1

2
‖v − z‖2 + μgλ(v) (4.10)

denotes the proximal mapping. Substituting (4.9) into (4.7) yields that

�(�) := BT
x

(
Proxμg (x − μ(ξx − Bx�))− x

) = 0, (4.11)

which is a system of nonlinear equations with respect to �. Therefore, to solve (4.5), one
can first find any root of (4.11) and substitute it back to (4.9) to obtain η∗x .

Equation (4.11) can be solved efficiently by a semi-smooth Newton method. Analogous
to the classical Newton method, the estimation of � is updated by �k+1 = �k + dk , where
dk is computed by solving a Newton equation, i.e.,

J�(�k)[d] = −�(�k), (4.12)

where J�(�k) is a generalized Jacobian of �. Note that when gλ(x) = λ‖x‖1, it is well-
known [7] that the solution to the proximal mapping (4.10) can be computed by thresholding
each entry of z. Moreover, by the chain rule, we have

J�(�k)[d] = BT
x

(
∂Proxμg (x − μ(ξx − Bx�k))
 (μBx d)

)
,

where ∂Proxμg(·) denotes the generalized Clarke subdifferential of Proxμg(·) and
 denotes
the entrywise product of two matrices. Once again, when gλ(x) = λ‖x‖1 the generalized
Clarke subdifferential of Proxμg(·) can also be computed in an entrywise manner [20, 51,
76]. Here, we do not require solving (4.11) exactly but only find a � such that ‖�(�)‖ is
sufficiently small. See Lemma 5 for details.

4.2 Global Convergence Analysis

Lemma 5 states the key result used to prove the global convergence. In [18, Lemma 5.1], the
inequality (4.14) is proven up to a coefficient under the assumption that the subproblem (4.3)
is solved exactly. Here, it is shown that if the subproblem is solved accurately enough such
that (4.13) holds, then we also have the inequality (4.14). The result (4.14) has not been
given for the existing inexact Riemannian proximal gradient method [44] and is crucial to
Algorithm 3.
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Lemma 5 Let �x (η) = 〈ξx , η〉 + 1
2μ 〈η, η〉 + gλ(x + η). Let ε denote �(�) = BT

x v(�). We
then have

gλ(x) ≥ 〈
ξx , v̂(�)

〉 + 1

2μ
‖v̂(�)‖2 + gλ(x + v̂(�))− (2Lg + 1

2μ
‖ε‖)‖ε‖,

where v̂(�) = PTxk M(Proxμg (x − μ(ξx − Bx�)) − x). Furthermore, if ε is sufficiently
close to 0 in the sense that

‖�(�)‖ =‖ε‖ ≤
√
4μ2L2

g + ‖v̂(�)‖2/2− 2μLg, (4.13)

then it holds that

�x (αv̂(�))− �x (0) ≤ −
(

α(1− 2α)

4μ

)

‖v̂(�)‖2, ∀α ∈ [0, 1]. (4.14)

Proof Consider the optimization problem

min
BT

x η=ε
�x (η). (4.15)

Problem 4.15 is obtained by slightly shifting the hyperplane constraints of the subproblem
in (4.5). Next, we will show that if the shift ε is sufficiently small, then the resulting vector
v̂(�) shares the same property (4.14) of the minimizer of (4.5). Its KKT condition is given
by

∂ηL(η,�) = 0, BT
x η = ε,

which is satisfied by v(�) defined in (4.9). Therefore, v(�) is the minimizer of �x (η) over
the set S = {v : BT

x v = ε}, i.e.,

v(�) = argminv∈S�x (η) = 〈ξx , η〉 + 1

2μ
〈η, η〉 + gλ(x + η). (4.16)

Define the vector v0 = Bxε. It can be easily verified that BT
x v0 = BT

x Bxε = ε. Therefore,
it holds that v0 ∈ S. By 1

μ
-strong convexity of �x , we have

�x (v0) ≥ �x (v(�))+ 〈∂�x (v(�)), v0 − v(�)〉 + 1

2μ
‖v0 − v(�)‖2. (4.17)

From the optimality condition of Problem (4.15), we have that 0 ∈ PTηS∂�x (v(�)). Since
TηS = {u : BT

x u = 0} and BT
x (v0 − v(�)) = ε − ε = 0, it holds that v0 − v(�) ∈ TηS.

