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Abstract

New methods for refining estimates of invariant subspaces of a non-symmetric matrix are presented. We use global analysis
to show local quadratic convergence of our method under mild conditions on the spectrum of the matrix.
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1. Refining estimates of invariant subspaces

The computation of invariant subspaces has re-
ceived a lot of attention in the numerical linear
algebra literature. In this paper we present a new
algorithm that borrows ideas of two well established
methods: the Riccati-/Sylvester-like iteration, and
the Jacobi-like iteration. Even though these tech-
niques are traditionally associated with very different
eigenvalue algorithms, the algorithm that we de-
rive in this paper makes a nice link between them.
Our method refines estimates of invariant subspaces
of real non-symmetric matrices which are already
“nearly” upper block triangular, but not in condensed
form. It uses the Lie group of real unipotent lower
block triangular(n × n)-matrices as similarities on a
nearly upper block triangular matrix. We develop a
class of algorithms based on such similarity transfor-
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mations, which display local quadratic convergence
to an upper block triangular form. The formulation
of the algorithms and their convergence analysis are
valid for different diagonal block sizes, as long as
these blocks have disjoint spectrum, i.e., as long as
the corresponding invariant subspaces are well de-
fined. An important special case is the computation
of the real Schur form, which groups complex con-
jugate eigenvalues in 2× 2 diagonal blocks. It can be
obtained by our method, provided these eigenvalue
pairs are disjoint. We always work overR, but the
generalization toC is immediate and we state with-
out proof that all the results from this paper directly
apply to the complex case. The outline of this paper
is as follows. After introducing some notation we
will focus on an algorithm consisting of similarity
transformations by unipotent lower block triangular
matrices. In order to improve numerical accuracy,
we then use orthogonal transformations instead. The
convergence properties of the orthogonal algorithm is
shown to be an immediate consequence of the former
one.
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2. Lower unipotent block triangular
transformations

LetV ⊂ R
n×n denote the vector space of real upper

block triangular(n× n)-matrices

V := {X ∈ R
n×n|Xij = 0ni×nj ∀1≤ j < i ≤ r} (1)

with square diagonal sub-blocksXii ∈ R
ni×ni , i =

1, . . . , r and
∑r

i=1 ni = n. Let Ln denote the Lie
group of real unipotent lower block triangular(n ×
n)-matrices partitioned conformably withV :

Ln := {X ∈ R
n×n|Xkk = Ink ∀1≤ k ≤ r,Xij

= 0ni×nj ∀1≤ i < j ≤ r}. (2)

Given a real upper block triangular matrixA ∈ V , we
consider the orbitMLn of A under similarity actionσ
of Ln:

σ : Ln × V → R
n×n,

(L,X) �→ σ(L,X) = LXL−1, (3)

MLn := {X ∈ R
n×n|X = LAL−1, L ∈ Ln}. (4)

The following (generic) assumption will be crucial in
our analysis.

Assumption 2.1. Let A ∈ V , then its diagonal
sub-blocksAii , i = 1, . . . , r have mutually disjoint
spectra.

Our first result shows that any matrix lying in a
sufficiently small neighborhood ofA which fulfils
Assumption 2.1is an element of anLn-orbit of some
other matrix, sayB, which also fulfilsAssumption 2.1.
We first show that underAssumption 2.1the smooth
mappingσ satisfies the following lemma.

Lemma 2.1. The mappingσ defined by(3) is locally
surjective around(I, A).

Proof. Let ln denote the Lie algebra of real lower
block triangular(n× n)-matrices

ln := {X ∈ R
n×n|Xkk = 0nk ∀1≤ k ≤ r,Xij

= 0ni×nj ∀1≤ i < j ≤ r}. (5)

It is sufficient to show that the derivative Dσ(I,A) :
ln × V → R

n×n is locally surjective. For arbitrary

l ∈ ln and for arbitrarya ∈ V

Dσ(I,A) · (l, a) = lA− Al+ a. (6)

We show that for anyh ∈ R
n×n the linear system

lA− Al+ a = h (7)

has a solution in terms ofl ∈ ln and a ∈ V . By
decomposing into upper block triangular andstrictly
lower block triangular partsh = hupp.bl. + hstr.low.bl.
and becausea ∈ V is already upper block triangular it
remains to show that the strictly lower block triangular
part of (7)

(lA− Al)str.low.bl. = hstr.low.bl. (8)

can be solved forl ∈ ln. We partition into “blocks of
sub-blocks”

l =
[
l11 0

l2̃1 l2̃2

]
, A =

[
A11 A1̃2

0 A2̃2

]
,

hstr.low.bl. =
[
(h11)str.low.bl. 0

h2̃1 (h2̃2)str.low.bl.

