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1. Refining estimates of invariant subspaces mations, which display local quadratic convergence

to an upper block triangular form. The formulation

The computation of invariant subspaces has re- of the algorithms and their convergence analysis are

ceived a lot of attention in the numerical linear valid for different diagonal block sizes, as long as
algebra literature. In this paper we present a new these blocks have disjoint spectrum, i.e., as long as
algorithm that borrows ideas of two well established the corresponding invariant subspaces are well de-
methods: the Riccati-/Sylvester-like iteration, and fined. An important special case is the computation
the Jacobi-like iteration. Even though these tech- of the real Schur form, which groups complex con-
niques are traditionally associated with very different jugate eigenvalues in 2 2 diagonal blocks. It can be
eigenvalue algorithms, the algorithm that we de- obtained by our method, provided these eigenvalue
rive in this paper makes a nice link between them. pairs are disjoint. We always work ov@, but the
Our method refines estimates of invariant subspacesgeneralization taC is immediate and we state with-
of real non-symmetric matrices which are already out proof that all the results from this paper directly
“nearly” upper block triangular, but not in condensed apply to the complex case. The outline of this paper
form. It uses the Lie group of real unipotent lower is as follows. After introducing some notation we
block triangular(n x n)-matrices as similarities on a  will focus on an algorithm consisting of similarity
nearly upper block triangular matrix. We develop a transformations by unipotent lower block triangular
class of algorithms based on such similarity transfor- matrices. In order to improve numerical accuracy,

we then use orthogonal transformations instead. The
"+ Corresponding author. convergence properties of the orthogonal algorithm is
E-mail addresseshueper@mathematik.uni-wuerzburg.de shown to be an immediate consequence of the former
(K. Huper), vdooren@csam.ucl.ac.be (P. Van Dooren). one.
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2. Lower unipotent block triangular
transformations

Let V ¢ R™*" denote the vector space of real upper
block triangular(n x n)-matrices

Vi={X e R""|Xjj = Oyxn; V1< j<i=<r} (1)

with square diagonal sub-blocks; € R"*" | =
1,...,rand>;_;n; = n. Let £, denote the Lie
group of real unipotent lower block triangulét x
n)-matrices partitioned conformably with:
L, ={X e R"" Xy = I, V1 <k <r,Xj
=0nl><njV1§ i< .] Sr}

)
Given a real upper block triangular matike V, we
consider the orbi, of A under similarity actionr
of L,:

oL, xV = R™",

(L, X) > o(L, X) = LXL™%, (3)
(4)

The following (generic) assumption will be crucial in
our analysis.

Mg, = (X e R™"|X =LALY L € £,).

Assumption 2.1. Let A € YV, then its diagonal
sub-blocksAj, i = 1,...,r have mutually disjoint
spectra.

Our first result shows that any matrix lying in a
sufficiently small neighborhood ofA which fulfils
Assumption 2.1s an element of arf,,-orbit of some
other matrix, sayB, which also fulfilsAssumption 2.1
We first show that undeAssumption 2.1the smooth
mappingo satisfies the following lemma.

Lemma 2.1. The mappingr defined by3) is locally
surjective around, A).

Proof. Let [, denote the Lie algebra of real lower

block triangular(n x n)-matrices

[, :={X e RV Xy = 0, V1 <k <rXj
= Opxn; V1<i<j=<r}

(5)

It is sufficient to show that the derivativeolDl, A) :
[, x V. — R"™" is locally surjective. For arbitrary
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[ € 1, and for arbitrarya € V

Do(l, A) - (I, a) = IA — Al +a. (6)

We show that for any: € R"*" the linear system
IA—Al+a=nh @)

has a solution in terms of € [, anda € V. By
decomposing into upper block triangular astdictly
lower block triangular parté = hypppl. + hstrlow.bl.
and because € V is already upper block triangular it
remains to show that the strictly lower block triangular
part of (7)

(8)

can be solved for € [,,. We partition into “blocks of

sub-blocks”
A A
A= 11 12 ,
0 Ax

j— |:111 0 i|
Is1 I3 |
Rstriow.bl. = |:(h11)str.low.bl. 0 ] |
(h55)str.low.bl.