Therefore, we have

0 ∈ 〈∂�x (v(�)), v0 − v(�)〉. (4.18)

It follows from (4.17) and (4.18) that

�x (Bxε) ≥ �x (v(�))+ 1

2μ
‖v(�)− Bxε‖2. (4.19)

Substituting the definition of �x into inequality (4.19) and noting ε = BT
x v(�), we have that

1

2μ
‖Bx BT

x v(�)‖2 + gλ(x + Bx BT
x v(�))

≥
〈
ξx , v(�)−Bx BT

x v(�)
〉
+ 1

2μ
‖v(�)‖2+ gλ(x + v(�))+ 1

2μ
‖v(�)− Bx BT

x v(�)‖2.
(4.20)
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It follows that

gλ(x) ≥ 〈
ξx , PTxMv(�)

〉 + 1

2μ
‖PTxMv(�)‖2 + gλ(x + v(�))+ gλ(x)

− gλ(x + Bxε)− 1

2μ
‖Bx BT

x v(�)‖2

≥ 〈
ξx , v̂(�)

〉 + 1

2μ
‖v̂(�)‖2 + gλ(x + v̂(�))+ gλ(x + v(�))

− gλ(x + (I − Bx BT
x )v(�))+ gλ(x)− gλ(x + Bxε)− 1

2μ
‖Bxε‖2

≥ 〈
ξx , v̂(�)

〉 + 1

2μ
‖v̂(�)‖2 + gλ(x + v̂(�))− |gλ(x + v(�))− gλ(x + v(�)− Bxε)|

− |gλ(x)− gλ(x + Bxε)| − 1

2μ
‖Bxε‖2

≥ 〈
ξx , v̂(�)

〉 + 1

2μ
‖v̂(�)‖2 + gλ(x + v̂(�))− (2Lg + 1

2μ
‖Bxε‖)‖Bxε‖, (4.21)

where the first inequality follows from (4.20) and ‖v(�)‖2 ≥ 0, the second inequality follows
from v̂(�) = PTxMv(�) = (I − Bx BT

x )v(�), and the fourth inequality follows from the
Lipschitz continuity of g with Lipschitz constant Lg . This completes the proof for the first
result.

Since g is convex, we have

gλ(x + αv̂(�))− gλ(x) = gλ(α(x + v̂(�))+ (1− α)x)− gλ(x)

≤ α(gλ(x + v̂(�))− gλ(x)). (4.22)

Combining (4.21) and (4.22) yields

�x (αv̂(�))− �x (0) =
〈
ξx , αv̂(�)

〉 + 1

2μ
‖αv̂(�)‖2 + gλ(x + αv̂(�))− gλ(x)

≤ α

(
〈
ξx , v̂(�)

〉 + α

2μ
‖v̂(�)‖2 + gλ(x + v̂(�))− gλ(x)

)

≤ α

(
α

2μ
‖v̂(�)‖2 − 1

2μ
‖v̂(�)‖2 + (2Lg + 1

2μ
‖Bxε‖)‖Bxε‖

)

.

(4.23)

By ‖ε‖ = ‖Bxε‖ ≤
√
4μ2L2

g + ‖v̂(�)‖2/2− 2μLg , we have

(2Lg + 1

2μ
‖Bxε‖)‖Bxε‖ ≤ 1

4μ
‖v̂(�)‖2. (4.24)

The second result follows from (4.23) and (4.24). Finally, (4.13) follows from the definition
of �(�). ��

Lemma 6 implies that ηzk is a descent direction and the while loop in Step 3 of Algorithm 4
terminates in a finite number of iterations. Given (4.14) in Lemma 5, the proof of Lemma 6
follows the same steps as that of [18, Lemma 5.2] and is therefore omitted.