]
,

accordingly, i.e.,A11 ∈ R
n1×n1 and l11 = 0n1 as be-

fore. Thus one has to solve forl2̃1 andl2̃2. Considering
the (2̃1)-block of (8) gives

l2̃1A11− A2̃2l2̃1 = h2̃1. (9)

By Assumption 2.1, the Sylvesterequation (9)has
a unique solutionl2̃1. In order to prove the result,
we proceed analogously with the(2̃2)-block of (8),
i.e. l2̃2A2̃2− A2̃2l2̃2 = −l2̃1A1̃2+ (h2̃2)str.low.bl., and
continue inductively (l := l2̃2, A := A2̃2, etc.) by
partitioning the remaining diagonal blocksAii , i =
2, . . . , r into smaller blocks of sub-blocks. �

Let A ∈ R
n×n fulfil Assumption 2.1, then the next

lemma characterizes theLn-orbit of the matrixA.

Lemma 2.2. MLn := {X ∈ R
n×n|X = LAL−1, L ∈

Ln} is diffeomorphic toLn.

Proof. The setMLn is a smooth manifold because
it is the orbit of a semi-algebraic group action, see
[10, p. 353]. We will show that the stabilizer subgroup
stab(A) ⊂ Ln equals the identity{I} in Ln, i.e. that
the only solution in terms ofL ∈ Ln for

LAL−1 = A⇔ [L,A] = 0 (10)
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is L = I. PartitionL andA conformably as

L =
[
In1 0
L2̃1 L2̃2

]
, A =

[
A11 A1̃2
0 A2̃2

]
,

whereL2̃2 ∈ Ln−n1. The (2̃1)-block of [L,A] = 0
yieldsL2̃1A11− A2̃2L2̃1 = 0, implying L2̃1 = 0 by
Assumption 2.1on the spectrum ofA. By recursive
application of this argument to the(2̃2)-block of (10)
the result follows. Therefore,L = I implies stab(A) =
{I} and henceMLn ∼= Ln/stab(A) = Ln. �

3. Algorithms, main ideas

The algorithms presented in this section for the
iterative refinement of invariant subspaces of non-
symmetric real matrices are driven by the following
ideas. Let the matrixA ∈ V satisfy Assumption 2.1
and consider anX ∈ MLn sufficiently close toA, i.e.,

‖X− A‖ < ∆λ, (11)

where‖Z‖ :=
√

tr(ZZ�) and∆λ denotes the absolute
value of the smallest difference of any eigenvalues of
two differentdiagonal sub-blocks ofA. Obviously,

span

([
In1

0(n2+···+nr)×n1

])
(12)

is then a good approximation of ann1-dimensional
right invariant subspace ofX, because by assumption
(11) on X, the blocks‖Xji‖ are small for allj > i.
Consider anL(α) ∈ Ln of the following partitioned
form:

L(α) :=



In1

. . .

Inα

p(α+1,α) . . .

...
. . .

p(r,α) Inr


,(13)

where empty blocks are considered to be zero. We
want to compute

P(α) :=

 p(α+1,α)

...

p(r,α)

 ∈ R
n̄α×nα,

n̄α
.=nα+1+ · · · + nr, (14)

such that (fornα
.=n1+ · · · + nα−1):

L(α)XL(α)
−1 =

 Inα 0 0

0 Inα 0

0 P(α) In̄α

X

×

 Inα 0 0

0 Inα 0

0 −P(α) In̄α

 = Z, (15)

whereZ is of the form

Z =



Z1,1 · · · · · · · · · · · · · · · Z1,r
...

. . .
...

... Zα−1,α−1

...
...

... Zα,α

...
...

... 0 Zα+1,α+1

...
...

...
...

...
. . .

...
Zr,1 · · · Zr,α−1 0 Zr,α+1 · · · Zr,r


,

(16)

i.e., the blocks below the diagonal blockZα,α are zero.
For convenience we first assume without loss of gen-
erality thatr = 2. In this case we want to solve the
(21)-block of[

I 0
P(1) I

]
·
[
X11 X12
X21 X22

]
·
[

I 0
−P(1) I

]
=

[
Z11 Z12
0 Z22

]
(17)

in terms ofP(1), i.e., we want to solve the matrix
valued algebraic Riccati equation

P(1)X11+X21− P(1)X12P
(1) −X22P

(1) = 0. (18)

Since(18) is in general not solvable in closed form,
several authors have suggested different approaches to
solve (18) iteratively; see[4] for Newton-type itera-
tions on the non-compact Stiefel manifold and[8,17]
for iterations like

Pi+1X11−X22Pi+1 = PiX12Pi −X21, P0 = 0.