accordingly, i.e. A11 € R"*" andlj; = 0,, as be-
fore. Thus one has to solve fi and!/s,. Considering
the (21)-block of (8) gives

(lA - Al)str.low.bl‘ = hstr.low.bl.

hs;

9)

By Assumption 2.1 the Sylvesterequation (9)has
a unique solutions;. In order to prove the result,
we proceed analogously with th@2)-block of (8),
8. 1545 — Aply = —l51A + (h3p)striowbl., and
continue inductively I := I5, A := As, etc.) by
partitioning the remaining diagonal bloclks;, i =
2, ..., rinto smaller blocks of sub-blocks. O

I51A11 — Asl5 = hgy.

Let A € R™" fulfil Assumption 2.1then the next
lemma characterizes thg,-orbit of the matrixA.

Lemma 2.2. M, := {X € R™"|X = LAL"L L €
L,} is diffeomorphic ta’,,.

Proof. The setM,, is a smooth manifold because
it is the orbit of a semi-algebraic group action, see
[10, p. 353] We will show that the stabilizer subgroup
stalfA) C L, equals the identity/} in £,, i.e. that
the only solution in terms of. € £,, for

LAL'=A & [L,A]=0 (10)
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is L = I. Partition and A conformably as

=|:In1 0] A=|:A11 Afz}’

Ly L3 0 Ax
whereLs, € L,_y,. The (2~1)-block of[L,A] =0
yields L51A11 — As,L57 = 0, implying Ls; = 0 by
Assumption 2.1on the spectrum ofA. By recursive
application of this argument to th@2)-block of (10)
the result follows. Thereford, = I implies stal§A) =
{I} and henceM;, = L, /stali{A) = L,,. O

3. Algorithms, main ideas

The algorithms presented in this section for the
iterative refinement of invariant subspaces of non-
symmetric real matrices are driven by the following
ideas. Let the matrid € V satisfy Assumption 2.1
and consider aX € M., sufficiently close ta4, i.e.,

X = Al < Aj, (11)

where| Z|| := /tr(ZZ") and A; denotes the absolute
value of the smallest difference of any eigenvalues of
two differentdiagonal sub-blocks ofi. Obviously,

o5, ")

Oz t--tn) xmy
is then a good approximation of an-dimensional
right invariant subspace of, because by assumption
(11) on X, the blocks|| Xji|| are small for allj > i.
Consider anL® e £, of the following partitioned
form:

(12)

Iy,

Iy,

p(a+l,a) ’ (13)

- p(r’a) Inr -

where empty blocks are considered to be zero. We

want to compute
p(a+l,a)
P(ot) = c R’_“"X”D‘,

(;,a)

p
(14)
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such that (fom,=n1 + - - - + ng—1):
L, O 0
LOXLO™ =| 0 L, 0 |x
0 P@ [
Iy, 0 0
x| O I, 0 |=2 (15
0 —P9 I
whereZ is of the form
rZi1 - CZ1, -
del,utfl
Z= N/ s,
0 ZoH—l.oH—l
L Z.r,l Z,,;,(,l 0 Z,’;H . Z.m i
(16)

i.e., the blocks below the diagonal bloZk ,, are zero.

For convenience we first assume without loss of gen-

erality thatr = 2. In this case we want to solve the
X21

(21)-block of
1 0
| =PD T
212]
Z22

1 0

PO
_ [211

in terms of PD,| j.e., we want to solve the matrix

valued algebraic Riccati equation

0
POX11+ Xo1 — PO X1oPD — X00PM =0

X11 X2

X22

(17)

(18)

Since(18) is in general not solvable in closed form,
several authors have suggested different approaches to
solve (18) iteratively; se€[4] for Newton-type itera-
tions on the non-compact Stiefel manifold di8diL7]

for iterations like

Pi11X11— X2oPiy1 = PiX1oPi — X21, Po=0.