Lemma 6 Suppose Assumption 1 holds. Then for any μ > 0, there exists a constant ᾱ ∈ (0, 1]
such that for any 0 < α < ᾱ, Step 3 of Algorithm 4 is satisfied, and the sequence {zk}
generated by Algorithm 3 satisfies

Fλ(Rzk (αηzk ))− Fλ(zk) ≤ − α

8μ
‖ηzk‖2.
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Moreover, the step size α > ρᾱ for all k.

Though the subproblem is solved inexactly, a zero search direction given by v̂(�) with
condition (4.13) implies that the current iterate x is a stationary point, which coincides with
[18, Lemma 5.3].

Lemma 7 If ηx = v̂(�) = 0, then x is a stationary point of Problem (4.1).

Proof If ηx = v̂(�) = 0, then by (4.13), we have that �(�) = 0, which implies that the
subproblem (4.5) is solved exactly and η∗x = 0. By [18, Lemma 5.3], x is a stationary point
of Problem 4.1. ��

The main convergence result is given in Theorem 5. The proof follows the spirit of [45,
Theorem 1]. Here, we only highlight their differences. Note that the convergence result is
non-asymptotic.

Theorem 5 Suppose Assumption 1 holds, then any accumulation point of the sequence
{z0, zN , z2N , . . . , zi N , . . .} generated by Algorithm 3 is a stationary point, i.e., if z∗ is an
accumulation point of the above sequence, then 0 ∈ PTz∗M∂ Fλ(z∗).

Proof Since the subscript of zk in Algorithm 3 is a multiple of N , we use {z̃i } to denote {zk},
where z̃i = zi N . Let (ηz̃i ,�z̃i ) denote the output of the Semi-smooth Newton algorithm
when the input is (z̃i ,�z̃i−1 , grad f (z̃i )), i.e., the input and output of Step 1 of Algorithm 4.

By the safeguard in Algorithm 4 and Lemma 6, we have Fλ(z̃i+1)−Fλ(z̃i ) ≤ − ρᾱ
8μ‖ηz̃k‖2.

Since Fλ is continuous and F is compact, the function Fλ is bounded from below. It follows
that

∞ >

∞∑

i=0
Fλ(z̃i )− Fλ(z̃i+1) ≥ ρᾱ

8μ
‖ηz̃k‖2, (4.25)

which implies

lim
i→∞‖ηz̃k‖ = 0. (4.26)

By (4.26), (4.13), and ηz̃k = v̂(�z̃i ), we have

lim
i→∞‖�(�z̃i )‖ = 0. (4.27)

Since v̂(�z̃i ) = PTz̃i
Mv(�z̃i ) = v(�z̃i )− Bz̃i �(�z̃i ), we have

‖v(�z̃i )‖ = ‖v̂(�z̃i )+ Bz̃i �(�z̃i )‖ ≤ ‖v̂(�z̃i )‖ + ‖Bz̃i �(�z̃i )‖ = ‖ηz̃k‖ + ‖�(�z̃i )‖.
(4.28)

Combining (4.26), (4.27) and (4.28) yields

lim
i→∞‖v(�z̃i )‖ = 0. (4.29)

By (4.16), we have

v(�z̃i ) = argminη∈Sz̃i
�x (η) = 〈grad f (z̃i ), η〉 + 1

2μ
〈η, η〉 + gλ(z̃i + η), (4.30)

where Sz̃i = {v : BT
z̃i
v = BT

z̃i
v(�z̃i )}. Using (4.29) and (4.30) and following the steps in the

proof of [45, Theorem 1], we have that any accumulation point of {z̃i } is a stationary point.
��
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5 Numerical Experiments

In this section, the performance of the proposed method, Algorithm 3, is compared to
other state-of-the-art methods using problems from community detection in networks and
normalized cut for image segmentation.