(19)

We refer to[5] for a comparison of the approaches
of the former three papers and to[16] for quantita-
tive results concerning Newton-type iterations to solve
Riccati equations, see also the recent work[6,7].
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A rather natural idea to solve(18) approximately is
to ignore the second order term,−P(1)X12P

(1), and
solve instead the Sylvester equation

P(1)X11+X21−X22P
(1) = 0, (20)

which byAssumption 2.1has a unique solution.
We now return to the general case where the num-

ber r of invariant subspaces to be computed is larger
than 2. With Jacobi-like sweep algorithms in mind,
it is natural to formulate an algorithm which solves
an equation like(20) for P(1), say, along the lines
of (13)–(16), then transformX according toX �→
L(1)X(L(1))−1, do the same forP(2), and so forth.
One can show that such an algorithm would be a dif-
ferentiable map aroundA. Moreover, local quadratic
convergence could be proved by means of analysis.

Instead of solving a Sylvester equation forP(α),
i.e., solving for the corresponding block of(15), one
can reduce the complexity by solving Sylvester equa-
tions of lower dimension in a cyclic manner, i.e., per-
form the algorithm block wise on eachp(ij) ∈ R

ni×nj .
The smaller the block sizesni, the smaller the Riccati
equations one has to solve and the simpler the trans-
formationsL(l). The smallest possible sizesni one
can choose for the diagonal blocksAi,i should group
the multiple eigenvalues ofA into the diagonal blocks
since this is needed byAssumption 2.1. An algorithm
for block sizes 1× 1 (implying distinct (real) eigen-
values ofA) would lead to scalar algebraic Riccati
equations which are solvable in closed form. Such an
approach would come very close to[2,3,18]where the
authors studied Jacobi-type methods for solving the
non-symmetric (generalized) eigenvalue problem.

3.1. Formulation of the algorithm

The following algorithm will be analyzed for a ma-
trix A satisfyingAssumption 2.1and an initial matrix
X ∈ MLn that is sufficiently close toA. Consider the
index setI := {(ij)}i=2,...,r;j=1,...,r−1 and fix an or-
dering, i.e., a surjective mapβ : I → {1, . . . , (r2)}.
For convenience we rename double indices in the de-
scription of the algorithm by simple ones by means of
Xij �→ Xβ((ij)) respecting the orderingβ.

Algorithm 3.1 (Sylvester sweep). Given anX ∈
MLn . Define

X
(1)
k := L(1)XL(1)

−1

X
(2)
k := L(2)X

(1)
k L(2)−1

...

X
((r2))

k := L((r2))X
((r2)−1)
k (L((r2)))−1,

where for l = 1, . . . , (r2), the transformation matrix
L(l) ∈ Ln differs from the identity matrixIn only by
the ij th block, sayp(l).

Here β((ij)) = l and p(l) ∈ R
nj×ni solves the

Sylvester equation

p(l)(X
(l−1)
k )jj − (X

(l−1)
k )iip

(l) + (X
(l−1)
k )ij = 0.

The overall algorithm then consists of the following
iteration of sweeps.

Algorithm 3.2 (Refinement of estimates of sub-
spaces).

• Let X0, . . . , Xk ∈ MLn be given fork ∈ N0.

• Define the recursive sequenceX(1)
k , . . . , X

((r2))

k as
above (sweep).

• SetXk+1 := X
((r2))

k . Proceed with the next sweep.

For the index setI := {(ij)}i=2,...,r;j=1,...,r−1
we propose two particular orderingsβcol : I →
{1, . . . , (r2)}, and βrow : I → {1, . . . , (r2)}, that are
best illustrated by the two diagrams inFig. 1. Obvi-
ously, the two orderings are mapped into each other
by just transposing the diagrams with respect to the
antidiagonal.

3.2. Local convergence analysis

The next result shows that our algorithm is locally
a smooth map.

Theorem 3.1. Algorithm 3.2, i.e., the mappings :
MLn → MLn is smooth locally around A.

Proof. The algorithm is a composition of partial al-
gorithmic stepsri : MLn → MLn , with ri(A) = A for
all i. It therefore suffices to show smoothness for each
ri around the fixed pointA. Typically, for one partial
iteration step one has to compute the sub-blockp of
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Fig. 1.

the unipotent lower block triangular matrix

L =
[
I 0
p I

]
satisfying the equation

LXL−1 =
[
I 0
p I

]
·
[
X11 X12
X21 X22

]
·
[

I 0
−p I

]
=

[ ∗ ∗
−pX12p ∗

]
,

i.e.,p has to solve the Sylvester equationpX11+X21−
X22p = 0. By Assumption 2.1and sinceX is close to
A, the spectra ofX11 andX22 will be disjoint and the
solution of this Sylvester equation exists and is unique.
Moreover, applying the implicit function theorem to
the function(X, p) �→ f(X, p), defined byf(X, p) =
pX11+ X21− X22p = 0, implies thatX �→ p(X) is
smooth aroundA. Hence all partial iteration steps are
smooth and the result follows. �

Theorem 3.1justifies to use calculus for proving
higher order convergence of our algorithm. We show
next that the first derivative of our algorithms at the
fixed pointA vanishes identically implying quadratic
convergence if the chosen ordering is eitherβrow or
βcol.