(19)
We refer to[5] for a comparison of the approaches
of the former three papers and [b6] for quantita-

tive results concerning Newton-type iterations to solve
Riccati equations, see also the recent wérk].
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A rather natural idea to solv@8) approximately is X,El) — L O
to ignore the second order term,P® X1,PD | and

2 ._ 7@y ;@2?
solve instead the Sylvester equation X =LEX L

PO X114 Xo1 — X22PP =0, (20)
@) ._ 1) v @D-D 1 ()y-1
which by Assumption 2.1has a unique solution. Xp™ =L (L727)™,
We now return to the general case where the num- where forl = 1,..., (), the transformation matrix

berr of invariant subspaces to be computed is larger
than 2. With Jacobi-like sweep algorithms in mind,
it is natural to formulate an algorithm which solves
an equation like(20) for P, say, along the lines
of (13)—(16) then transformX according toX
LOXLD®)~1 do the same forP@, and so forth.
One can show that such an algorithm would be a dif-
ferentiable map around. Moreover, local quadratic
convergence could be proved by means of analysis.
Instead of solving a Sylvester equation fBf%,
i.e., solving for the corresponding block ¢i5), one
can reduce the complexity by solving Sylvester equa-
tions of lower dimension in a cyclic manner, i.e., per-
form the algorithm block wise on eagh) e R ") o LetXo, ..., Xy € M, be given fork € No.
The smaller the block sizes, the smaller the Riccati
equatigns orzg has to solve and thg simpler the trans- above (sweep).
formations L. The smallest possible sizes one ) )
can choose for the diagonal blocks; should group ~ ® S€tXk+1:= X;*". Proceed with the next sweep.
the multiple eigenvalues of into the diagonal blocks

LD e L, differs from the identity matrix,, only by
theijth block, sayp®.

Here B((ij)) = [ and p» e R"*" solves the
Sylvester equation

-1 -1 -1
PO Xy = i + x{ T =o.

The overall algorithm then consists of the following
iteration of sweeps.

Algorithm 3.2 (Refinement of estimates of sub-
spaces).

o Define the recursive sequencé}), ) _.’X](((z)) as

since this is needed byssumption 2.1An algorithm For the index setZ = ({(i)}i=2..rj=1..r-1
for block sizes 1x 1 (implying distinct (real) eigen- ~ We propose two particular orderingeol @ Z —
values of A) would lead to scalar algebraic Riccati {1 ..., (5}, andfrow : Z — {1,...,(5)}, that are

equations which are solvable in closed form. Such an best illustrated by the two diagrams kig. 1 Obvi-
approach would come very close[®3,18]where the ~ ously, the two orderings are mapped into each other
authors studied Jacobi-type methods for solving the by just transposing the diagrams with respect to the

non-symmetric (generalized) eigenvalue problem.  antidiagonal.
3.1. Formulation of the algorithm 3.2. Local convergence analysis
The following algorithm will be analyzed for a ma- The next result shows that our algorithm is locally

trix A satisfyingAssumption 2.Jand an initial matrix a smooth map.

X € M, that is sufficiently close tot. Consider the

index setZ := {(ij)}i=2,...r; j=1,...,r—1 and fix an or- Theorem 3.1. Algorithm 3.2 i.e, the mappings :
dering, i.e., a surjective map : 7 — {1,..., (H)}. M, — Mg, is smooth locally around A

For convenience we rename double indices in the de-

scription of the algorithm by simple ones by means of Proof. The algorithm is a composition of partial al-

Xij = Xpgijy respecting the ordering. gorithmic steps; : My, — My, , with r;(A) = A for
all i. It therefore suffices to show smoothness for each
Algorithm 3.1 (Sylvester sweep). Given aX ¢ r; around the fixed poind. Typically, for one partial

M, . Define iteration step one has to compute the sub-blpakf
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2r—3

2r—3

Fig. 1.

the unipotent lower block triangular matrix

[}

p 1
satisfying the equation

_ I 0 X11 X2
LXL™! = .

|:P 1} |:X21 X22

—pXi2p

J15 7]
Tl

i.e., p has to solve the Sylvester equatimy 1+ X 21—
X22p = 0. By Assumption 2.Jand sinceX is close to

A, the spectra ok'1; and X»; will be disjoint and the
solution of this Sylvester equation exists and is unique.
Moreover, applying the implicit function theorem to
the function(X, p) — f(X, p), defined byf(X, p) =
pX11 + X21 — X22p = 0, implies thatX +— p(X) is
smooth aroundi. Hence all partial iteration steps are
smooth and the result follows. O

