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Abstract

Modern phylogenomic analyses often result in large collections of phylogenetic trees representing uncertainty in indi-
vidual gene trees, variation across genes, or both. Extracting phylogenetic signal from these tree sets can be challenging, as
they are difficult to visualize, explore, and quantify. To overcome some of these challenges, we have developed
TreeScaper, an application for tree set visualization as well as the identification of distinct phylogenetic signals. GUI
and command-line versions of TreeScaper and a manual with tutorials can be downloaded from https://github.com/
whuang08/TreeScaper/releases. TreeScaper is distributed under the GNU General Public License.
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Introduction
As phylogenetic analyses have matured to handle genome-
scale data, two major sources of variation in phylogenetic
trees have become increasingly important to consider. First,
estimates of gene trees often have considerable uncertainty,
given low evolutionary rates in conserved genomic regions
targeted for phylogenetics. Second, phylogenetic estimates
often vary considerably across genes due to both biological
(e.g., coalescent variation) and non-biological (e.g., systematic
error) causes. Accurate reconstructions of phylogenetic rela-
tionships and meaningful insights into genomic evolution
must consider both sources of variation, and many phyloge-
netic analyses return a set of trees to represent such variation.
Most methods currently used to analyze or summarize tree
sets involve substantial loss of information, as the set is con-
densed into a point estimate or visualized without any formal
or quantitative summary (Hillis et al. 2005). These constraints
can impose significant limitations on our ability to extract
phylogenetic information and draw biological conclusions.
Recent advances have been made in methods for calculating
distances between trees (e.g., SPR distances, Whidden et al.
2016), visualizing sets of trees (Hillis et al. 2005), and summa-
rizing the variation in phylogenetic signal (Lewitus and
Morlon 2015; Gori et al. 2016). However, existing software
tools are focused on a subset of these tasks, despite their
synergism in allowing users to explore and extract informa-
tion. Here, we describe TreeScaper, a software tool that brings

together much of this functionality and also provides new
approaches to accomplishing these goals.

Overview of TreeScaper
TreeScaper allows users to accomplish many different tasks,
including (i) computing pairwise distances between trees
with a variety of different metrics, (ii) projecting and visual-
izing trees in low dimensional Euclidean space, (iii) estimating
the intrinsic dimensionality of the space formed by the tree
set, (iv) computing the covariance matrix of bipartition pres-
ence/absence across trees, and (v) finding communities of
bipartitions or trees using state-of-the-art community detec-
tion methods. Many of these functions are not available in
any other software implementation of which we are aware.

Below we provide an overview of two general tasks in
TreeScaper: the visualization of tree sets in two or three di-
mensions using nonlinear dimensionality reduction (NLDR),
and the detection and characterization of distinct phyloge-
netic signals within tree sets using community detection on
graphs. Figure 1 highlights TreeScaper’s capabilities both to
visualize treespace and detect distinct communities of trees.
Because community detection operates on the original tree-
to-tree distances, it may detect subtle relationships that
NLDR does not reveal. For this dataset, both NLDR and com-
munity detection reveal a partitioning of the tree set that
perfectly corresponds to the different genes from which the
phylogenies were inferred.

B
rief

co
m

m
u

n
icatio

n

� The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

3314 Mol. Biol. Evol. 33(12):3314–3316 doi:10.1093/molbev/msw196 Advance Access publication September 15, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/33/12/3314/2450098 by guest on 13 April 2020

https://github.com/whuang08/TreeScaper/releases
https://github.com/whuang08/TreeScaper/releases
Deleted Text: e.g., 
Deleted Text: e.g., Gori et al<italic>.</italic>, 2016; <xref ref-type=


Nonlinear Dimensionality Reduction
NLDR seeks to find low dimensional representations of a set
of high dimensional data. TreeScaper begins by computing
pairwise tree distances between trees using one of several
metrics, such as Robinson-Foulds (Robinson and Foulds
1981), matching (Bogdanowicz and Giaro 2012), or subtree
prune and regraft (SPR) distances (following Whidden et al.
2010). NLDR then looks for low dimensional points fxig in
the Euclidean space that minimize the distortions of pairwise
distances. Specifically, given n phylogenetic trees t1; t2; . . . tn,
the optimization problem is

min
x1;x2;...;xn2Rd

fðdij;TijÞðjdij � TijjÞ; (1)

where dij is the Euclidean distance between xi and xj, and Tij is
the tree distance between ti and tj. Multiple cost functions
(fðdij;TijÞ) are implemented in TreeScaper (e.g., normalized,
Kruskal’s, and Sammon’s stress functions, as well as curvilinear
component analysis (see Lee and Verleysen 2007, for details).

Community Detection Methods
A network has community structure if its nodes can be easily
clustered into sets with dense, internal connections. In phy-
logenetic analysis, community structure can be used to iden-
tify distinct topological signals. TreeScaper uses two distinct
network types to accomplish this: networks of trees or bipar-
titions. Tree networks employ edge weights based on tree
affinities (a decreasing function of a user-specified tree dis-
tance). Bipartition networks use edge weights indicating

whether certain bipartitions are found in the same trees
more or less often than expected by chance (i.e., their covari-
ance). Whereas tree distances have previously been used in
conjunction with other methods for detecting distinct topo-
logical signals (Gori et al. 2016; Lewitus and Morlon 2015),
bipartition covariances are unique to TreeScaper.

There are a number of different methods to detect com-
munities (Blondel et al. 2008). Four models are included in
TreeScaper: No Null Model (Newman and Girvan 2004),
Configuration Null Model (Newman 2006), Erdos–Renyi
Null Model (Reichardt and Bornholdt 2006), and the
Constant Potts Model (CPM; Traag et al. 2011). The CPM
belongs to a family of approaches that includes resolution-
limit-free methods. This family can accommodate a mixture
of positive and negative weights (Traag and Bruggeman
2009), which is important for community detection with bi-
partition covariance networks.

Conclusion
TreeScaper provides an integrated, lightweight platform for
exploring the phylogenetic information in large sets of trees,
through both a GUI and a command-line interface. By pro-
viding a multitude of related functions in a single package
with an intuitive interface, TreeScaper facilitates adoption
among new users and naturally lends itself to integration in
larger analytical pipelines (e.g., Galaxy). We are actively inte-
grating other tree-to-tree distances and graph partitioning
(clustering) methods, as well as developing new approaches.
TreeScaper’s existing architecture for handling and processing
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FIG. 1. A two-dimensional NLDR representation of posterior distributions from different squamate mitochondrial genes (Castoe et al. 2009) using
SPR distances between trees. Each point represents a unique tree. A separate community detection analysis was conducted and points are colored
according to the communities in which trees were placed. In this case, communities precisely correspond to different genes. Note that the nd3 and
nd4l outliers are NLDR visualization artifacts.
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phylogenetic data structures greatly facilitates the develop-
ment of new methods.
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