Theorem 3.2. Algorithm 3.2 converges locally
quadratically fast if orderingβrow or βcol is chosen.

Proof. We will show that the first derivative Ds(A) of
the algorithms at the fixed pointA vanishes identically

if βcol orβrow is chosen. By the chain rule we therefore
have to compute Drij (A) for all i > j with 2 ≤ i ≤ l

and 1≤ j ≤ m − 1. To be more precise, we have to
study the effect of applying the linear map Drij (A) :
TAMLn → TAMLn to those tangent vectors [l, A] ∈
TAMLn onto which the “earlier” linear maps Drpq(A)

have already been applied to

Ds(A) · [l, A] = Drlast(A) · · ·Drfirst(A) · [l, A],

l ∈ ln.
Notice thatA is not only a fixed point ofs but also
one of each individualrij . Without loss of generality
we make the simplifying assumption that the partition-
ing consists of 5× 5 blocks. Typically, anrij (X) =
Lij XL−1

ij looks like

rij (X) =


I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 pij 0 I 0

0 0 0 0 I

 ·X

·


I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 −pij 0 I 0

0 0 0 0 I

 . (21)

Therefore, Drij (A)·[l, A] = D(Lij XL−1
ij )·[l, X]|X=A =

[L′ij , A] + [l, A], whereL′ij := DLij (A) · [l, A], and
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typically

L′ij =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 p′ij 0 0 0
0 0 0 0 0


with p′ij := Dpij (X)·[l, X]|X=A. We already know that
pij solves a Sylvester equation, namelypij (X)Xjj +
Xij −Xiipij (X) = 0, withpij (X)|X=A = 0. Taking the
derivative of this Sylvester equation acting on [l, X]
evaluated atX = A gives

p′ij (A)Ajj + [l, A] ij − Aiip
′
ij (A) = 0. (22)

An easy computation verifies that the commutator
[L′ij , A] is of the following form:

[L′ij , A] =


0 ∗ 0 0 0
0 ∗ 0 0 0
0 ∗ 0 0 0
0 p′ijAjj − Aiip

′
ij ∗ ∗ ∗

0 0 0 0 0

 ,

i.e., it differs from zero only by the(ij)th block as well
as by the blocks right to it and above it. By(22), we
therefore obtain for the derivative of the(ij)th partial
steprij :

Drij (A) · [l, A] =


0 ∗ 0 0 0
0 ∗ 0 0 0
0 ∗ 0 0 0
0 p′ijAjj − Aiip

′
ij ∗ ∗ ∗

0 0 0 0 0


︸ ︷︷ ︸

[L′ij ,A]

+


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ [l, A] ij ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

[l,A]

.

That is, by(22)the first derivative annihilates the(ij)th
block, altering those blocks which are above or to the
right to this(ij)th block, but it leaves invariant all the
remaining blocks. Both ordering strategies then imply
that after a whole iteration step all those blocks of
the tangent vector [l, A] lying below the main block

diagonal are eliminated. We therefore can conclude
that Drij (A)·[l, A] is upper block triangular. Moreover,
it follows from the proof ofLemma 2.2that Drij (A) ·
[l, A] = 0 as well. Essentially,Assumption 2.1implies
that the only Lie algebra element ofln commuting with
A into a upper block triangular matrix likeA itself,
is the zero matrix. The theorem then follows from a
Taylor-type argument[14]:

‖Xk+1− A‖ ≤ sup
Z∈Ū

‖D2s(Z)‖ · ‖Xk − A‖2. �

Quite naturally one might ask if the two orderings
βrow and βcol are the only possible ones ensuring
quadratic convergence. The answer is no, because
“mixtures” of both strategies also suffice. As a corol-
lary of Theorem 3.2we obtain the following result.

Corollary 3.1. Algorithm 3.2 is quadratic conver-
gent if the ordering is specified by the following
two rules. The integers1, . . . , (r2) to be filled in are:
(i) strictly increasing across each row, and (ii) are
strictly increasing up each column.