I 0
*
*

Theorem 3.ljustifies to use calculus for proving
higher order convergence of our algorithm. We show
next that the first derivative of our algorithmat the
fixed point A vanishes identically implying quadratic
convergence if the chosen ordering is eitifegy, or

ﬂcol-

Theorem 3.2. Algorithm 3.2 converges locally
quadratically fast if orderingBow OF Bcol IS chosen

Proof. We will show that the first derivative A) of
the algorithms at the fixed pointA vanishes identically

if Bcol OF Brow IS chosen. By the chain rule we therefore
have to compute B (A) forall i > jwith2 <i <]
and 1< j < m — 1. To be more precise, we have to
study the effect of applying the linear map;RA) :
TaMp, — TaMg, to those tangent vectors ] €

T M, onto which the “earlier” linear mapsrg,(A)
have already been applied to

Ds(A) - [I, A] = Driast(A) - - - Drirst(A) - [1, A],
lel,.

Notice thatA is not only a fixed point of but also
one of each individuadj. Without loss of generality
we make the simplifying assumption that the partition-
ing consists of 5¢< 5 blocks. Typically, anj(X) =

LijXL * looks like

I 0 0 0O
0O 7 0 0O
rjX)=(0 0 I 0 0] -X

0 pj 01 O

0O 0 0 01

I 0 00O

O I 00O

0O 0O I 0O (22)
0O —pj O 1 O

0O 0O 0 01

Therefore, By (A)-[I, A] = D(Li XL H)-[L, X]lx=4 =

[Lj, A] + [1, A], where Lj; == DLj(A) - [1, A], and
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typically
0O 0 00O
0O 0 00O

Li’j =0 0 0 0 O
0 p{j 0 0O
0 0 00O

with pi’j := Dpjj(X)-[I, X]|x=4. We already know that
pij solves a Sylvester equation, namely(X)Xjj +
Xij — Xii pij (X) = 0, with pjj (X)|x=4 = 0. Taking the
derivative of this Sylvester equation acting dnX]
evaluated a = A gives

P (M)A + [1. Aly — Aii pf(A) = 0. (22)

An easy computation verifies that the commutator

[L{j, A] is of the following form:
0 * 0 0O
0 * 0 0O
0 pi/j Aj — Aiipi/j * ok ok
0 0 0 0 O

i.e., it differs from zero only by théj)th block as well
as by the blocks right to it and above it. Bg2), we
therefore obtain for the derivative of thig)th partial
steprij:

0 * 0 0O
0 * 0 0O
Drij(A)-[I,A] = | O * 0 0O
0 pi/jAjj —Aiipi/j * ok ok
0 0 0O 0O
[L.A]
* * ERNE S S
* * ERE S
+| = * x % %
x [ Alj %= % =
* * ¥ % %
[7.A]

Thatis, by(22)the first derivative annihilates thg)th
block, altering those blocks which are above or to the
right to this(ij)th block, but it leaves invariant all the
remaining blocks. Both ordering strategies then imply
that after a whole iteration step all those blocks of
the tangent vector/[A] lying below the main block
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diagonal are eliminated. We therefore can conclude
that Drjj (A)-[/, A]is upper block triangular. Moreover,

it follows from the proof ofLemma 2.2that Drij(A) -

[, A] = 0 as well. EssentiallyAssumption 2.dmplies
that the only Lie algebra elementigfcommuting with

A into a upper block triangular matrix lika itself,

is the zero matrix. The theorem then follows from a
Taylor-type argumentl4]:

IXkr1 — All < suplD?s(2)|| - || Xk — All%.
ZelU

|

Quite naturally one might ask if the two orderings
Brow and Bco are the only possible ones ensuring
guadratic convergence. The answer is no, because
“mixtures” of both strategies also suffice. As a corol-
lary of Theorem 3.2ve obtain the following result.

Corollary 3.1. Algorithm 3.2 is quadratic conver-
gent if the ordering is specified by the following
two rules. The integers, ..., (5) to be filled in are

(i) strictly increasing across each rqvand (ii) are
strictly increasing up each column

Remark 3.1. These possible orderings are related to
Young tableaux, or to be more precise, to standard
tableaux; se¢9] for the connections between geom-
etry of flag manifolds, representation theory@f,,,

and calculus of tableaux.