5.1 Parameter Setting and Testing Environment

The subproblem in Algorithm 3 is solved by the regularized semi-smooth Newton algorithm
in [76]. Let E-AManPG denote Algorithm 3 with the condition that ‖�(�)‖ ≤ 10−10.
Therefore, we can view E-AManPG is essentially an exact one since E-AManPG solves the
Riemannian proximal mapping to high accuracy.

The parameters L f and λ are problem-dependent and specified later. The parameters in
Algorithm 3 are set to be μ = 1/L f , σ = 10−4, ν = 0.5, N = 5, �y = �z = 0 and the
parameter in Algorithm 4 is set to be Nmax = 5.

Unless otherwise indicated, I-AManPG and E-AManPG stop if the value of ‖ηzk‖ reduces
at least by a factor of 103. Inspired by Lemma 2, the last iterate is projected to the set Bv by
the mapping PBv (X).

I-AManPG and E-AManPG are implemented in Matlab R2019b. All the experiments are
performed on an Apple Mac platform with 1.4 GHz Quad-Core Intel Core i5. The amount of
system memory is 8GB. The CPU has 4 cores, and all 8 computational threads are used. The
codes for reproducing the numerical experiments in this paper is available at https://www.
math.fsu.edu/~whuang2/papers/AROACP.htm.

5.2 Community Detection

In this section, we evaluate the performance of community detection by optimizing the
formulation

min
X∈F1n

−trace(X T M X)+ λ‖X‖1, (5.1)

with I-AManPG algorithm.

5.2.1 Data Sets

Results are presented for solving community detection problemson syntheticLFRbenchmark
networks [50]. Specifically, LFR benchmark networks assume that the distributions of degree
and community size are power lawswith exponents τ1 and τ2 respectively. Each node shares a
fraction 1−μLFR of its edges with the other nodes of its community and a fractionμLFR with
nodes of the other communities, where 0 ≤ μLFR ≤ 1 is the mixing parameter. A software
package to generate the benchmark networks is available at https://www.santofortunato.net/
resources.

5.2.2 Comparison of I-AManPG and E-AManPG on LFR Benchmark Networks

The first set of experiments compares the efficiency and effectiveness of I-AManPG and
E-AManPG to demonstrate the utility of the inexact form of the algorithm. Throughout this
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Table 1 Comparison of the efficiency of I-AManPG and E-AManPG

I-A E-A I-A E-A I-A E-A I-A E-A
(N , nc) (500, 10) (1000, 10) (5000, 10) (10000, 10)

iter 64 52 50 59 63 58 55 55

SSNiter 28 212 13 248 34 311 52 330

nf 143 115 112 131 140 128 123 122

ng 83 65 64 73 81 72 71 68

nR 142 114 111 130 139 127 122 121

nSG 4 14 2 15 4 13 3 10

F −67.0 −67.0 −149 −149 −284 −284 −251 −251
‖ηzk ‖‖ηz0 ‖ 7.0−4 5.7−4 5.5−4 5.1−4 6.3−4 5.8−4 5.2−4 6.9−4
time 0.15 0.31 0.17 0.75 0.84 3.03 1.54 5.19

section, the parameters τ1, τ2, and μLFR are set to−2,−1, and 0.1 respectively. Four sets of
other parameters are used to define a range of networks. They are as follows:

– N = 500, dave = 10, dmax = 20, Nc = 50, nc = 10;
– N = 1000, dave = 20, dmax = 40, Nc = 100, nc = 10;
– N = 5000, dave = 40, dmax = 80, Nc = 500, nc = 10;
– N = 10000, dave = 40, dmax = 80, Nc = 1000, nc = 10;

where N denotes the number of nodes, dave denotes the average node degree, dmax denotes
the maximum node degree, Nc denotes the number of nodes that all communities have, and
nc denotes the number of communities. The balancing parameter λ in (5.1) is set to 0.3. This
value roughly balances the two terms of the cost function for the LFR benchmark networks
defined by the parameters set above.