Remark 3.1. These possible orderings are related to
Young tableaux, or to be more precise, to standard
tableaux; see[9] for the connections between geom-
etry of flag manifolds, representation theory ofGLn,
and calculus of tableaux.

It easily follows that forr = 3, βcol andβrow are
the only two possible orderings ensuring quadratic
convergence. Forr = 4 there are already eight
possible orderings together with their “conjugate”
counterparts.

We did not comment yet on orderings which
are definitelynot leading to quadratic convergence.
Generically, this is the case for any ordering which
does not respectCorollary 3.1, but when the fixed
point matrixA has some specific zero blocks above
the diagonal, quadratic convergence may be recov-
ered. For a more detailed discussion on this and for
illustrative examples, we refer to[14,15].

4. Orthogonal transformations

For numerical reasons it makes more sense to
use orthogonal transformations instead of unipotent
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lower triangular ones. We therefore reformulate
Algorithm 3.2in terms of orthogonal transformations.
The convergence analysis for this new algorithm
will greatly benefit from the calculations we already
did.

For convenience we assume for a while thatr = 5.
Given

L =


I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 p 0 I 0

0 0 0 0 I

 ,

a quite natural idea is to use instead ofL the orthogonal
Q-factor fromL after performing Gram–Schmidt, i.e.,
L = RQ, to the rows of sub-blocks ofL. We have
with Nl

.=(I + p�p)−1/2 andNr
.=(I + pp�)−1/2 the

factorization:

L = R ·Q=


I 0 0 0 0

Nl 0 p�Nr 0

I 0 0

N−1
r 0

I



·


I 0 0 0 0

0 Nl 0 −Nlp
� 0

0 0 I 0 0

0 Nrp 0 Nr 0

0 0 0 0 I

 . (23)

Before we proceed to formulate the orthogonal ver-
sion of Algorithm 3.2 we need some preliminaries.
Namely we have to fix the manifold such an algorithm
is “living” on. Consider an “Iwasawa Decomposition”
[13] of the Lie groupLn. The set of orthogonal matri-
cesQ coming from anRQ-decomposition as in(23)
do in general not generate an orthogonal group with
the ordinary matrix product as group operation. To see
this we look at the simple 2× 2 case[

1 0

p 1

]
=

[
(1+ p2)−1/2 p(1+ p2)−1/2

0 (1+ p2)1/2

]

·
[

(1+ p2)−1/2 −(1+ p2)−1/2p

(1+ p2)−1/2p (I + p2)−1/2

]
.

Obviously, the set of orthogonalQ-matrices does
include

Q := 1√
2

[
1 −1
1 1

]
, but does not include

Q̃ :=
[

0 −1
1 0

]
= Q

2
.

Note that limp→±∞ L /∈ L2. Nevertheless, we are
able to construct at least locally the space on which
an orthogonal version ofAlgorithm 3.2 can be de-
fined. This construction will allow us to use a similar
analysis to prove quadratic convergence. Consider an
arbitrary elementL ∈ Ln in a sufficiently small neigh-
borhoodULn(In) of the identityIn in Ln, such thatL
can be parameterized by exponential coordinates of
the second kind, cf.[19, p. 86]. Let

L = L(r2)
· · ·L1 = R(r2)

Q(r2)
· · ·R1Q1. (24)

Here theLi are defined as in(21). Each Li, for
i = 1, . . . , (r2), is represented asLi = eli with, e.g.,
usingβrow as an ordering,

l1 =


0 · · · · · · 0
...

. . .
...

0
. . .

...

p1 0 · · · 0

 ,

l2 =


0 · · · · · · 0
...

. . .
...

0
. . .

...

0 p2 0 · · · 0

 , . . . (25)

We can therefore study the map

σ : Ln ⊃ ULn(In)→ SOn,

L �→ Q(r2)
(L) · · · · ·Q1(L). (26)

Note thatQi(In) = In for all i = 1, . . . , (r2). The fol-
lowing series of lemmata characterizes the mappingσ.

Lemma 4.1. The mappingσ defined by (26) is
smooth.

Proof. See the explicit form of theQi given as in
(23). �

Lemma 4.2. The mappingσ defined by(26) is an
immersion atIn.
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Proof. We have to show that the derivative Dσ(In) :

ln → son is injective. For arbitraryl = ∑(r2)

i=1 li ∈ ln
the following holds true:

Dσ(In) · l =
(r2)∑
i=1

DQi(In) · li

=
(r2)∑
i=1

(li − l�i ) = l− l�, (27)

where we have used(d/dε)(I + ε2p�p)−1/2|ε=0 = 0
and(d/dε)(I + ε2pp�)−1/2|ε=0 = 0. Eq. (27)implies
injectivity in an obvious manner. �

We can now apply theimmersion theorem, cf.
[1, p. 199].