It easily follows that forr = 3, Bcol and Brow are
the only two possible orderings ensuring quadratic
convergence. For 4 there are already eight
possible orderings together with their “conjugate”
counterparts.

We did not comment yet on orderings which
are definitelynot leading to quadratic convergence.
Generically, this is the case for any ordering which
does not respecdCorollary 3.1 but when the fixed
point matrix A has some specific zero blocks above
the diagonal, quadratic convergence may be recov-
ered. For a more detailed discussion on this and for
illustrative examples, we refer {44,15]

4. Orthogonal transformations

For numerical reasons it makes more sense to
use orthogonal transformations instead of unipotent
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lower triangular ones. We therefore reformulate Obviously, the set of orthogonap-matrices does
Algorithm 3.2in terms of orthogonal transformations. include

The convergence analysis for this new algorithm 171 -1
will greatly benefit from the calculations we already Q = NG [1 1 ] , butdoesnotinclude
did.
For convenience we assume for a while that 5. 0= 0 -1 — @2.
Given 10

Note that lim,—.+o0 L ¢ Lo. Nevertheless, we are

[0 000 able to construct at least locally the space on which
07000 an orthogonal version aflgorithm 3.2 can be de-

L=10 01 0 0], fined. This construction will allow us to use a similar
O p 01O analysis to prove quadratic convergence. Consider an
0O 0 0 O 1 arbitrary elemenL € £, in a sufficiently small neigh-

borhoodU¢, (1,) of the identityZ, in £,, such thatL
a quite natural idea is to use instead.dhe orthogonal can be parameterized by exponential coordinates of
Q-factor fromL after performing Gram—Schmidt, i.e., the second kind, cf19, p. 86] Let

L = RQ to the rows of sub-blocks of.. We have L =L L1—=RmOw R 24
with Nj=(I + p' p)~¥2 and N,=(I + pp") /2 the ® =Ryl il @
factorization: Here the L; are defined as in21). Each L;, for
i=1,...,(),is represented ab; = € with, e.g.,
I 0 O 0 0 using Brow as an ordering,
-
N; 0 P N, O o ... ... 0
L=R-Q= I 0 0
Nr_l 0 I = )
1 0
I 0 0 0 0 Lp1 O 0
0O N O —NlpT 0 o ... ... 0
0 0 I 0 © (23) Do :
0 Np O N, 0 I = . ' R (25)
0 0 0 o0 I 0 pp 0 . 0

Before we proceed to formulate the orthogonal ver- We can therefore study the map

sion of Algorithm 3.2 we need some preliminaries.

Namely we have to fix the manifold such an algorithm © - Ly DU, (In) > SOy,

is “living” on. Consider an “lwasawa Decompositior_f’ L= Quy(L)----- Q1(L). (26)
[13] of the Lie groupZ,. The set of orthogonal matri- ] .
cesQ coming from anRQ-decomposition as if23) Note thatQ;(1,) = I, foralli = 1,..., (3). The fol-
do in general not generate an orthogonal group with lowing series of lemmata characterizes the mapping
the ordinary matrix product as group operation. To see

this we look at the simple 2 2 case Lemma 4.1. The mappingo defined by (26) is

smooth
2\-1/2 2\-1/2
[1 0} _ A+ pH7V2 pa+p?HY Proof. See the explicit form of the?; given as in
p 1 0 1+ pAH2 (23). O

| A+ PR (4 A2 Lemma 4.2. The mappingo defined by(26) is an
A+ p)~Y2p 1+ p?H7Y? immersion atl,,.
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Proof. We have to show that the derlvatlvefan)

[, — so, is injective. For arbitrary = ».2, @ I €1,
the following holds true:

(3
Do(l,) -1 =Y DQi(I) - I;
i=1
3
=) Gi—thH=1-1T, (27)

where we have use/de)(I + ¢2pT p)~Y?|,_0 =0
and(d/de) (I + &2pp")~Y2|,_o = 0. Eq. (27)implies
injectivity in an obvious manner. O

We can now apply thédmmersion theorepncf.
[1, p. 199]