Table 1 contains the data to compare I-AManPG and E-AManPG for LFR benchmark
networks. For each of the four LFR parameter sets, 10 random networks were generated.
The computational time for each network was computed as the average computational time
of 10 runs and the computational time is in seconds. The quantities reported in the table are
the averages over the 10 networks from each parameter set. I-A denotes I-AManPG and E-A
denotes E-AManPG. The LFR parameter set used for each pair of columns is identified by

values (N , nc). The labels iter, SSNiter, nf, ng, nR, nSG, F,
‖ηzk ‖‖ηz0‖ , and time, respectively,

denote the number of iterations in AManPG, the number of iterations in semi-smoothNewton
method, the number of function evaluations, the number of gradient evaluations, the number
of retraction evaluations, the number of safeguards (Step 9) that are taken, the function value

at the final iterate, the reduction of the norm of search directions
‖ηzk ‖‖ηz0‖ , and the computational

time in seconds. The subscript k denotes a scale of 10k .
As shown in Table 1, I-AManPG and E-AManPG find the same solutions in the sense

that their function values are the same up to three significant digits. In fact, though not
reported in the table, in our experimental setting, both I-AManPG and E-AManPG always
converge to the same solution which always represents the ground truth partition. So both are
equally effective. In addition, I-AManPG requires less work when solving the Riemannian
proximal mapping in the sense that the number of semi-smooth Newton iterations in each
outer iteration is small compared to E-AManPG. Moreover, less accuracy for solving the
Riemannian proximalmapping does not influence the number of outer iterations significantly.
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Therefore, I-AManPG is more efficient than E-AManPG in terms of computational time. For
the rest of the experiments, we use I-AManPG as the representative method.

5.2.3 Comparison of the Effectiveness of I-AManPG and State-of-the-Art Community
Detection Methods

In this section, community detection by the optimization model (5.1) using I-AManPG is
compared to three state-of-the-artmethods:Danon et al.’s algorithm [21], theLouvainmethod
[9] and Newman’s spectral optimization method [56].

These algorithms all aim to maximize the modularity Q = 1
2m trace(X T M X) over the

set of indicator matrices, where m is the number of edges, and an indicator matrix X is
defined by X ≥ 0, X T X is diagonal, and each row of X has a single entry with value one.
Each indicator matrix specifies a partitioning of the nodes into communities. Danon et al.’s
algorithm is an agglomerative method that is a variant of Newman’s fast greedy method
[54] which starts with each node as a singleton community. Intra-community edges are
added one-by-one by choosing the edge such that the modified partition gives the maximum
increase of modularity with respect to the previous configuration. The Louvain method is
an agglomerative method where each iteration comprises two phases. The first phase creates
intermediate-communities by merging pairs of nodes such that the modularity increases. The
first phase terminates when no such pair merging increases modularity. In the second phase, a
smaller graph, called the reduced graph, is createdwhere each node in this graph represents an
intermediate-community. Newman’s spectral optimization method is a divisive method that
computes the eigenvectors of the modularity matrix M corresponding to the largest positive
eigenvalues. The nodes are grouped into two parts based on the signs of the component of
the eigenvectors. The process is then repeated for each of the parts until splitting a given
community of nodes makes a zero or negative contribution to the total modularity.

To make fair comparisons, we use publicly-available Matlab implementations of these
algorithms. The codes for Danon et al.’s algorithm, Louvain’s algorithm, and Newman’s
spectral method are respectively from [13, 49, 66]. Note that the codes for Newman’s spectral
method in [13] do not embed the fine-tuning stage and use a different stopping criteria as in
paper [56]. We modified the stopping criteria in the codes such that it has the same stopping
criteria as in paper [56]. The codes in [13] use dense matrix computations, and we modified
them with significantly more efficient sparse computations. In this way, the computational
efficiency was improved to the point where it produced times that were reasonable to include
in these comparisons.