Lemma 4.3. The mappingσ as defined by(26)
is a diffeomorphism ofULn(In) onto the image
σ(ULn(In)).

Consider the isospectral manifold

MSOn := {X ∈ R
n×n|X = QAQ�,Q ∈ SOn} (28)

with A ∈ V as above fulfillingAssumption 2.1. Define

α : σ(ULn(In))→ MSOn , Q �→ QAQ�. (29)

Lemma 4.4. The mappingα defined as in(29) is
smooth.

Proof. The result follows by the explicit construction
of an arbitraryQ by using exponential coordinates of
the second kind. �

Lemma 4.5. The mappingα defined as in(29) is an
immersion atIn.

Proof. We have to show that the derivative Dα(In) :
TInσ(ULn(In)) → TAMSOn is injective. Arbitrary el-
ements of the tangent spaceTInσ(ULn(In)) have the
form

(r2)∑
i=1

(li − l�i ) = l− l�,

whereas those of the tangent spaceTAMSOn look
like [l − l�, A]. To show injectivity of Dα(In) :

TInσ(ULn(In)) → TAMSOn , defined byl − l� �→
[l−l�, A], we partitionl−l� conformably withA, i.e.,

A =


A11 · · · Arr

. . .
...

Arr

 ,

l− l� =



0 −p�21 · · · −p�r1
p21

. . .
...

...
. . . −p�r,r−1

pr1 · · · pr,r−1 0

 .

Note that [l − l�, A]r1 = pr1A11− Arrpr1. Assume
the converse, i.e.,

[l− l�, A] = [ l̃− l̃�, A] (30)

holds for somẽl �= l with

l̃ :=


0

p̃21
. . .

...
. . .

p̃r1 · · · p̃r,r−1 0

 ∈ ln.
Looking at the (r1)-block of (30) implies (pr1 −
p̃r1)A11−Arr (pr1− p̃r1) = 0, which byAssumption
2.1 implies in turn thatpr1 = p̃r1. Now we use induc-
tion on the sub-diagonal blocks going from the lower
left corner block of (30) to the first sub-diagonal
blocks. Applying recursively the same arguments on
the(r−1,1)-block of(30), as well as on the(r2)-block
of (30), then impliespr2 = p̃r2 andpr−1,1 = p̃r−1,1.
Finally, we get [l − l�, A] = [ l̃ − l̃�, A] ⇒ l = l�, a
contradiction. Therefore, Dα(In) is injective, henceα
is an immersion atIn. �

Consequently, we have the following lemma.

Lemma 4.6. The composition mappingα ◦ σ :
ULn(In) → MSOn is a diffeomorphism ofULn(In)
onto the image(α ◦ σ)(ULn(In)).

4.1. The algorithm

The following algorithm will be analyzed forA
satisfying Assumption 2.1. We denote in the se-
quel M := (α ◦ σ)(ULn(In)). We are given an
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X ∈ M close toA and we consider the index set
I := {(ij)}i=2,...,r;j=1,...,r−1 and fix an orderingβ. For
convenience we again rename double indices in the
description of the algorithm by simple ones by means
of Xij �→ Xβ((ij)) respecting the orderingβ.

Algorithm 4.1 (Orthogonal Sylvester sweep). Given
anX ∈ (α ◦ σ)(ULn(In)) = M, define

X
(1)
k := Q1XQ�1

X
(2)
k := Q2X

(1)
k Q�2

...

X
((r2))

k := Q(r2)
X
((r2)−1)
k Q�

(r2)
,

where for l = 1, . . . , (r2) the transformation matrix
Ql ∈ SOn differs from the identity matrixIn only by
four sub-blocks. Namely, the

( jj)th block equals(I + p�p)−1/2,

( ji)th block equals− (I + p�p)−1/2p�,
(ij)th block equals(I + pp�)−1/2p,

(ii)th block equals(I + pp�)−1/2.

Hereβ((ij)) = l andpl ∈ R
nj×ni solves the Sylvester

equation

p(l)(X
(l−1)
k )jj − (X

(l−1)
k )iip

(l) + (X
(l−1)
k )ij = 0.

The overall algorithm consists of the following it-
eration of orthogonal sweeps.

Algorithm 4.2 (Orthogonal refinement of subspace
estimates).

• Let X0, . . . , Xk ∈ M be given fork ∈ N0.

• Define the recursive sequenceX(1)
k , . . . , X

((r2))

k as
above (sweep).

• SetXk+1 := X
((r2))

k . Proceed with the next sweep.