Lemma 4.3. The mappingo as defined by(26)
is a diffeomorphism ofU,, (I,) onto the image

o(Ug, (In))-

Consider the isospectral manifold
Mso, = {X e R""|X = QAQ", 0 € SO,}  (28)
with A € V as above fulfillingAssumption 2.1Define
a:oUs, () = Mso,, @ QAQ".  (29)

T;,0(Ur, (1)) — TaMse,, defined byl — [T
[1-1T, A], we partition/—/T conformably withA, i.e.,

A -+ Ap
A= ,
Ay
0 -py —Pn
p21
1—1" =
T
—Prra1
Prl e Prr—1 0

Note that [ — T, Al;1 = pr1Ai11 — A pr1.- Assume
the converse, i.e.,

holds for somé = [ with
0
l:= pa1 € ly.
ijrl e [~7r,rfl 0

Looking at the (r1)-block of (30) implies (p,1 —
Pri)A11— A (pr1— Pr1) = 0, which byAssumption
2.limplies in turn thatp,1 = p,1. Now we use induc-

tion on the sub-diagonal blocks going from the lower
left corner block of (30) to the first sub-diagonal
blocks. Applying recursively the same arguments on
the(r—1, 1)-block of (30), as well as on thé-2)-block

of (30), then impliesp,2 = p,2 andp,_1.1 = pr_1.1.

Lemma 4.4. The mappinge defined as in(29) is
smooth

Proof. The result follows by the explicit construction
of an arbitraryQ by using exponential coordinates of

the second kind. O

Lemma 4.5. The mappingr defined as i29) is an
immersion at/,,.

Proof. We have to show that the derivativex(,,) :
T;,0(Ug, (In)) — TaMsop, is injective. Arbitrary el-
ements of the tangent spa&e¢ o(U,, (I,)) have the
form

@

dSti—thy=1-1"
i=1

whereas those of the tangent speteMsp, look
like [l — [T, A]. To show injectivity of Dx(1,) :

Finally, we get[— (T, Al =[I—1",Al=1=1T,a
contradiction. Therefore, &1,)) is injective, hencex
is an immersion af,,. O

Consequently, we have the following lemma.
Lemma 4.6. The composition mapping o o
Ug,(In) — Msp, is a diffeomorphism ol., (1,)
onto the imag€a o o) (U, (I)).

4.1. The algorithm

The following algorithm will be analyzed for
satisfying Assumption 2.1 We denote in the se-
quel M = (x o 0)(Ug,(I;)). We are given an
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X € M close toA and we consider the index set
Z:={(ij)}i=2,....r; j=1,...r—1 and fix an orderings. For

1239

Proof. The algorithm is a composition of partial al-
gorithmic steps;. Smoothness of these partial algo-

convenience we again rename double indices in the rithmic steps follows from the smoothness of eagh

description of the algorithm by simple ones by means

of Xjj = Xgij) respecting the ordering.

Algorithm 4.1 (Orthogonal Sylvester sweep). Given
anX € (@oo)(Ug, (1)) = M, define

) . (G- 1
X o= Q(5>Xk Q(g)’
where for/ = 1,...,(5) the transformation matrix

Q; € 80, differs from the identity matrix,, only by
four sub-blocks. Namely, the

(jhth block equals(Z + p " p)~%/2,

(jiyth block equals — (I + p " p)
(ij th block equals(Z + pp)~Y?p,
(ii)th block equals(Z + pp")~ 2.

—1/2
zpT,

HereB((ij)) = [ and p; € R"/*" solves the Sylvester
equation

-1 -1 -1
PO — x{ i p® + (x Py =,

The overall algorithm consists of the following it-
eration of orthogonal sweeps.

Algorithm 4.2 (Orthogonal refinement of subspace
estimates).
e Let Xq,..., X; € M be given fork € No.

(%)

e Define the recursive sequendé{l),..., X, °" as
above (sweep).

o SetXy,1 = X,(((Z». Proceed with the next sweep.
4.2. Local convergence analysis

Analogous toTheorem 3.1we have the following
theorem.