To compare the effectiveness of the four methods, we consider three quality measure-
ments: normalized mutual information (NMI) [22], adjusted mutual information (AMI) [71],
and purity [53]. NMI is a similarity measure between two partitions that represents their
normalized mutual entropy. AMI further corrects the measure for randomness by adopting
a hypergeometric model of randomness. We refer interested readers to [22, (2)] and [71,
Section 4.1] for the definitions. Both NMI and AMI take on values between 0 and 1. Values
closer to 1 indicate greater consistency between the partitions.

Given two partitions X and Y of N nodes, the purity is given by purity(X , Y ) =
1
N

∑
k max j |Xk ∩ Y j |, where Xk denotes the set of nodes in k-th community of partition X ,

and likewise for Y j , and |Xk ∩ Y j | denotes the number of nodes in Xk ∩ Y j . The value of
purity is also between 0 and 1. The closer it is to one, the better the two partitions are nested.
In our numerical experiments, the ground truth is known and therefore the computed partition
is compared to the ground truth. When the two partitionings do not have the same number
of communities good nesting of the partition with the larger number of communities in the
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partition with the smaller number is an indication that further division or agglomeration could
yield a closer approximation of ground truth. Such a pair of partitions is therefore preferred
to a pair with lower purity. Since purity is not symmetric, we take X to be the partition with
the larger number of communities.

For LFR benchmark networks used in the comparisons in this section, the parameters τ1,
τ2, N , dave, dmax , Nc, and nc are respectively set to −2, −1, 1000, 20, 40, 50, and 20. The
value of λ in (5.1) is 0.3, as in the previous set of experiments. The empirical results with
multiple values of μLFR are reported in Table 2. As before, each result is an average over 10
randomly selected LFR benchmark networks.

The input parameter for I-AManPG determining the number of communities to be pro-
duced is q and qc is the number of communities computed by each method. The "force_q"
label denotes the versions with modified termination criteria so that qc is as close to qtrue as
the methods allow.

From the results in Table 2, we observe that when μLFR = 0, I-AManPG yields NMI =
AMI = purity = 1, the same modularity value and the same assignment to qtrue = 20
strongly connected communities. The Louvainmethod also has the same results with ground-
truth communities while Danon et al.’s algorithm and Newman’s spectral algorithm can get
results that are very close to the ground-truth communities. Specifically, they can detect
exactly ground-truth communities for 9 of 10 random LFR graphs. When μLFR takes 0.1
to 0.4, I-AManPG and Louvain algorithm can detect the exact ground-truth communities.
When μLFR = 0.5, 0.6, I-AManPG can get results very close to ground-truth partitions
and the results are competitive results with the Louvain algorithm, but with less time. When
μLFR = 0.7, 0.8, the results for all of these four algorithms are far away from the ground-truth
partitions because the community structures in these cases are not strong. Danon’s algorithm
andNewman spectral algorithm detect relatively inaccurate communities and relatively small
qualifying external or internal measurements, i.e., NMI, AMI, purity, and modularity for all
noisy cases. From the computational times, we can see that I-AManPG requires relatively
less time than the others. It is worth noting that the number of edges m does not change
much and only the distribution of edges changes a lot as the mixing parameter increases.
So, the computational time for Danon’s algorithm and Newman’s spectral method do not
change much as the mixing parameter increases because the computational time of these two
algorithms depends more on m rather than on the distribution of edges.

As the mixing parameter increases, the difficulty level of detecting the correct number of
communities increases as well. I-AManPG requires the desired number of communities as
an input parameter value, q , and the choice of an initial q and the development of a dynamic
adaptation strategy are key ongoing research tasks for I-AManPG. Since the experiments in
Table 2 use q = qtrue for I-AManPG and the other methods that are not “forced” are given
no indication of qtrue, experiments where I-AManPG uses q �= qtrue probe the quality of the
q �= qtrue communities produced by I-AManPG compared to ground truth. For each value
of the input parameter q = 10, 17, . . . , 23 and mixing parameter μLFR = 0, 0.1, . . . , 0.8,
I-AManPG was applied to 10 randomly generated LFR benchmark networks. The results are
shown in Table 3.