4.2. Local convergence analysis

Analogous toTheorem 3.1we have the following
theorem.

Theorem 4.1. Algorithm 4.2, i.e., the mappings :
M → M is smooth locally around A.

Proof. The algorithm is a composition of partial al-
gorithmic stepsri. Smoothness of these partial algo-
rithmic steps follows from the smoothness of eachpi
already shown. �

Theorem 4.2. Algorithm 4.2 converges locally
quadratically fast if for working off the partial algo-
rithmic steps an ordering is chosen which respects
Corollary 3.1.

Proof. We will compute Drij (A) for all i > j with 2≤
i ≤ l and 1≤ j ≤ m − 1. Without loss of generality
we may assume that the partitioning consists of 5×
5 blocks. Typically, a transformation matrixQij for
rij (X) = Qij XQ�ij looks like

Qij (X) =



I 0 0 0 0

0 Sij (X) 0 −Sij (X)p
�
ij (X) 0

0 0 I 0 0

0 Tij (X)pij (X) 0 Tij (X) 0

0 0 0 0 I


,

(31)

whereSij (X) := (I+p�(X)p(X))−1/2, andTij (X) :=
(I + p(X)p�(X))−1/2. Moreover,Sij (A) = Ini and
Tij (A) = Inj . An arbitraryΩ ∈ son/(son1⊕· · ·⊕sonr )
looks like

Ω =


0 −Ω�21 · · · −Ω�r1

Ω21
. . .

...
...

. . . −Ω�r,r−1
Ωr1 · · · Ωr,r−1 0

 .

The derivative of one partial algorithmic step acting
on [Ω,A] ∈ TAM is as Drij (A) · [Ω,A] = [Q′ij , A] +
[Ω,A], whereQ′ij := DQij (A) · [Ω,A], and typically

Q′ij =



0 0 0 0 0

0 S′ij (A) 0 −(p�ij )′(A) 0

0 0 0 0 0

0 p′ij (A) 0 T ′ij (A) 0

0 0 0 0 0


with p′ij (A) := Dpij (X) · [Ω,X]|X=A. We already
know that pij solves a Sylvester equation, namely
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pij (X)Xjj+Xij−Xiipij (X) = 0, withpij (X)|X=A = 0.
Taking the derivative of this Sylvester equation acting
on [Ω,A] gives

p′ij (A)Ajj + [Ω,A] ij − Aiip
′
ij (A) = 0. (32)

An easy computation verifies that the commutator
[Q′ij , A] is of the following form:

[Q′ij , A] =



0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 p′ijAjj − Aiip

′
ij ∗ ∗ ∗

0 0 0 0 0


,

i.e., the(ij)th block equalsp′ijAjj −Aiip
′
ij and columns

of blocks to the left as well as rows of blocks below are
zero. By(32), we therefore obtain for the derivative
of the (ij)th partial steprij :

Drij (A) · [Ω,A] =


0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 p′ijAjj − Aiip

′
ij ∗ ∗ ∗

0 0 0 0 0


︸ ︷︷ ︸

[Q′ij ,A]

+


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ [Ω,A] ij ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

[Ω,A]

.

That is, by (32) the first derivative annihilates the
(ij)th block, altering eventually those blocks which are
above, to the right, or a combination of both, to this
(ij)th block, but it leaves invariant all the remaining
blocks. Apparently, all ordering strategies respecting
Corollary 3.1ensure that after a whole iteration step all
those blocks lying below the main block diagonal are
eliminated. We therefore can conclude that Drij (A) ·
[Ω,A] is strictly upper block triangular. Again we can
even conclude more, namely Drij (A) · [Ω,A] = 0.
Following the argumentation in the proof ofLemma
2.2, essentially,Assumption 2.1ensures that the only
element ofson/(son1 ⊕ · · · ⊕ sonr ), which commutes

with A into a upper block triangular matrix, is the zero
matrix. This can also be seen from the fact that the
aboveΩ is of the typel− l�, wherel ∈ ln. The result
then follows. �

5. Computational aspects

In this section we look at computational aspects of
the basic recurrences described inSection 3. We first
focus on the complexity of the solution of the Sylvester
equation needed both in the Sylvester sweep and in the
orthogonal Sylvester sweep algorithm. Using the no-
tation of those sections, we want to solve the equation

PX11+X21−X22P = 0, (33)

where we will assumeXij ∈ R
ni×nj and n2 ≥

n1. The recommended method here is to use the
Hessenberg–Schur method described in[11]. In this
method one computes orthogonal similarity transfor-
mationsUi, i = 1,2 such thatS

.=UT
1X11U1 is in real

Schur form (i.e. an upper block triangular matrix with
1×1 or 2×2 blocks on diagonal) andH