Theorem 4.1. Algorithm 4.2, i.e,, the mappings :
M — M is smooth locally around A

already shown. O

Theorem 4.2. Algorithm 4.2 converges locally
guadratically fast if for working off the partial algo-
rithmic steps an ordering is chosen which respects
Corollary 3.1

Proof. We will compute Dyj (A) foralli > jwith2 <

i <land 1< j <m — 1. Without loss of generality
we may assume that the partitioning consists of 5
5 blocks. Typically, a transformation matrigjj for
rij(X) = QinQl—jr looks like

1 0 0 0 0]
0 SjX) 0 =Sj(X)p](X)0
OijX)=10 0 I 0 0],
0 TH(X)pij(X) 0 Tj(X) O
0 0 0 0 1]
(31)

wheres;j(X) := (I+p" (X)p(X))~V?, andTjj(X) :=
(I + p(X)pT (X))~Y2. Moreover, Sj(A) = I,, and
Tij(A) = I,;. An arbitrarys2 € so,/(s0,, @ - -®50,,)
looks like

0 o - o}

o .
o 21

: T

. ' _‘Qr,r—l

21 Qr,r—l 0

The derivative of one partial algorithmic step acting
on [$2, A] € TAM is as Djj(A) - [£2, A] = [Qj, Al +
[£2, A], where Q{j = DQjj(A) - [£2, A], and typically

0
i (4)

0
Pij(4)
0 0

L]
Il
o o o o

0
0
0
0

0

0
—(pi))(A)
0
Ti(A)

0

o © o © o

with pi’j (A) = Dpjj(X) - [£2, X]Ix=4. We already

know that pjj solves a Sylvester equation, namely
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Pij (X) Xjj + Xijj — Xii pij (X) = 0, with pjj (X)|x=4 = 0.
Taking the derivative of this Sylvester equation acting
on [£2, A] gives

pi’J (DA +[£2, Al — Aiipi/j (A) =0. (32)

An easy computation verifies that the commutator
[Qjj. Al s of the following form:

0 * * k%
0 * * k%
[0j.41=| O * SR
0 pi/]- Ajj — Ajj pi/j EE
_0 0 0 O 0_

i.e., the(ij)th block equalgjj Ajj — Aji pjy and columns
of blocks to the left as well as rows oflblocks below are
zero. By(32), we therefore obtain for the derivative
of the (ij)th partial stepjj:

0 * * ok ok
0 * % % %
Drij(A)-[£2,A] = | 0 * * k%
0 pi/j Ajj — Aiipi/j *x ok ok
0 0 0 O
[05.4]
* * * k¥
* * * ok %
+| * * * ok %
* [£2,Alj * = x
* * * ok %
[£2,A]

That is, by (32) the first derivative annihilates the
(ij)th block, altering eventually those blocks which are
above, to the right, or a combination of both, to this
(ij)th block, but it leaves invariant all the remaining
blocks. Apparently, all ordering strategies respecting
Corollary 3.1ensure that after a whole iteration step all
those blocks lying below the main block diagonal are
eliminated. We therefore can conclude thafjOt) -

[£2, A]is strictly upper block triangular. Again we can
even conclude more, namelyrfA) - [£2, A] = O.
Following the argumentation in the proof bEmma
2.2, essentiallyAssumption 2.lensures that the only
element ofso,, /(s0,, @ - - - @ s0,,), Which commutes
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with A into a upper block triangular matrix, is the zero
matrix. This can also be seen from the fact that the
aboves? is of the typel — T, wherel € [,,. The result
then follows. O

5. Computational aspects

In this section we look at computational aspects of
the basic recurrences describedSection 3 We first
focus on the complexity of the solution of the Sylvester
equation needed both in the Sylvester sweep and in the
orthogonal Sylvester sweep algorithm. Using the no-
tation of those sections, we want to solve the equation

PX11+ X21 — X22P =0, (33)

where we will assumeXj e R**" andnp; >

n1. The recommended method here is to use the
Hessenberg—Schur method describedlih]. In this
method one computes orthogonal similarity transfor-
mationsU;, i = 1, 2 such thatS=U] X11U1 is in real
Schur form (i.e. an upper block triangular matrix with
1x 1 or 2x 2 blocks on diagonal) anHﬁUZTXZZUz is

in Hessenberg form (i.e. a matrix with zeros below the
first sub-diagonal). Defining aIsEiUZTXﬂUl and
ZiUZTPul we obtain an equivalent equation i