Consider the results of different algorithms for the cases with the same computed number
of communities. From the results in Tables 2 and 3, we observe that NMI, AMI, modularity
and purity of I-AManPG are larger than the results of Danon’s algorithm for q = 18 and
μ = 0.2, Newman’s spectral algorithm for q = 21 and μ = 0.2 and Newman’s spectral
algorithm for q = 19 and μ = 0.3. NMI, AMI, modularity and purity of I-AManPG are
competitive with the results of Louvain’s algorithm for q = 19 and μ = 0.6 and I-AManPG
requires less time.
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Table 3 shows that for any particular μLFR, as the value of the input parameter q moves
away fromqtrue = 20 themodularity decreases,while theNMIandAMIachieved I-AManPG
move away fromdesirable values close to 1. This does notmean that the partitions are not good
relative to the ground-truth partition. ForμLFR = 0 and 0.1 the community partitions for q =
17, 18, 19, 20, 21, 22 are perfectly nested, i.e., the extra communities of partition of q+1 are
refinements of the partition ofq by splittingwithout crossing the ideal community boundaries.
Since qtrue is in this set, this says that for values of μLFR that imply strong community
structure I-AManPG produces communities that respect the affinities of the ground-truth
partition. For these two values of μLFR, when q = 10, the farthest from qtrue in the set,
the I-AManPG partition is perfectly nested relative to the next partition, i.e., q = 17, and
the ground-truth partition. When μLFR has values from 0.2 to 0.6, each partitioning for
q = 10, 17, 18, 19, 21, 22, 23 is well-nested with partitioning of qtrue and the associated
purity values are very close to 1. For μLFR = 0.7 and 0.8, the community structure is not
strong in the ground-truth LFR networks and therefore purity would be expected to degrade.
These results provide promising evidence for the possibility of development of a dynamic
adaptation strategy for I-AManPG. Since the sparsification to project a Stiefel element to an
assignment applies, in general, to a dense N×q matrix, storage and computation can become
excessive when a large number of communities must be produced. Effective nesting means
this can be avoided efficiently as is done with other divisive projection-based algorithms.

5.3 Normalized Cut

Normalized cut has been widely used for image segmentation. Its optimization formulation
is given by

min
X∈Av

fNC(X) = −trace(X T D−1/2W D−1/2X), (5.2)

which has been described in the context of (1.6). This problem assumes graph-based data that
is represented by an appropriate matrix characterizing the relationships between the basic
data elements from the application problem. In the case of gray image segmentation, the
matrix W ∈ R

mn×mn is an affinity matrix of an m by n pixels gray image, D ∈ R
mn×mn is a

diagonal matrix with Dii = ∑mn
j=1 Wi j , and v = diag(D1/2). Here, we use the approach in

[68] to choose W and D.
Problem (5.2) can be optimized by the weighted kernel k-means algorithm, see e.g., [24,

Algorithm 1]. Note that Problem (5.2) has many low-quality local minimizers and descent
optimization algorithms usually are not able to escape from them. Thus, initialization plays
an important role in finding an acceptable solution. LetU be the n×q matrix of the q leading
eigenvector of the matrix D−1/2W D−1/2. If X is only required to be orthonormal, then U is
a global minimizer of (5.2). Since U is unlikely to be inAv , one approach is to find a matrix
in Av that is close to U . Different notions of closeness yield different methods. Next, we
introduce four initialization methods, including the proposed one based on AManPG.

First, Bach and Jordan [4] seek to find a matrix Y ∈ Av that minimizes

‖UU T − Y Y T ‖F . (5.3)

In other words, the difference between U and Y is measured by the orthogonal projection
matrix. The weighted kernel k-means is suggested to solve (5.3) see [4, Figure 1]. However,
similar to (5.2), the kernel k-means for (5.3) may also get stuck in a local minimizer. We use
k-means++ in Matlab for the initialization of the kernel k-means for (5.3).
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Second, Shi and Malik [67] propose to find an indicator matrix that is closest to U up to
a rotation. Specifically, let Ũ denote the matrix formed by normalizing all rows of U . The
task is to find an indicator matrix Z and a q-by-q orthonormal matrix Q that minimize

‖Z − Ũ Q‖F .