.=UT
2X22U2 is

in Hessenberg form (i.e. a matrix with zeros below the
first sub-diagonal). Defining alsoF

.=UT
2X21U1 and

Z
.=UT

2 PU1 we obtain an equivalent equation inZ:

ZS+ F − HZ= 0, (34)

which is easier to solve. The special forms ofH and
S indeed yield simple recurrences for the columnszk,
k = 1, . . . , n1 of Z. If sk+1,k = 0 thenzk is obtained
from previously computed columns using

(H − sk,kI)zk = fk +
k−1∑
j=1

sj,kzj (35)

(which can be solved inn2
2 flops) and ifsk+1,k �= 0

then columnszk andzk+1 are similarly computed from

H [zk|zk+1] − [zk|zk+1]

[
sk,k sk,k+1
sk+1,k sk+1,k+1

]

= [fk|fk+1] +
k−1∑
j=1

[sj,kzj|sj,k+1zj]

(which can be solved in 6n2
2 flops). It is shown in[11]

that the overall algorithm, including the back trans-
formation P = U2ZUT

1 requires(5/3)n3
2 + 10n3

1 +
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5n2
2n1+(5/2)n2

1n2 flops. It is also shown in that paper
that this method is weakly stable, which essentially
guarantees that the computed solution is as accurate
as what could be expected from any algorithm solving
(33). Let us point out here that the computation of the
solutions of each Sylvester equation of the Sylvester
sweep is negligible in comparison to the application
of the similarity transformations, provided the sizesnj
of the blocks are small compared ton, the dimension
of the matrix they operate on. Indeed, one similarity
transform implying a matrixP of dimensionni×nj re-
quires 4n·ni ·nj flops (for multiplyingP with annj×n
matrix from the right and with ann× ni matrix from
the left). A total Sylvester sweep therefore requires∑
i

∑
j

4n(ni · nj) ≤ 4n
∑
i

ni
∑
j

nj = 4n3

flops. For the more concrete case where allni = nj =
2 (i.e. when we calculate a Schur-like form) the com-
plexity can be calculated more precisely and is 2n3

flops. Clearly, the computation of the solutions of the
n2/8 Sylvester equations of size 2× 2 is of the order
of n2 flops and hence an order of magnitude less.

For the orthogonal Sylvester sweep one has first to
construct the orthogonal transformationQ described
in (23). A simple and reliable procedure for reason-
able sized matricesP is to use its singular value de-
composition. AssumingP ∈ R

ni×nj with ni ≤ nj,
we haveP = U[ T 0 ]V�, whereU ∈ R

ni×ni , V ∈
R
nj×nj andT = diag{ tanθ1, . . . , tanθnj } is diagonal

and positive. It then follows that the four non-trivial
blocks ofQ are given by:

Nl = VCV�, NlP = V [ S 0 ]U�,

NrP = U

[
S

0

]
V�, Nr = U

[
C 0
0 I

]
U�,

where

C = diag{ cosθ1, . . . , cosθnj },
S = diag{ sinθ1, . . . , sinθnj }.
The computational cost of constructing these transfor-
mations is again negligible with respect to their appli-
cation. Forni = nj = 2 each one essentially amounts
to a 4×4 row transformation on a 4×n block row of
A and 4×4 column transformation on ann×4 block
column ofA. This requires 32n flops and since there

are n2/8 of those per sweep, the orthogonal sweep
requires about 4n3 flops, i.e., about the double of a
standard Sylvester sweep. Since both algorithms are
quadratically convergent, one can say that these algo-
rithms require O(n3) flops to converge (when starting
from a form that is almost block diagonal). We point
out that the standardQR algorithm is of the same or-
der of complexity.

We should mention that the methods described in
this paper extend to the generalized eigenvalue prob-
lem in a straightforward manner. Instead of one Ric-
cati or one Sylvester equation one has then to solve
a system of two coupled ones. Everything is similar
under an equivalent assumption on the spectra of the
sub-blocks.

If the considered matrix is symmetric, our method
is related to[12]. There, the so-called approximate
Givens (or Jacobi) transformations are developed
which essentially approximate an exact rotation to
zero out a matrix entry. It is not clear though that
our algorithm has an interpretation as a Jacobi-type
method in the general non-symmetric case.

The appeal of our method is to be found in
time-varying eigenvalue problems (as occurring, e.g.
in tracking problems of slowly varying phenomena).
At each step one then has a nearly block triangular
matrix to start with, which needs to be updated in
order to reduce it again to block triangular form via
similarity transformations. One should also point out
that in terms of efficient implementation on parallel
architectures, our method should have much the same
properties as Jacobi-like methods.
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