ZS+F —HZ=0, (34)

which is easier to solve. The special formsHfand
S indeed yield simple recurrences for the columps
k=1, ...,n10f Z If sgy1% = O thenz is obtained
from previously computed columns using

k=1

(H—sixDax = fi+ ) sjkzj

j=1

(39)

(which can be solved in3 flops) and ifsi 14 # O
then columng; andz,1 are similarly computed from

Sk k Sk k+1
Hlzrlzk+1] — [zrlze+1 ' '
[zklzr+1] — [zrlzr+a] .
k=1
= [fel fi+1] + Z[Sj,ij|Sj,k+1Zj]
=1

(which can be solved inr@ flops). It is shown if11]
that the overall algorithm, including the back trans-
formation P = U,ZU] requires(5/3)n3 + 1003 +
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5n2n1+(5/2)n2n; flops. Itis also shown in that paper
that this method is weakly stable, which essentially
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are n?/8 of those per sweep, the orthogonal sweep
requires about #4° flops, i.e., about the double of a

guarantees that the computed solution is as accuratestandard Sylvester sweep. Since both algorithms are

as what could be expected from any algorithm solving
(33). Let us point out here that the computation of the
solutions of each Sylvester equation of the Sylvester
sweep is negligible in comparison to the application
of the similarity transformations, provided the sizgs

of the blocks are small comparedipthe dimension

of the matrix they operate on. Indeed, one similarity
transform implying a matrix of dimensiom; xn ; re-
quires 4 -n;-n; flops (for multiplying P with ann ; xn
matrix from the right and with an x n; matrix from
the left). A total Sylvester sweep therefore requires

224'1(”5 "nj) = 4”2”[2@/ = 4n°®
J i j

i

flops. For the more concrete case whereigh= n; =
2 (i.e. when we calculate a Schur-like form) the com-
plexity can be calculated more precisely and i 2
flops. Clearly, the computation of the solutions of the
n?/8 Sylvester equations of sizex22 is of the order
of n? flops and hence an order of magnitude less.
For the orthogonal Sylvester sweep one has first to
construct the orthogonal transformatigh described
in (23). A simple and reliable procedure for reason-
able sized matrice® is to use its singular value de-
composition. Assuming? € R">*" with n; < nj,
we haveP = U[T 0]VT, whereU e R"*"i V e
R™"*" andT = diag{tanéy, ..., tand, } is diagonal
and positive. It then follows that the four non-trivial
blocks of O are given by:

N; =VCV', NP=V[S 0JU',

B I _[c o7, +
N,P_U[O}V, N,_U[0 I]U’
where
C = diag{ costn, . .., COSO,;},

S = diag{ sinoy, ..., sindy,}.

The computational cost of constructing these transfor-
mations is again negligible with respect to their appli-
cation. Fom; = n; = 2 each one essentially amounts
to a 4x 4 row transformation on a 4 n block row of

A and 4x 4 column transformation on anx 4 block
column of A. This requires 32 flops and since there

quadratically convergent, one can say that these algo-
rithms require %) flops to converge (when starting
from a form that is almost block diagonal). We point
out that the standar@R algorithm is of the same or-
der of complexity.

We should mention that the methods described in
this paper extend to the generalized eigenvalue prob-
lem in a straightforward manner. Instead of one Ric-
cati or one Sylvester equation one has then to solve
a system of two coupled ones. Everything is similar
under an equivalent assumption on the spectra of the
sub-blocks.

If the considered matrix is symmetric, our method
is related to[12]. There, the so-called approximate
Givens (or Jacobi) transformations are developed
which essentially approximate an exact rotation to
zero out a matrix entry. It is not clear though that
our algorithm has an interpretation as a Jacobi-type
method in the general non-symmetric case.

The appeal of our method is to be found in
time-varying eigenvalue problems (as occurring, e.g.
in tracking problems of slowly varying phenomena).
At each step one then has a nearly block triangular
matrix to start with, which needs to be updated in
order to reduce it again to block triangular form via
similarity transformations. One should also point out
that in terms of efficient implementation on parallel
architectures, our method should have much the same
properties as Jacobi-like methods.
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