Shi and Malik [67] use an alternating minimization algorithm to find Z and Q. Note that
this approach neither guarantees to find the global optimum nor uses the weight vector v.
Therefore, this approach may not find a satisfactory solution. Here, we use the C and Matlab
hybrid implementation from [68].

Third, Karypis and Kumar [48] developed METIS, a fast, multi-level graph partitioning
algorithm that produces equally-sized clusters. It is shown to be an effective method for the
kernel k-means initialization. Note that METIS does not aim to minimize the objective (5.2).
We use theC implementation fromhttp://glaros.dtc.umn.edu/gkhome/metis/metis/download
with the Matlab interface from https://github.com/dgleich/metismex.

Fourth, we propose to initialize the weighted kernel k-means algorithm by I-AManPG.
Specifically, Problem (5.2) can be reformulated as

min
X∈Fv

−trace(X T D−1/2W D−1/2X)+ λ‖X‖1, (5.4)

which can be optimized by I-AManPG. We further propose to gradually increase λ rather
than choosing a fixed value of λ since increasing λ tends to give better solutions in our
experiments.4 The clusters are specified by PBv (X∗), as described in Sect. 5.1. Such clusters
are then used as initializations for the weighted kernel k-means algorithm.

The four initialization methods are denoted, respectively, by BJ, SM, ME, and AM. Their
combinations with the weighted kernel k-means algorithms are denoted, respectively, by BJ-
k, SM-k, ME-k, and AM-k. The implementation of the weighted kernel k-means algorithm
is modified from [17].5 The test images are from [68] and the built-in images in Matlab. We
further resize them to have 160-by-160 pixels as shown in Fig. 1.

An average of the negative function values − fNC of 10 random runs are reported in
Fig. 2. We do not report the computational time since the implementations of these methods
use different languages and their computational time cannot be rigorously compared. The
qualities of thesemethods are compared based on the objective function value fNC. As shown
in the figure, METIS initializations are not preferred since they do not aim to minimize fNC.
Though SM, SM-k, BJ, BJ-k are competitive to AM and AM-k in many cases, they do not
perform well in certain images, such as ME and ME-k for the football image with 3 clusters,
and BJ and BJ-k for the tape image with 3 clusters. AManPG-based methods are clearly most
robust in the sense of minimizing the function fNC over Av . The values of − fNC by AM-k
are often the highest ones. Even if they are not, they are still close to the highest ones. The
empirical evidence supports the expectations given in the motivation discussion above that
I-AManPG is competitive with or superior to initialization strategies in the current literature.

6 Conclusions and FutureWork

Weproposed an optimizationmodel for clustering problems. The domainFv was proven to be
an embedded submanifold and its geometry structures were derived. An inexact Riemannian

4 The λ in I-AManPG increases by 0.01, 0.04, and 0.2.
5 The implementation in [17] is for unweighted kernel k-means. We modified it for weighted kernel k-means.
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baby cameraman coins football

gantrycrane liftingbody onion panther

pears peppers saturn tape

Fig. 1 The test images

proximal gradient method was proposed and its global convergence proved. It was shown
empirically that the proposed optimization model was more effective than the state-of-the-art
methods in community detection and normalized cut for image segmentation.

Future work will address a more comprehensive analysis of the choice of the parameters
λ and q . The current method requires an estimation of the number of clusters q . A critical
future task is to develop a strategy to dynamically update the number of clusters thereby
enabling more efficient computation for problems with a large number of communities.
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Fig. 2 An average of 10 random runs is reported. y-axis represents the function values. Multiple numbers of
clusters are tested
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